轴向拉压习题答案2

合集下载

材料力学习题册答案-第2章-拉压

材料力学习题册答案-第2章-拉压
第二章 轴向拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=

=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้

第02章拉压题解

第02章拉压题解

第2章 习题解答2-1 试求图示各杆1-1,2-2,3-3截面的轴力并画出杆的轴力图。

解:(a )N 1-1 = 50 kN ,N 2-2 = 10 kN ,N 3-3 = -20 kN(b )N 1-1 = F ,N 2-2 = 0 ,N 3-3 = F(c )N 1-1 = 0 ,N 2-2 = 4F ,N 3-3 = 3F2-2 图示螺旋压板夹紧装置。

已知螺栓为M20(螺纹内径d =17.3mm ),许用应力[ζ]=50MPa 。

若工件所受的夹紧力为2.5kN ,试校核螺栓的强度。

∑=0BM03=⋅-⨯l F lF A得F = 3 F A243dF A F Aπ==σ233.174105.23⨯π⨯⨯⨯== 31.9 MPa <[ζ]安全2-3 图示结构,A 处为铰链支承,C 处为滑轮,刚性杆AB 通过钢丝绳悬挂在滑轮上。

已知F =70kN ,钢丝绳的横截面积A =500mm 2,许用应力[ζ]=160MPa 。

试校核钢丝绳的强度。

由AB 杆的平衡条件得:∑=0A M 05s i n 4=⋅α-N F α= 45°,2.7945sin 570445sin 54=︒⨯=︒=F N kN4.158500102.793=⨯==σA N MPa <[ζ] ,安全 2-4 图示为一手动压力机,在物体C 上所加的最大压力为150kN ,已知立柱A 和螺杆BB 所用材料的许用应力[ζ]=160MPa 。

1. 试按强度要求设计立柱A 的直径D ;2. 若螺(a )(b )杆BB 的内径d =40mm ,试校核其强度。

解:由平衡条件得 752150==A N kN 1. 由立柱的强度条件 24DN A N AA A π==σ≤[ζ] 得 D ≥4.2416010754][43=⨯π⨯⨯=πζA N mm2. 螺杆的应力1194010150423=⨯π⨯⨯==σBB BB A N MPa <[ζ] 螺杆强度足够。

第2章拉压作业参考解答

第2章拉压作业参考解答

aEADj + 4.5aEADj = 2aF , Dj = 2F 5.5EA
4. 再由 Hooke 定律:
FN1
=
EADj
=
2F 5.5
=
0.3636F
FN 2
= 1.5EADj
=
1.5´ 2F 5.5
2
(1)图(a)为开槽拉杆,两端受力 F=14kN,b=20mm,b0=10mm,δ=4mm。 (2)图(b)为阶梯形杆,AB 段杆横截面面积为 80mm2,BC 段杆横截面面积为 20mm2, CD 段杆横截面面积为 120mm2。 (3)图(c)为变截面拉杆,上段 AB 的横截面面积为 40mm2,下段 BC 的横截面面积为
DG
=
Dl2
-
2 3
Dl1
-
1 3
Dl3=6.89 ´10-4
m
5
2-15 求附图示圆锥形杆在轴向力 F 作用下的伸长量。弹性模量为 E。
解答 对于截面缓变的圆锥形杆可假设横截面上正应力均匀分布。横截面面积为
A(x)
=
1 4
p [d1l
-
(d1
-
d2 )x]2
/l2
ò ò ò Dl =
l
edx =
FN1
FN3
FN2
D
(2)
(b) 整体分析,示力图见附图(3)。
å M Ai = 0 : FN1 ´1 + 3´ 3´1.5 = 0
FN1 = -13.5kN
FAx A
FAy FN1
B
s1
=
FN 1 A1
=
-13.5 ´103 850 ´10-6
=
-15.88MPa

材料力学轴向拉压题目+答案详解

材料力学轴向拉压题目+答案详解

2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。

设两根横梁皆为刚体。

解:(1)以整体为研究对象,易见A 处的水平约束反力为零; (2)以AB 为研究对象由平衡方程知0===A B B R Y X(3)以杆BD 为研究对象由平衡方程求得KNN N NY KNN N mC20010 01001101 021211==--===⨯-⨯=∑∑(4)杆内的应力为MPa A N MPa A N 7.63204102012710410102322223111=⨯⨯⨯===⨯⨯⨯==πσπσ2-19. 在图示结构中,设AB 和CD 为刚杆,重量不计。

