专题08 一元二次函数的图像和性质(原卷版)

合集下载

专题08 一元一次方程的实际应用(原卷版)

专题08 一元一次方程的实际应用(原卷版)

2022-2023学年人教版数学七年级上册压轴题专题精选汇编专题08 一元一次方程的实际应用考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________题号一 二 三 总分得分评卷人得 分 一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022七上·宝安期末)某次数学竞赛共有20道题,已知做对一道得4分,做错一道或者不做扣1分,某同学最后的得分是50分,则他做对( )道题.A .14B .15C .16D .172.(2分)(2022七上·遵义期末)某商场把一个双肩包按进价提高30%标价,然后按八折出售,这样商场每卖出一个书包仍可盈利10元.设每个双肩书包的进价是x 元,根据题意列一元一次方程正确的是( ) A .30%80%10x x ⋅-=B .(130%)80%10x x +⋅-=C .(130%)80%10x +⋅=D .(130%)10x x +-=3.(2分)(2021七上·潮安期末)某商店以每个120元的价格卖出两个智能手表,其中一个盈利20%,另一个亏损20%.在这次买卖中,这家商店( )A .不盈不亏B .亏损10元C .盈利9.6元D .亏损9.6元4.(2分)(2021七上·云梦期末)某项工程,甲单独完成需要45天,乙单独完成需要30天,若乙先单独做22天,剩下的由甲去完成,问:甲、乙一共用几天可完成全部工作?设甲、乙共用x 天完成,则符合题意的方程是( )A .222214530x -+= B .2213045x x ++= C .222214530x ++= D .2213045x x -+= 5.(2分)(2021七上·诸暨期末)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他实天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.11x x x34685 24++=6.(2分)(2021七上·拱墅月考)某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.3207.(2分)(2020七上·怀仁期末)某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元,但不超过300元一律九折;(3)一次性购物超过300元一律八折;兰兰两次购物分别付款80元,252元.如果兰兰一次性购买和上两次相同的物品应付款()A.288元B.288元和332元C.332元D.288元和316元8.(2分)(2020七上·庐阳期末)七年级学生在参加校外实践活动中,有m位师生乘坐n辆客车.若每辆客车乘42人,则还有8人不能上车,若每辆客车乘45人,则最后一辆车空了16个座位.在下列四个方程:①42n-8=45n+16;②+842m=1645m-;③842m-=+1645m;④42n+8=45n-16中,其中正确的有()A.①③B.②④C.①④D.③④9.(2分)(2020七上·嘉陵期末)有9人10天完成了一件工作的一半,而剩下的工作要在6天内完成,则需增加的人数为()A.4B.5C.6D.810.(2分)某商店经销一种商品,由于进价降低了5%,出售价不变,使得利润率由m%提高到(m+6)%,则m的值为()A.10B.12C.14D.1评卷人得分二.填空题(共10小题,满分20分,每题2分)11.(1分)(2021七上·海曙期末)某商场对一件衬衫以标价的八折出售后仍可获得20%的利润,若这件衬衫的进价是100元,则这件衬衫的标价是元.12.(1分)(2021七上·澄海期末)某企业对应聘人员进行专业考试,试题由50道不定项选择题组成,评分标准规定:每道题全选对得4分,不选得0分,选错或符合题意选项不全倒扣2分.已知某人有4道题未选,得了172分,则这个人全选对了道题.13.(1分)(2021七上·河南期末)由于换季,商场准备对某商品打折出售,如果按原售价的八折出售,将亏损10元,而按原售价的九折出售,将盈利20元,则该商品的原售价为.14.(1分)(2022七上·贵港期末)一个拖拉机队翻耕一片地,第一天翻耕了这片地的13,第二天翻耕了剩下地的12,这时还剩下38亩地没有翻耕,则这一片地总共有亩.15.(1分)(2022七上·渠县期末)某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款元.16.(1分)(2021七上·禅城期末)某超市推出如下优惠方案:⑴一次性购物不超过100元不享受优惠;⑵一次性购物超过100元但不超过300元一律9折;⑶一次性购物超过300元一律8折。

