疲劳裂纹扩展的微观阶段

合集下载

疲劳裂纹扩展.

疲劳裂纹扩展.

第五章疲劳裂纹扩展§5.1 概述前面介绍的内容为静载荷作用下的断裂准则。

构件在交变应力作用下产生的破坏为疲劳破坏,疲劳破坏的应力远比静载应力低。

一、疲劳破坏的过程1)裂纹成核阶段交变应力→滑移→金属的挤出和挤入→形成微裂纹的核(一般出现于零件表面)。

2)微观裂纹扩展阶段微裂纹沿滑移面扩展,这个面是与正应力轴成45°的剪应力作用面,是许沿滑移带的裂纹,此阶段裂纹的扩展速率是缓慢的,一般为10-5mm每循环,裂纹尺寸<0.05mm。

3)宏观裂纹扩展阶段裂纹扩展方向与拉应力垂直,为单一裂纹扩展,裂纹尺寸从0.05mm扩展至临a,扩展速率为10-3mm每循环。

界尺寸c4)断裂阶段a时,产生失稳而很快断裂。

当裂纹扩展至临界尺寸c工程上一般规定:①0.1mm~0.2mm裂纹为宏观裂纹;②0.2mm~0.5mm,深0.15mm表面裂纹为宏观裂纹。

N)宏观裂纹扩展阶段对应的循环因数——裂纹扩展寿命。

(pN)以前阶段对应的循环因数——裂纹形成寿命。

(i二、高周疲劳和低周疲劳高周疲劳:当构件所受的应力较低,疲劳裂纹在弹性区内扩展,裂纹的疲劳寿命较长。

(应力疲劳)低周疲劳:当构件所受的局部应力已超过屈服极限,形成较大的塑性区,裂纹在塑性区中扩展,裂纹的疲劳寿命较小。

(应变疲劳)工程中一般规定N≤105为低周疲劳。

f三、构件的疲劳设计1、总寿命法测定S-N曲线(S为交变应力,N为应力循环周次)。

经典的疲劳设计方法是循环应力范围(S-N)曲线法或塑性总应变法来描述导致疲劳破坏的总寿命。

在这些方法中通过控制应力幅或应变幅来获得初始无裂纹的实验室试样产生疲劳破坏所需的应力循环数和应变循环数。

N=Ni +Np(Ni萌生寿命,Np扩展寿命)2、损伤容限法(疲劳设计的断裂力学方法)容许构件在使用期内出现裂纹,但必须具有足够的裂纹亚临界扩展寿命,以保证在使用期内裂纹不会失稳扩展而导致构件破坏。

疲劳寿命定义为从某一裂纹尺寸扩展至临界尺寸的裂纹循环数。

金属材料疲劳裂纹萌生机理与扩展规律概述

金属材料疲劳裂纹萌生机理与扩展规律概述

金属材料疲劳裂纹萌生机理与扩展规律概述摘要:在飞行器结构中,如机翼与机身连接、发动机和发动机吊架连接等重要连接区的连接结构往往会因为受到严苛的循环载荷而萌生疲劳裂纹,随着疲劳裂纹逐渐扩展,最终导致结构发生断裂失效。

本文根据部分文献和相关书籍,对金属材料的疲劳裂纹萌生机理和扩展规律进行了梳理,结论表明影响裂纹萌生与裂纹扩展的主要参量、裂纹扩展不同阶段的扩展方向均有不同。

关键词:循环滑移;裂纹萌生;裂纹扩展;对于飞行器结构,疲劳裂纹是导致结构失效最主要且最危险的损伤形式之一[1]。

疲劳裂纹作为一种常见的机械损伤失效模式,约占总失效的50%~90%[2]。

在交变载荷、腐蚀环境等作用下,尽管结构的最大工作应力低于材料强度,但是经过一定的服役时间后,结构仍然会萌生疲劳裂纹并逐步扩展。

出现在大梁减轻孔、机身蒙皮、机翼机身接头等关键部位的疲劳裂纹会严重削弱结构的承载能力,其失稳破坏甚至会导致灾难性事故的发生。

因此研究飞行器结构的疲劳裂纹损伤萌生及扩展机理,准确地预测结构的疲劳寿命具有十分重要的工程意义。

1疲劳裂纹的萌生和扩展规律[3]金属结构材料在循环载荷作用下的疲劳损伤演化过程可以分为两个阶段:宏观裂纹萌生阶段和宏观裂纹扩展阶段,两个阶段的区别在于影响疲劳行为的因素,而控不同。