铝杆EF 的l 1=1m ,A 1=500mm 2,E 1=70GPa 。

钢杆AC 的l 2=,A 2=300mm 2,E 2=200GPa 。

若载荷作用点G 的垂直位移不得超过。

试求P 的数值。

解:(1)由平衡条件求出EF 和AC 杆的内力P N N N P N N AC EF AC4332 2112=====(2)求G 处的位移22221111212243)ΔΔ23(21)ΔΔ(21Δ21ΔA E l N A E l N l l l l l l A C G +=+=+== (3)由题意kNP P P A E Pl A E Pl mml G 1125.2300102001500500107010009212143435.233222111≤∴≤⨯⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯⨯≤ 2-27. 在图示简单杆系中,设AB 和AC 分别是直径 为20mm 和24mm的圆截面杆,E=200GPa ,P=5kN ,试求A 点的垂直位移。

解:(1)以铰A 为研究对象,计算杆AB 和杆AC 的受力kN N kN N AC AB 66.3 48.4==(2)两杆的变形为()伸长mm πEA l N l ABAB AB AB201.04201020045cos 20001048.42303=⨯⨯⨯⨯⨯==Δ ()缩短mm πEA l N l ACAC AC AC 0934.04241020030cos 20001066.32303=⨯⨯⨯⨯⨯==Δ (3)如图,A 点受力后将位移至A ’,所以A 点的垂直位移为AA ’’mmctg A A l A A AA A A mmA A ctg A A ctg A A A mm AA AA AA AA A A A A l l AB A AB AC 249.00355.0284.0 4545sin /Δ 035.0 4530A 0972.030sin /45sin /AΔΔAA ΔAA 00330043010243434321=-='''-=''-=''=∴='''∴'''+'''==-=-='==δ 又中在图中2-36. 在图示结构中,设AC 梁为刚杆,杆件1、2、3的横截面面积相等,材料相同。

材料力学第二章 轴 向拉压习题及答案

材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。

4.材料经过冷作硬化后,其( D)。

A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。

A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。

A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。

7.铸铁试件压缩破坏(B)。

A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。

8.为使材料有一定的强度储备,安全系数取值应( A )。

A .大于1; B. 等于1; C.小于1; D. 都有可能。

9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。

A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。

《材料力学》第2章轴向拉(压)变形习题解答

《材料力学》第2章轴向拉(压)变形习题解答

其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊

材料力学 拉伸压缩 习题及参考答案

材料力学 拉伸压缩 习题及参考答案

轴向拉伸和压缩 第二次 作业1. 低碳钢轴向拉伸的整个过程可分为 弹性阶段 、 屈服阶段 、 强化阶段 、 局部变形阶段 四个阶段。

2. 工作段长度100 mm l =,直径10 mm d =的Q235钢拉伸试样,在常温静载下的拉伸图如图所示。

当荷载F = 10kN 时,工作段的伸长∆l = 0.0607mm ,直径的缩小∆d = 0.0017mm 。

则材料弹性模量E = 210 GPa ,强度极限σb = 382 MPa ,泊松比μ = 0.28 ,断后伸长率δ = 25% ,该材料为 塑性 材料。

∆l / mmO0.0607253. 一木柱受力如图所示。

柱的横截面为边长20mm 的正方形,材料的弹性模量E =10GPa 。

不计自重,试求 (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱端A 的位移。

100kN260kN解:(1)轴力图如图所示 (2)AC 段 310010250MPa 2020NAC AC AC F A σ-⨯===-⨯ CB 段 326010650MPa 2020NCB CB CB F A σ-⨯===-⨯ (3)AC 段 69250100.0251010NAC AC AC AC F EA E σε-⨯====-⨯ CB 段 69650100.0651010NCB CB CBCB F EA E σε-⨯====-⨯ (4)AC 段 0.025150037.5mm NAC ACAC AC AC ACF l l l EA ε∆===-⨯=- CB 段 0.065150097.5mm NCB CBCB CB CB CBF l l l EA ε∆===-⨯=- 柱端A 的位移 37.597.5135mm A AC CB l l ∆=∆+∆=--=-(向下)4. 简易起重设备的计算简图如图所示。

已知斜杆AB 用两根63×40×4不等边角钢组成,63×40×4不等边角钢的截面面积为A = 4.058cm 2,钢的许用应力[σ] = 170 MPa 。

《材料力学》第2章 轴向拉压变形 习题解

《材料力学》第2章 轴向拉压变形 习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。

(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。

(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 轴向拉伸和压缩
主要知识点:(1)轴向拉伸(压缩)时杆的内力和应力;
(2)轴向拉伸(压缩)时杆的变形;
(3)材料在轴向拉伸和压缩时的力学性能;
(4)轴向拉压杆的强度计算;
(5)简单拉压超静定问题。