二次函数图像与性质总结含答案

二次函数图像与性质总结含答案

二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减;3. ()2y a x h =-的性质:左加右减;4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上下平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2⑵c bx ax y ++=2沿轴平移:向左右平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,若与x 轴没有交点,则取两组关于对称轴对称的点. 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++a ,b ,c 为常数,0a ≠;2. 顶点式:2()y a x h k =-+a ,h ,k 为常数,0a ≠;3. 两根式:12()()y a x x x x =--0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大小值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称即:抛物线绕顶点旋转180°2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线或表达式已知的抛物线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、例题精讲2-32y=-2x 22y=3(x+4)22y=3x2y=-2(x-3)一、一元二次函数的图象的画法例1求作函数64212++=x x y 的图象 解 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x xx 例2求作函数342+--=x x y 的图象; 解)34(3422-+-=+--=x x x x y 7)2[(]7)2[(22++-=-+-=x x先画出图角在对称轴2-=x 的右边部分,列表点评画二次函数图象步骤: 1配方; 2列表;3描点成图; 也可利用图象的对称性,先画出函数的左右边部分图象,再利用对称性描出右左部分就可;二、一元二次函数性质例3求函数962++=x x y 的最小值及图象的对称轴和顶点坐标,并求它的单调区间; 解 7)3(79626222-+=-++=++=x x x x x y由配方结果可知:顶点坐标为)73(--,,对称轴为3-=x ; 01> ∴当3-=x 时, 7min -=y函数在区间]3(--∞,上是减函数,在区间)3[∞+-,上是增函数;例4求函数1352++-=x x y图象的顶点坐标、对称轴、最值;103)5(232=-⨯-=-a b ,2029)5(431)5(44422=-⨯-⨯-⨯=-a b ac ∴函数图象的顶点坐标为)2029,103(,对称轴为2029=x05<- ∴当103=x 时,函数取得最大值2029=maz y 函数在区间]103,(-∞上是增函数,在区间),3[+∞-上是减函数; 点评要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:(1) 配方法;如例3(2) 公式法:适用于不容易配方题目二次项系数为负数或分数如例4,可避免出错;任何一个函数都可配方成如下形式:)0(44)2(22≠-++=a ab ac a b x a y 二次函数题型总结 1.关于二次函数的概念例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 ;例 2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 ;2.关于二次函数的性质及图象例3 函数)0(2≠++=a c bx ax y 的图象如图所示,则a 、b 、c,∆,c b a ++,c b a +-的符号 为 ,例4 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在 (A ) 第一或第二象限 B 第三或第四象限 C 第一或第四象限 D 第二或第三象限3.确定二次函数的解析式例5 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为 A 322++-=x x y B 322--=x x yC 322+--=x x yD 322---=x x y4.一次函数图像与二次函数图像综合考查例 6 已知一次函数y=ax+c 二次函数y=ax 2+bx+ca ≠0,它们在同一坐标系中的大致图象是.