在宏观裂纹萌生阶段,控制裂纹萌生的重要参量是应力集中系数K1制宏观裂纹扩展的参量则是应力强度因子K。

从图1中可以看出,宏观裂纹萌生阶段可以细分为两个子阶段:一是微裂纹形核阶段;二是微裂纹扩展阶段,即微裂纹因扩展或相互作用而聚集合并,形成“主导”宏观裂纹的过程。

微裂纹扩展阶段和宏观裂纹扩展阶段的交点通常认为是裂纹萌生与扩展的分界线,但实际上这个临界点的精确定义是无法定量描述,一般定性地认为:当微裂纹扩展不在依赖于自由表面状况时,裂纹萌生阶段结束。

图1 疲劳损伤演化[4]1.1 疲劳裂纹的萌生在很多情况下,裂纹萌生寿命占到疲劳寿命相当大的一部分,例如在高周疲劳中裂纹萌生寿命占总寿命的80%~90%,在超高周疲劳中裂纹萌生寿命可占到总寿命的99%,因此裂纹萌生阶段在整个金属材料疲劳过程中占有极为重要的地位。

疲劳断裂的基本特征

疲劳断裂的基本特征

疲劳断裂的基本特征疲劳断裂是一种金属和材料在长时间的应力作用下逐渐产生裂纹并最终失效的现象。

它是一种破坏行为,常见于机械结构和工程材料中。

疲劳断裂的基本特征包括裂纹形成、裂纹扩展和失效破坏。

疲劳断裂的形成通常经历三个阶段。

首先是应力集中,也就是在材料表面或内部出现应力集中的区域。

这种应力集中可以由缺陷、凹槽、划痕等引起。

其次是裂纹的形成,应力集中区域的材料开始发生微小的裂纹,这些裂纹通常是微观的,难以察觉。

最后是裂纹的扩展,随着应力的作用,裂纹逐渐扩展,最终导致材料的失效。

疲劳断裂的特点是裂纹的扩展是一个渐进性的过程。

在应力作用下,裂纹从微小到逐渐扩展,直到达到材料的强度极限。

这个过程被称为裂纹的扩展阶段。

裂纹扩展的速度受到多个因素的影响,包括应力水平、应力周期、材料的力学性能等。

一般来说,应力水平越高、应力周期越大、材料的力学性能越差,裂纹扩展的速度越快。

疲劳断裂的失效破坏通常是突然发生的。

在裂纹扩展到一定程度后,材料的强度将急剧下降,裂纹会迅速扩展并导致材料的失效。

这种失效破坏是突然发生的,没有明显的预警信号。

因此,对于承受疲劳载荷的结构和材料,必须进行定期的检测和维护,以防止疲劳断裂的发生,确保结构的安全性。

为了预防和控制疲劳断裂,人们采取了许多措施。

首先是改善材料的力学性能,提高材料的韧性和强度,减少裂纹扩展的速度。

其次是设计合理的结构,避免应力集中的出现,减少裂纹的形成。

此外,还可以采用表面处理、应力涂层、热处理等方法来提高材料的抗疲劳性能。

在使用过程中,要注意控制应力水平和应力周期,避免过大的应力作用。

疲劳断裂是一种常见的材料失效形式,它具有裂纹形成、裂纹扩展和失效破坏等基本特征。

了解疲劳断裂的特点,对于改善材料的抗疲劳性能、设计合理的结构以及确保结构的安全性具有重要意义。

通过采取合适的预防和控制措施,可以有效地避免疲劳断裂的发生,延长材料和结构的使用寿命。

橡胶疲劳断裂形态

橡胶疲劳断裂形态

橡胶疲劳断裂形态橡胶是一种具有优异机械性能和耐磨耐腐蚀特性的弹性材料,广泛应用于各个领域。

然而,在长期使用过程中,橡胶材料可能会出现疲劳断裂现象。