轴向拉伸(压缩)时杆的变形
4. 一钢制阶梯杆如图所示。

已知沿轴线方向外力F 1=50kN ,F 2=20kN ,各段杆长l 1=100mm ,l 2=l 3=80mm ,横截面面积A 1=A 2=400mm 2,A 3=250mm 2,钢的弹性模量E=200GP a ,试求各段杆的纵向变形、杆的总变形量及各段杆的线应变。

解:(1)首先作出轴力图如图4-11所示,
由图知kN F N 301-=,kN F F N N 2032==。

(2)计算各段杆的纵向变形
m m EA l F l N 5693
311111075.31040010200101001030---⨯-=⨯⨯⨯⨯⨯⨯-==∆ m m EA l F l N 5693
32222100.210
4001020010801020---⨯=⨯⨯⨯⨯⨯⨯==∆
(3)杆的总变形量m l l l l 53211045.1-⨯=∆+∆+∆=∆。

(4)计算各段杆的线应变 45
1111075.310
.01075.3--⨯-=⨯-=∆=l l ε 45
222105.208
.0100.2--⨯=⨯=∆=l l ε 45
333100.408
.0102.3--⨯=⨯=∆=l l ε
材料在轴向拉伸和压缩时的力学性能
5. 试述低碳钢拉伸试验中的四个阶段,其应力—应变图上四个特征点的物理意义是什么?
答:低碳钢拉伸试验中的四个阶段为弹性阶段、屈服阶段、强化阶段和颈缩阶段。

在弹性阶段,当应力小于比例极限σp 时,材料服从虎克定律;当应力小于弹性极限σe 时,材料的变形仍是弹性变形。

屈服阶段的最低点对应的应力称为屈服极限,以σs 表示。

强化阶段最高点所对应的应力称为材料的强度极限,以σb 表示,它是材料所能承受的最大应力。

m m EA l F l N 56
93
33333102.3102501020010801020---⨯=⨯⨯⨯⨯⨯⨯==∆
轴向拉压杆的强度计算
6. 如图所示三角架,杆AB 及BC 均为圆截面钢制杆,杆AB 的直径为d 1=20mm ,杆BC 的直径为d 2=40mm ,设重物的重量为G=20k N ,钢材料的[σ]=160MPa ,问此三角架是否安全?
解:(1)求各杆的轴力
假定AB 、CB 两杆均受拉力,对B 点作用力分别为F 1、F 2。

取节点B 为研究对象,作出其受力图如右图所示,
由平衡方程 030cos ,
0211
=︒--=∑=F F F n i ix (a ) 030sin ,021
=︒--=∑=F G F n i iy
(b ) G=20kN 为已知,由(b)式可解得kN F 402-=,代入(a)式解得kN F 6.341=。

故圆截面钢制杆AB 受到kN F N 6.341=的拉力,BC 杆受到kN F N 402=的压力。

(2)两杆横截面上的应力分别为 a N N d F A F MP =⨯⨯=⨯==1104
020.0106.34423
211111ππσ(拉应力) a N N d F F MP =⨯⨯=⨯==8.314
040.01040423
222222ππσ(压应力) 由于][],[21σσσσ<<,故此三角架结构的强度足够。

7. 如图所示三角形构架ABC ,由等长的两杆AC 及BC 组成,在点C 受到载荷G=350kN 的作用。

已知杆AC 由两根槽钢构成,[σ]AC =160MPa ,杆BC 由一根工字钢构成[σ]BC =100MPa ,试选择两杆的截面。

解:由于已知[σ]AC =160MPa 、[σ]BC =100MPa ,故只要求出AC 杆
和BC 杆的轴力F AC 和F BC ,即可由AC C AC F ][σA ≥
A ,BC BC BC F ][σ≥A 求解,确定两杆的截面。

(1) 求两杆的轴力
取节点C 研究,受力分析如图4-13b ,
由030cos 30cos ,
01
=︒-︒-=∑=BC AC n i ix F F F 得:BC AC F F -= (a ) 由030sin 30sin ,
01
=-︒-︒=∑=G F F F BC AC n i iy 得:G F F BC AC 2=- (b ) 联立(a)、(b )二式得到F AC =G=350kN(拉)、F BC = -F AC = -350kN(压)。