例7 如图:△ABC 是边长为4的等边三角形,AB 在X 轴上,点C 在第一象限,AC 与Y 轴交于点D,点A 的坐标为-1,01求 B 、C 、D 三点的坐标;2抛物线c bx ax y ++=2经过B 、C 、D 三点,求它的解析式;642-6510D O CAB练习题 一、选择题1. 二次函数247y x x =--的顶点坐标是A.2,-11B.-2,7C.2,11D. 2,-3 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是A. 22(1)y x =-+ B. 22(1)y x =-- C. 221y x =-+ D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是个 个 C. 3个 D. 4个 5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标-1,及部分图象如图,由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和A.-1.3 B.-2.3 C.6. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为 个 个 个. 3 个8.已知抛物线过点A2,0,B-1,0,与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++ D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______;10.已知抛物线y=-2x+32+5,如果y 随x 的增大而减小,那么x 的取值范围是_______.11.一个函数具有下列性质:①图象过点-1,2,②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是 只写一个即可;12.抛物线22(2)6y x =--的顶点为C,已知直线3y kx =-+过点C,则这条直线与两坐标轴所围成的三角形面积为 ;13. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= ;14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 π取.三、解答题:15.已知二次函数图象的对称轴是30x +=,图象经过1,-6,且与y 轴的交点为0,52-. 1求这个二次函数的解析式;2当x 为何值时,这个函数的函数值为03当x 在什么范围内变化时,这个函数的函数值y 随x 的增大而增大16.某种爆竹点燃后,其上升高度h 米和时间t 秒符合关系式2012h v t gt =-0<t≤2,其中重力加速度g 以10米/秒2计算.这种爆竹点燃后以v 0=20米/秒的初速度上升,1这种爆竹在地面上点燃后,经过多少时间离地15米2在爆竹点燃后的秒至秒这段时间内,判断爆竹是上升,或是下降,并说明理由.第15题图17.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B,此抛物线与x 轴的另一个交点为C,抛物线顶点为D. 1求此抛物线的解析式;2点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标;一,选择题、1.A 2.C 3.A 4.B 5.D 6.B 7.C 8.C二、填空题、9.4b =- 10.x <-3 11.如224,24y x y x =-+=+等答案不唯一 12.1 13.-8 7 14.15三、解答题15.1设抛物线的解析式为2bx c y ax ++=,由题意可得解得15,3,22a b c =-=-=- 所以215322y x x =--- 21x =-或-5 23x <-16.1由已知得,211520102t t =-⨯⨯,解得123,1t t ==当3t =时不合题意,舍去;所以当爆竹点燃后1秒离地15米.2由题意得,2520h t t =-+=25(2)20t --+,可知顶点的横坐标2t =,又抛物线开口向下,所以在爆竹点燃后的秒至108秒这段时间内,爆竹在上升.17.1直线3y x =-与坐标轴的交点A3,0,B0,-3.则9303b c c +-=⎧⎨-=-⎩解得23b c =-⎧⎨=⎩32652ba abc c ⎧-=-⎪⎪++=-⎨⎪⎪=-⎩所以此抛物线解析式为223y x x =--.2抛物线的顶点D1,-4,与x 轴的另一个交点C -1,0.设P 2(,23)a a a --,则211(423):(44)5:422a a ⨯⨯--⨯⨯=.化简得2235a a --=当223a a -->0时,2235a a --=得4,2a a ==- ∴P4,5或P -2,5当223a a --<0时,2235a a -++=即2220a a ++=,此方程无解.综上所述,满足条件的点的坐标为4,5或-2,5.。