疲劳断裂是指材料在受到重复加载作用下,由于应力集中和损伤累积,最终导致断裂失效。

橡胶疲劳断裂形态多种多样,常见的有裂纹扩展型、剪切型和磨损型。

下面将详细介绍这些形态。

裂纹扩展型是指在橡胶材料中出现裂纹,并随着加载次数的增加逐渐扩展。

这种疲劳断裂形态常见于高应力和高应变下的橡胶材料,如橡胶密封件和橡胶弹簧等。

裂纹扩展型的疲劳断裂通常呈现出断裂口较为平整和光滑的特点,裂纹呈尖锐形状,断裂面较为干净。

裂纹扩展型的疲劳断裂是由于材料内部的微观缺陷和损伤导致的,随着裂纹的扩展,材料的强度逐渐降低,最终导致断裂失效。

剪切型是指在橡胶材料中出现剪切变形,并伴随着裂纹的形成和扩展。

剪切型的疲劳断裂常见于橡胶材料在剪切应力作用下的情况,如橡胶管道和橡胶密封圈等。

剪切型疲劳断裂通常表现为断裂面上有明显的剪切纹路,呈现出类似撕裂的特征。

剪切型疲劳断裂的形成是由于橡胶材料在受到剪切应力作用下,发生内部断裂和相对滑移,造成裂纹的形成和扩展。

磨损型是指橡胶材料在长期使用过程中,由于摩擦和磨损作用,最终导致断裂失效。

磨损型的疲劳断裂常见于橡胶轮胎和橡胶密封件等应用场景。

磨损型疲劳断裂通常表现为断裂面上有明显的磨损痕迹和划痕,呈现出类似磨损的特征。

磨损型疲劳断裂的形成是由于橡胶材料在受到摩擦和磨损作用下,表面逐渐磨损,最终导致断裂失效。

总结起来,橡胶疲劳断裂形态包括裂纹扩展型、剪切型和磨损型。

裂纹扩展型的疲劳断裂主要是由于材料内部的微观缺陷和损伤导致的,呈现出断裂口平整光滑的特点。

剪切型的疲劳断裂主要是由于橡胶材料在受到剪切应力作用下发生内部断裂和相对滑移,呈现出撕裂的特征。

磨损型的疲劳断裂主要是由于橡胶材料在长期使用过程中受到摩擦和磨损作用,表面逐渐磨损,呈现出磨损的特征。

了解橡胶疲劳断裂形态对于预防和控制疲劳断裂失效具有重要意义。

疲劳破坏机理

疲劳破坏机理

疲劳破坏机理1、定义材料或构件受到多次重复变化的载荷作用后,即使最大的重复交变应力低于材料的屈服极限,经过一段时间的工作后,最后也会导致破坏,材料或结构的这种破坏就叫做疲劳破坏。

材料科学揭示,由于制造过程中存在不可避免的缺陷,材料中的微裂纹总是存在的,特别是在焊缝处。

这些微裂纹在交变应力作用下扩展和聚合,形成宏观裂纹,宏观裂纹的进一步扩展导致最后的破坏。

疲劳破坏的微观过程是个极其复杂的过程,在宏观上一般来说可分为三个阶段:裂纹的萌生、裂纹的稳定扩展及裂纹的失稳扩展问。

2、疲劳裂纹萌生机理金属材料如果含有缺陷,夹杂物,切口或者其它应力集中源,疲劳裂纹就可能起源于这些地方。

通常将疲劳裂纹的萌生过程称为疲劳裂纹成核。

如果金属材料没有上述各种应力集中源,则裂纹成核往往在构件表面。

因为构件表面应力水平一般比较高,且难免有加工痕迹影响;同时表面区域处于平面应力状态,有利于塑性滑移的进行。

构件在循环载荷作用下经过一定次数应力循环之后,先在部分晶粒的局部出现短而细的滑移线,并呈现相继错动的滑移台阶,又由于往复滑移在表面上形成缺口或突起而产生应力集中。