故AC 杆受拉、BC 杆受压,轴力大小为kN F F NBC NAC 350==。

(2) 设计截面,确定槽钢、工字钢号数。

分别求得两杆的横截面面积为
22426
39.21109.211016010350][cm m m F AC NAC AC =⨯=⨯⨯=≥A -σ 2242633510351010010350][cm m m F BC NBC BC
=⨯=⨯⨯=≥A -σ (3) AC 由两根槽钢构成,故每根槽钢横截面面积为
2112
1cm AC ≥A ,查表后确定选用10号热轧槽钢。

杆BC 由一根工字钢构成,故横截面面积为235cm BC ≥A ,查表后确定选用20a 号工字钢。

8. 刚性杆AB 由圆截面钢杆CD 拉住,如图所示,设CD 杆直径为d=20mm ,许用应力[σ]=160MP a ,求作用于点B 处的许用载荷F 。

解:(1)先求出DC 杆的轴力F N 与许用载荷F 的关系,
设DC 杆对刚性杆AB 拉力为F DC ,如右图所示,
将研究刚性杆AB 对A 点列平衡方程
05.21sin =⨯-⨯F F DC α, 75.0tan =α 故F F F DC 17.4sin /5.2==α。

DC 杆对刚性杆AB 的拉力为F DC ,在数值上等于DC 杆的轴力F N ,
即 F F N 17.4= (a )
(2)求许可的最大载荷F 将kN N A F D C N 2.5010160020.014.3][62=⨯⨯⨯=≤σ,代入(a)式得到许可的最大载荷kN F F N 1217.4/==。

9. 如图所示结构中,梁AB 可视为刚体,其弯曲变形可忽略不计。

杆1为钢质圆杆,直径d 1=20mm ,其弹性模量E 1=200GPa ,杆2为铜杆,其直径d 2=25mm ,弹性模量E 2=100GPa ,不计刚梁AB 的自重,试求:
(1) 载荷F 加在何处,才能使刚梁AB 受力后保持水平?
(2) 若此时F =30kN ,求两杆内横截面上的正应力。

图5-10
解:(1)为了使刚梁AB 受力后保持水平,要求杆1的变形1
1111A E l F l N =∆等于杆2的变形2
2222A E l F l N =∆,即: =⨯⨯⨯⨯291020.0414.3102005.1N F 2
92025.04
14.3101001⨯⨯⨯⨯N F 整理得到杆1、2轴力之间的关系为: 21853.0N N F F = (a)
设杆1、2对刚梁AB 的拉力为21F F 、,如图5-9所示。

21F F 、、F 构成平行力系,有独立的平衡方程:
⎩⎨⎧⨯==+)(2)(221c F Fx b F F F
拉力21F F 、分别与21N N F F 、在数值上相等,由式(a )、(b )、(c )得到:
m x 08.1=,F F F F F F N N 540.0461.02211====,
(2) 当kN F 30=时,两杆内横截面上的正应力。

a a N MP P d F d F 9.43020.04
14.31030461.04461.042
321211
1=⨯⨯⨯===ππ
σ a a N MP P d F d F 0.33025.01030540.0540.02
3
222222=⨯⨯⨯==⨯=πσ
简单拉压超静定问题
10.横截面面积为A =10cm 2的钢杆,其两端固定,杆件轴向所受外力如图所示。

试求钢杆各段内的应力。

解:假设A 、B 处的约束反力如图5-10所示,
据此列出平衡方程:
0150100=+--B A F kN kN F (a )
由于上式中含有两个未知量,不能解出,还需列
一个补充方程。

由于约束的限制,杆件各段变形后总长度保持不变,
故变形谐调条件为0=∆+∆+∆DB CD AC l l l ,
由此,根据胡克定律,得到变形的几何方程为
04.0)150100(3.0)100(5.0=⨯--+⨯-+⨯EA
kN kN F EA kN F EA F A A A 整理后得01302.1=-kN F A ,即kN F A 3.108=,代入(a )式得到kN F B 7.141=。

钢杆各段内的应力
a a A NAC AC MP P A F A F 3.1081010103.1084
3=⨯⨯===-σ a a A NCD CD MP P A F A F 38101010100103108101004
333..=⨯⨯-⨯=⨯-==-σ a a A NDB DB
MP P A F A F 7141101010150101001031081015010100433333..-=⨯⨯-⨯-⨯=⨯-⨯-==-σ。

相关文档
最新文档