专题08一元二次方程(4大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)

专题08一元二次方程(4大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)

专题08一元二次方程(4大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01解一元二次方程---------------------------------------------------------------------------------------------------------------------1二、考点02一元二次方程根的判别式--------------------------------------------------------------------------------------------------------2三、考点03根与系数的关系---------------------------------------------------------------------------------------------------------------------4四、考点04一元二次方程的实际应用--------------------------------------------------------------------------------------------------------5考点01解一元二次方程一、考点01解一元二次方程1.(2024·贵州·中考真题)一元二次方程220x x -=的解是()A .13x =,21x =B .12x =,20x =C .13x =,22x =-D .12x =-,21x =-2.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++-=的一个根是0x =,则a 的值为()A .2B .2-C .2或2-D .123.(2022·青海·中考真题)已知方程230x mx +=+的一个根是1,则m 的值为()A .4B .4-C .3D .3-4.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ()A .1B 1C 1D .115.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .136.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是()A .()221x -=-B .()220x -=C .()221x -=D .()222x -=7.(2024·四川南充·中考真题)当25x ≤≤时,一次函数2(1)1y m x m =+++有最大值6,则实数m 的值为()A .3-或0B .0或1C .5-或3-D .5-或18.(2024·四川凉山·中考真题)已知2220330y x x y x -=-+-=,,则x 的值为.9.(2023·广东广州·中考真题)解方程:2650x x -+=.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.考点02一元二次方程根的判别式二、考点02一元二次方程根的判别式11.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x -++=有两个实数根,则m的取值范围是()A .4m ≤B .4m ≥C .4m ≥-且2m ≠D .4m ≤且2m ≠12.(2023·辽宁锦州·中考真题)若关于x 的一元二次方程2230kx x -+=有两个实数根,则k 的取值范围是()A .13k <B .13k ≤C .13k <且0k ≠D .13k ≤且0k ≠13.(2023·山东聊城·中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是()A .1m ≥-B .1m £C .1m ≥-且0m ≠D .1m £且0m ≠14.(2022·四川宜宾·中考真题)若关于x 的一元二次方程2210ax x +-=有两个不相等的实数根,则a 的取值范围是()A .0a ≠B .1a >-且0a ≠C .1a ≥-且0a ≠D .1a >-15.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .116.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +-+=有两个不相等的实数根,则m 的取值范围是()A .0m <且1m ≠-B .0m ≥C .0m ≤且1m ≠-D .0m <17.(2024·四川泸州·中考真题)已知关于x 的一元二次方程2210x x k ++-=无实数根,则函数y kx =与函数2y x=的图象交点个数为()A .0B .1C .2D .318.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是()A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=19.(2024·北京·中考真题)若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为()A .16-B .4-C .4D .1620.(2024·吉林长春·中考真题)若抛物线2y x x c =-+(c 是常数)与x 轴没有交点,则c 的取值范围是.21.(2024·河南·中考真题)若关于x 的方程2102x x c -+=有两个相等的实数根,则c 的值为.22.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k -+=有两个相等的实数根,则k 的值为.23.(2024·山东·中考真题)若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为.24.(2019·上海·中考真题)若关于x 的方程20x x k -+=没有实数根,则k 的取值范围是.25.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.26.(2023·江苏连云港·中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是.27.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.28.(2024·广东广州·中考真题)关于x 的方程2240x x m -+-=有两个不等的实数根.(1)求m 的取值范围;(2)化简:2113|3|21m m m m m ---÷⋅-+.29.(2023·湖北襄阳·中考真题)关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.30.(2023·湖北·中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.31.(2023·湖北荆州·中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法...解方程.32.(2023·四川南充·中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值,方程总有实数根;(2)若1x ,2x 是方程的两个实数根,且212152x x x x +=-,求m 的值.考点03根与系数的关系三、考点03根与系数的关系33.(2022·内蒙古呼和浩特·中考真题)已知1x ,2x 是方程220220x x --=的两个实数根,则代数式321122022-+x x x 的值是()A .4045B .4044C .2022D .134.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为()A .23-B .23C .6-D .635.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.36.