随着循环次数增加,在原滑移线时近又会出现新滑移线逐渐形成较宽的滑移带,进一步增加应力循环次数,滑移带尺寸及数量均明显增加,疲劳裂纹就在这此滑移量大的滑移中产生。

这些滑移带称为驻留滑移带,标志裂纹在表面形成。

在大量滑移带中,由于原滑移所引起在表面有挤出和侵入槽的出现。

从而在表面下留下相应的空洞成为裂纹源。

随着循环次数提高和应力集中的加剧,会使空洞扩连形成新的较大空洞。

3、疲劳裂纹扩展机理疲劳裂纹在表面处成核,是由最大剪应力控制的,这些微裂纹在最大剪应力方向上。

在单轴加载条件下,微裂纹与加载方向大致呈45度方向。

在循环载荷的继续作用下,这些微裂纹进一步扩展或互相连接。

其中大多数微裂纹很快就停止扩展,只有少数几条微裂纹能达到几十微米的长度。

此后逐渐偏离原来的方向,形成一条主裂纹而趋向于转变到垂直于加载方向的平面(最大拉应力面)内扩展。

构件发生疲劳断裂时微观形貌特征

构件发生疲劳断裂时微观形貌特征

构件发生疲劳断裂时微观形貌特征一、引言疲劳断裂是材料科学和工程领域中一个重要的问题,它导致许多实际工程中的失效事故。

研究材料在疲劳载荷下的断裂行为及其微观形貌特征对于预防疲劳断裂具有重要的意义。

本文将探讨构件在疲劳断裂发生时的微观形貌特征。

二、疲劳断裂的基本特征1. 疲劳断裂是指在交变应力作用下,材料在较短时间内经历多次应力循环后出现断裂的现象。

2. 疲劳断裂的形貌特征包括疲劳裂纹的形态和扩展方向等。

三、微观形貌特征的分析1. 晶粒形貌特征在疲劳断裂过程中,晶粒会逐渐失去规则的排列状态,形成疲劳裂纹。

晶粒在断裂前后的形态变化对于断裂的过程和机制具有重要的意义。

2. 疲劳裂纹的扩展疲劳裂纹的扩展路径是材料疲劳断裂行为中的重要特征之一。

疲劳裂纹往往呈现出交错、分叉等形态,揭示了材料在疲劳断裂过程中的特殊应力状态及其对裂纹形成的影响。

3. 微观结构的变化材料在疲劳断裂过程中,其微观结构会发生变化,如晶粒尺寸的变化、位错堆积等。

这些变化对材料的强度和断裂性能都有重要影响,因此对微观结构的研究可以揭示材料疲劳断裂的机制。

四、疲劳断裂的机制1. 晶界滑移与扩展在疲劳断裂过程中,晶界的滑移与扩展是一个重要的机制。

晶界滑移的不规则扩展对材料的疲劳性能有重要影响。

2. 前驱裂纹的形成疲劳断裂过程中,前驱裂纹的形成是一个重要的环节。

微观形貌特征的分析可以帮助揭示前驱裂纹形成的机制。

3. 微观缺陷的影响材料在制备和应力加载过程中存在着各种微观缺陷,这些缺陷对疲劳断裂的形貌特征有重要的影响。

研究微观缺陷对疲劳断裂的影响,可以为材料设计和工程应用提供重要参考。

五、研究方法1. 金相显微镜观察金相显微镜是研究材料微观形貌特征的重要工具之一,通过观察材料的金相组织和晶粒形貌特征,可以揭示材料疲劳断裂的微观机理。

2. 电镜观察电镜是研究材料微观结构和形貌特征的重要手段,其高分辨率的观察能力可以揭示材料微观形貌特征的细节。

3. 数值模拟数值模拟是研究材料断裂行为和微观形貌特征的重要方法,通过模拟材料在疲劳载荷下的行为,可以揭示材料的疲劳断裂机制和微观形貌特征。

疲劳裂纹萌生及扩展

疲劳裂纹萌生及扩展

疲劳条纹(striation) 不同于海滩条带(beach mark) Cr12Ni2WMoV钢疲劳条纹:(金属学报,85)
透射电镜:1-3万倍
S
谱块
t
循环
条纹
条带
疲劳裂纹扩展的微观机理 1976 Crooker