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x --=的两个实数根,则()212123x x x x -+的值是.37.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px -+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________;(2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值.38.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k -+-+=的两个不相等的实数根.(1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值.39.(2023·内蒙古通辽·中考真题)阅读材料:材料1:关于x 的一元二次方程()200ax bx c a ++=≠的两个实数根12x x ,和系数a ,b ,c 有如下关系:12b x x a+=-,12cx x a =.材料2:已知一元二次方程210x x --=的两个实数根分别为m ,n ,求22m n mn +的值.解:∵m ,n 是一元二次方程210x x --=的两个实数根,∴1,1m n mn +==-.则()22111m n mn mn m n +=+=-⨯=-.根据上述材料,结合你所学的知识,完成下列问题:(1)应用:一元二次方程22310x x +-=的两个实数根为12x x ,,则12x x +=___________,12x x =___________;(2)类比:已知一元二次方程22310x x +-=的两个实数根为m ,n ,求22m n +的值;(3)提升:已知实数s ,t 满足2223102310s s t t +-=+-=,且s t ≠,求11s t-的值.考点04一元二次方程的实际应用四、考点04一元二次方程的实际应用40.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=41.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是()A .()0.6410.69x +=B .()20.6410.69x +=C .()0.64120.69x +=D .()20.64120.69x +=42.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为()A .()67012780x ⨯+=B .()26701780x ⨯+=C .()26701780x ⨯+=D .()6701780x ⨯+=43.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为()A .20%B .22%C .25%D .28%44.(2024·内蒙古通辽·中考真题)如图,小程的爸爸用一段10m 长的铁丝网围成一个一边靠墙(墙长5.5m )的矩形鸭舍,其面积为215m ,在鸭舍侧面中间位置留一个1m 宽的门(由其它材料制成),则BC 长为()A .5m 或6mB .2.5m 或3mC .5mD .3m45.(2023·浙江衢州·中考真题)某人患了流感,经过两轮传染后共有36人患了流感.设每一轮传染中平均每人传染了x 人,则可得到方程()A .()136x x ++=B .()2136x +=C .()1136x x x +++=D .2136x x ++=46.(2023·湖北襄阳·中考真题)我国南宋数学家杨辉在1275年提出的一个问题:“直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.”意思是:长方形的面积是864平方步,宽比长少12步,问宽和长各是几步.设宽为x 步,根据题意列方程正确的是()A .22(12)864x x ++=B .22(12)864x x ++=C .(12)864x x -=D .(12)864x x +=47.(2023·黑龙江哈尔滨·中考真题)为了改善居民生活环境,云中小区对一块矩形空地进行绿化,这块空地的长比宽多6米,面积为720平方米,设矩形空地的长为x 米,根据题意,所列方程正确的是()A .()6720x x -=B .()6720x x +=C .()6360x x -=D .()6360x x +=48.(2023·黑龙江·中考真题)如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是()A .5mB .70mC .5m 或70mD .10m49.(2022·黑龙江·中考真题)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A .8B .10C .7D .950.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是.51.(2023·黑龙江牡丹江·中考真题)张师傅去年开了一家超市,今年2月份开始盈利,3月份盈利5000元,5月份盈利达到7200元,从3月到5月,每月盈利的平均增长率都相同,则每月盈利的平均增长率是.52.(2022·上海·中考真题)某公司5月份的营业额为25万,7月份的营业额为36万,已知6、7月的增长率相同,则增长率为.53.(2022·四川成都·中考真题)若一个直角三角形两条直角边的长分别是一元二次方程2640x x -+=的两个实数根,则这个直角三角形斜边的长是.54.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.55.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元.(1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?56.(2023·江苏·中考真题)为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD (如图),生态园一面靠墙(墙足够长),另外三面用18m 的篱笆围成.生态园的面积能否为240m 如果能,请求出AB 的长;如果不能,请说明理由.57.(2023·江苏·中考真题)如图,在打印图片之前,为确定打印区域,需设置纸张大小和页边距(纸张的边线到打印区域的距离),上、下,左、右页边距分别为cm cm cm cm a b c d 、、、.若纸张大小为16cm 10cm ⨯,考虑到整体的美观性,要求各页边距相等并使打印区域的面积占纸张的70%,则需如何设置页边距?58.(2023·湖北黄冈·中考真题)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中21000m 的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y (单位;元/2m )与其种植面积x (单位:2m )的函数关系如图所示,其中200700x ≤≤;乙种蔬菜的种植成本为50元/2m .(1)当x =___________2m 时,35y =元/2m ;(2)设2023年甲乙两种蔬菜总种植成本为W 元,如何分配两种蔬菜的种植面积,使W 最小?(3)学校计划今后每年在这21000m 土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降%a ,当a 为何值时,2025年的总种植成本为28920元?59.(2022·山东德州·中考真题)如图,某小区矩形绿地的长宽分别为35m ,15m .现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为2800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.60.(2022·辽宁沈阳·中考真题)如图,用一根长60厘米的铁丝制作一个“日”字型框架ABCD,铁丝恰好全部用完.(1)若所围成矩形框架ABCD的面积为144平方厘米,则AB的长为多少厘米?(2)矩形框架ABCD面积最大值为______平方厘米.。

一元二次函数的图像和性质

一元二次函数的图像和性质

高二暑假VIP 第二讲 一元二次函数的图象和性质复习目标1. 掌握一元二次函数图象的画法及图象的特征2. 掌握一元二次函数的性质,能利用性质解决实际问题 3. 会求二次函数在指定区间上的最大(小)值 4. 掌握一元二次函数、一元二次方程的关系。

知识回顾1.函数)0(2≠++=a c bx ax y 叫做一元二次函数。

2. 一元二次函数的图象是一条抛物线。

3.任何一个二次函数)0(2≠++=a c bx ax y 都可把它的解析式配方为顶点式:ab ac a b x a y 44)2(22-++=,性质如下:(1)图象的顶点坐标为)44,2(2ab ac a b --,对称轴是直线a bx 2-=。

(2)最大(小)值① 当0>a ,函数图象开口向上,y 有最小值,a b ac y 442min-=,无最大值。

② 当0>a ,函数图象开口向下,y 有最大值,ab ac y 442max -=,无最小值。

(3)当0>a ,函数在区间)2,(a b --∞上是减函数,在),2(+∞-a b 上是增函数。

当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。

【说明】1.我们研究二次函数的性质常用的方法有两种:配方法和公式法。

2.无论是利用公式法还是配方法我们都可以直接得出二次函数的顶点坐标与对称轴;但我们讨论函数的最值以及它的单调区间时一定要考虑它的开口方向。

例题精解一、一元二次函数的图象的画法 【例1】求作函数64212++=x x y 的图象【解】 )128(21642122++=++=x x x x y 2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取的一些值,列表如下: 【例2】求作函数342+--=x x y 的图象。

【解】)34(3422-+-=+--=x x x x y 7)2[(]7)2[(22++-=-+-=x x先画出图角在对称轴2-=x 的右边部分,列表【点评】画二次函数图象步骤: (1)配方; (2)列表;(3)描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利用对称性描出右(左)部分就可。

中考数学一轮复习 专题08 一元二次方程(基础训练)(原卷版)

中考数学一轮复习 专题08 一元二次方程(基础训练)(原卷版)