Cr12Ni2WMoV钢疲劳断口微观照片:(金学报,85)三种破坏形式:
微解理型 microcleavage
3)裂纹源在高应力局部或材料缺陷处。 4)与静载破坏相比,即使是延性材料,也没有明显 的塑性变形。 5)工程实际中的表面裂纹,一般呈半椭圆形。
疲劳断口观察工具与观察内容的关系:
观察 工具 放大 倍数 观察 对象 肉眼,放大镜
1-10×
金相显微镜
10-1000×
电子显微镜
1000×以上
宏观断口, 海滩条带;
裂纹源,滑移, 条纹,微解理 夹杂,缺陷; 微孔聚合
4. 由疲劳断口进行初步失效分析
断口宏观形貌: 是否疲劳破坏? 裂纹临界尺寸? 是否正常破坏?
破坏载荷?
金相或低倍观察: 裂纹源?是否有材料缺陷?缺陷的类型和大小?
高倍电镜微观观察: “海滩条带”+“疲劳条纹”,使用载荷谱,估计速率。 疲劳断口分析,有助于判断失效原因,可为改进 疲劳研究和抗疲劳设计提供参考。 因此,应尽量保护断口,避免损失了宝贵的信息。
疲劳裂纹萌生与扩展
1.2 疲劳断裂破坏的严重性
1982年,美国众议院科学技术委员会委托商业 部国家标准局(NBS)调查断裂破坏对美国经济的影 响。 提交综合报告 “美国断裂破坏的经济影响” SP647-1 最终报告 “数据资料和经济分析方法” 断裂使美国一年损失1190亿美元 SP647-2

经典金属疲劳裂纹扩展至断裂机理讲解(专业级)

经典金属疲劳裂纹扩展至断裂机理讲解(专业级)

经典金属疲劳裂纹扩展至断裂机理讲解(专业级)经典金属疲劳裂纹扩展至断裂机理讲解(专业级)通常,疲劳裂纹扩展可以分为三个阶段:第I阶段(裂纹萌生,shot cracks),第II阶段(裂纹扩展,long cracks),第III阶段(瞬时断裂,final fracture)Fig. 1— Stages I and II of fatigue crack propagation.第I阶段:一旦裂纹萌生以后,就会沿着最大剪切应力平面(约45o)扩展,如图1所示。

这一阶段被认为是第I阶段或者短裂纹萌生和扩展阶段。

裂纹一直扩展直到遇到障碍物,如晶界、夹杂物或珠光体区。

它无法容纳初始裂纹的扩展方向。

因此,晶粒细化是可以提升材料疲劳强度的利用了引入大量微观障碍物的原理。

晶界,在裂纹扩展的第I阶段需要克服晶粒的阻碍并越过晶界。

表面机械处理,例如喷丸和表面滚压也会引入一些微观的障碍物,因为它们使晶界被压扁了。

Fig. 2 — Fatigue striations in (a) interstitial free steel and (b)aluminum alloy AA2024-T42. Figure (c) shows the fatigue fracture surface of a cast aluminum alloy, where a fatigue crack was nucleated from a casting defect, presenting solidification dendrites on the surface; fatigue striations are indicated by the arrow, on the top right side.第II阶段:由于裂纹扩展,实际载荷的上升,应力强度因子K不断增加,在裂纹尖端附近的不同平面上开始发生滑移,于是就进入了第II阶段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