专题08 一元二次方程【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)某市严格落实国家节水政策,2018年用水总量为6.5亿立方米,2020年用水总量为5.265亿立方米.设该市用水总量的年平均降低率是x ,那么x 满足的方程是( )A .26.5(1) 5.265x -=B .26.5(1) 5.265x +=C .25.265(1) 6.5x -=D .25.265(1) 6.5x +=2.(2021·辽宁丹东市·中考真题)若实数k 、b 是一元二次方程(3)(1)0x x +-=的两个根,且k b <,则一次函数y kx b =+的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 3.(2021·贵州毕节市·中考真题)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为( ) A .5 B .6 C .7 D .8 4.(2021·贵州毕节市·中考真题)已知关于x 的一元二次方程2410ax x --=有两个不相等的实数根,则a 的取值范围是( )A .4a ≥-B .4a >-C .4a ≥-且0a ≠D .4a >-且0a ≠ 5.(2021·内蒙古赤峰市·中考真题)一元二次方程2820x x --=,配方后可形为( ) A .()2418x -=B .()2414x -= C .()2864x -= D .()241x -= 6.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( )A .()50712833.6x +=B .()50721833.6x ⨯+=C .()25071833.6x +=D .()()250750715071833.6x x ++++= 7.(2021·山东临沂市·中考真题)方程256x x -=的根是( )A .1278x x ==,B .1278x x ==-,C .1278x x =-=,D .1278x x =-=-, 8.(2021·广西河池市·)关于x 的一元二次方程220x mx m +--=的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数由m 的值确定9.(2021·山东滨州市·中考真题)下列一元二次方程中,无实数根的是( )A .2230x x --=B .2320x x ++=C .2210x x -+=D .2230x x ++=10.(2021·贵州遵义市·)在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是( )A .x 2+2x ﹣3=0B .x 2+2x ﹣20=0C .x 2﹣2x ﹣20=0D .x 2﹣2x ﹣3=0 11.(2021·湖南湘潭市·)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由100元降为64元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程得( )A .()2100164x -=B .()2100164x += C .()1001264x -= D .()1001264x += 12.(2021·山东潍坊市·)若菱形两条对角线的长度是方程x 2﹣6x +8=0的两根,则该菱形的边长为( )A B .4 C .25 D .513.(2021·贵州黔东南苗族侗族自治州·)若关于x 的一元二次方程26=0x ax -+ 的一个根是2,则a 的值为( )A .2B .3C .4D .514.(2021·内蒙古呼伦贝尔市·)有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x 个人,可到方程为( )A .1281x +=B .2181x +=C .2181x x ++=D .1(1)81x x x +++= 15.(2021·辽宁大连市·中考真题)“杂交水稻之父”袁隆平和他的团队探索培育的“海水稻”在某试验田的产量逐年增加,2018年平均亩产量约500公斤,2020年平均亩产量约800公斤.若设平均亩产量的年平均增长率为x ,根据题意,可列方程为( )A .()5001800x +=B .()50012800x +=C .25001800()x +=D .()25001800x += 16.(2021·广西贵港市·中考真题)某蔬菜种植基地2018年的蔬菜产量为800吨,2020年的蔬菜产量为968吨,设每年蔬菜产量的年平均增长率都为x ,则年平均增长率x 应满足的方程为( )A .2800(1)968x -=B .2800(1)968x +=C .2968(1)800x -=D .2968(1)800x +=17.(2021·广西贵港市·中考真题)已知关于x 的一元二次方程x 2-kx +k -3=0的两个实数根分别为12,x x ,且22125x x +=,则k 的值是( )A .-2B .2C .-1D .118.(2021·四川雅安市·中考真题)若直角三角形的两边长分别是方程27120x x -+=的两根,则该直角三角形的面积是( )A .6B .12C .12D .6 19.(2021·山东菏泽市·)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥ 20.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( )A .()2500014050x +=B .()2405015000x += C .()2500014050x -= D .()2405015000x -= 21.(2021·吉林长春市·中考真题)关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则m 的值可能是( )A .8B .9C .10D .1122.(2021·山东济宁市·中考真题)已知m ,n 是一元二次方程220210x x +-=的两个实数根,则代数式22m m n ++的值等于( )A .2019B .2020C .2021D .202223.