疲劳辉纹及其形成模型
疲劳辉纹是位于断口上的一些波纹。如果在疲劳裂 纹扩展的Paris区中外加循环载荷保持恒定,则辉纹间距与 试验测出的裂纹在每个循环中的平均扩展距离(平均扩展 速率)有对应关系。辉纹形成的可能性与ΔK值、应力状态、 环境条件以及合金成分有强烈的关系。并不是所有工程 材料在疲劳裂纹的第Ⅱ阶段扩展时都产生疲劳辉纹。辉 纹在纯金属和许多延性合金、工程聚合物中可以清晰看 到,而钢和冷加工合金中很少出现。
右图为镍基超 合金单晶第Ⅰ阶段 裂纹扩展实例(观察 面与拉伸轴方向垂 直)。Forsyh (1962) 把这种导致“Z字型” 裂纹路径的纯滑移 机制定义为第Ⅰ阶 段裂纹扩展。 在许多铁合金,铝合金及钛合金中观察到裂纹的第Ⅰ阶 段扩展。在这些材料中,即使裂纹长度比晶粒尺寸大得多, 只要在近顶端塑性区的尺寸比晶粒尺寸小(即应力强度因子范 围ΔK值很小),就会出现这种扩展。该阶段疲劳断口为锯齿形, 或呈现解理小平面(断裂面分离时所沿晶面)。
疲劳辉纹的形成与 第Ⅱ阶段裂纹扩展 可用Laird(1967)的裂 纹顶端钝化锐化模 型解释。
在拉伸应力作用下,裂纹顶端由于双滑移而发生塑性钝 化,该钝化过程可使裂纹向前扩展一段距离;如果远场应力 变为压应力,则裂纹顶端会重新锐化。由于压缩时的裂纹闭 合不能完全消除拉伸应力造成的钝化,裂纹会在随后的拉应 力下继续向前扩展一段距离,疲劳辉纹正是因为一个疲劳循 环中的裂纹净扩展导致的。
机械系统的故障诊断
疲劳裂纹扩展的微观阶段
疲劳裂纹扩展的微观阶段
材料的滑移特性和显微组织特征尺度、应力 水平及近顶端塑性区尺寸对疲劳裂纹扩展的微观 模式有强烈影响。根据其微观模式的不同,将疲 劳裂纹扩展分为两个阶段(第Ⅰ阶段裂纹扩展和 第Ⅱ阶段裂纹扩展)。
第Ⅰ阶段裂纹扩展
循环载荷对延性固体引起的裂纹扩展可以看作在裂纹顶 端近旁的滑移带内发生的急剧局部变形过程,该过程可通过 剪切脱粘而形成新裂纹面。当裂纹和裂纹顶端塑性变形区局 限在几个晶粒直径的范围时,裂纹主要沿主滑移系方向以纯 剪切方式扩展,下图为第Ⅰ阶段裂纹扩展的示意图。
第Ⅱ阶段裂纹扩展
当Δ K 值较大时, 裂纹顶端塑性区跨越 多个晶粒 ,此时裂纹 扩展沿两个滑移系统 同时或交替进行, Forsyth 将 这 种 双 滑 移 机制定义为裂纹的第 Ⅱ阶段扩展,左图为 第Ⅱ阶段裂纹扩展的 理想模型。
图2为铜单晶的第Ⅱ 阶段裂纹扩展实例, 可以看到两组滑移面。 单晶从第阶段扩展转 变为第阶段扩展时, 形成位错胞结构,同 时裂纹顶端的 PSB 消 失。许多工程合金在 该阶段产生疲劳辉纹。
参考文献
S.Suresh著.王中光等译.《材料的疲劳》/国防工
业出版社 陈建桥著.《材料强度学》/华中
相关文档
最新文档