(2021·黑龙江中考真题)有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是( )A .14B .11C .10D .924.(2021·湖南张家界市·中考真题)对于实数,a b 定义运算“☆”如下:2a b ab ab =-☆,例如23336222⨯-⨯==☆,则方程12x =☆的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根25.(2021·海南中考真题)用配方法解方程2650x x -+=,配方后所得的方程是( ) A .2(3)4x +=- B .2(3)4x -=- C .2(3)4x += D .2(3)4x -= 26.(2021·广西玉林市·中考真题)已知关于x 的一元二次方程:2x 2x m 0-+=有两个不相等的实数根1x ,2x ,则( )A .120x x +<B .120x x <C .121x x >-D .121x x <27.(2021·山东聊城市·)关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为( ) A .2或4 B .0或4 C .﹣2或0 D .﹣2或228.(2021·湖南怀化市·)对于一元二次方程22340x x -+=,则它根的情况为( ) A .没有实数根B .两根之和是3C .两根之积是2-D .有两个不相等的实数根29.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个 30.(2021·四川眉山市·中考真题)已知一元二次方程2310x x -+=的两根为1x ,2x ,则211252x x x --的值为( )A .7-B .3-C .2D .531.(2021·浙江台州市·中考真题)关于x 的方程x 2-4x +m =0有两个不相等的实数根,则m 的取值范围是( )A .m >2B .m <2C .m >4D .m <4二、填空题32.(2021·山东济南市·中考真题)关于x 的一元二次方程20x x a +-=的一个根是2,则另一个根是__________.33.(2021·辽宁锦州市·中考真题)关于x 的一元二次方程x 2+2x ﹣k =0有两个实数根,则k 的取值范围是________.34.(2021·江苏南通市·中考真题)若m ,n 是一元二次方程2310x x +-=的两个实数根,则3231m m n m +-的值为___________. 35.(2021·湖南湘西土家族苗族自治州·中考真题)实数m ,n 是一元二次方程2320x x -+=的两个根,则多项式mn m n --的值为____.36.(2021·四川成都市·中考真题)若m ,n 是一元二次方程2210x x +-=的两个实数根,则242m m n ++的值是______.37.(2021·四川雅安市·中考真题)已知一元二次方程220210x x +-=的两根分别为m ,n ,则11m n+的值为______. 三、解答题38.(2021·辽宁沈阳市·)某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同,求增加了多少行或多少列?39.(2021·江苏徐州市·中考真题)(1)解方程:2450x x --=(2)解不等式组:213238x x x -≤⎧⎨+>+⎩40.(2021·山东淄博市·)为更好地发展低碳经济,建设美丽中国.某公司对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司去年第三季度产值是2300万元,今年第一季度产值是3200万元,假设公司每个季度产值的平均增长率相同.解答过程中可直接使用表格中的数据哟!(2)问该公司今年总产值能否超过1.6亿元?并说明理由.41.(2021·湖北黄石市·中考真题)已知关于x的一元二次方程2220x mx m m+++=有实数根.(1)求m的取值范围;(2)若该方程的两个实数根分别为1x、2x,且221212x x+=,求m的值.42.(2021·山西中考真题)2021☆7☆1☆☆☆100☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆4☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆65☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆43.(2021·黑龙江齐齐哈尔市·中考真题)解方程:(7)8(7)x x x-=-.44.(2021·江苏无锡市·中考真题)(1)解方程:2(1)40x;(2)解不等式组:231,1 1.3xxx-+≤⎧⎪⎨-<+⎪⎩45.(2021·湖北荆州市·中考真题)已知:a 是不等式()()528617a a -+<-+的最小整数解,请用配方法解关于x 的方程2210x ax a +++=.46.(2021·山东菏泽市·)列方程(组)解应用题端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?47.(2021·浙江嘉兴市·中考真题)小敏与小霞两位同学解方程()()2333x x -=-的过程如下框:答过程.48.(2021·湖南常德市·中考真题)解方程:220x x --=49.(2021·西宁市教育科学研究院中考真题)解方程:2(2)x x x -=-.。

中考化学压轴题:专题08 图像题(测试)(原卷版)

中考化学压轴题:专题08 图像题(测试)(原卷版)

专题08 图像题(测试)一、选择题1.下列图象能够正确反映其对应变化关系的是()A.将浓盐酸露置在空气中一段时间B.向稀硫酸中滴加过量的氢氧化钠溶液C.向等质量的氧化镁、氢氧化镁中,分别加入溶质质量分数相同的稀盐酸至过量D.电解水实验中,生成的氢气和氧气之间的质量关系2.下列所示的四个图象能正确反映对应变化关系的是()A.向一定量的饱和石灰水中不断加入生石灰□B.向等质量的镁和锌中加入稀盐酸至过量C.向pH=2的稀盐酸中加入pH=12的氢氧化钠溶液D.向一定量的氢氧化钾和氯化钡的混合溶液中滴加稀硫酸3.实验室使用一定质量的高锰酸钾加热分解制氧气,各物理量随加热时间变化的图像正确的是A.B.C.D.4.下列图象中正确反映了其对应操作的是()A.在盛有空气的密闭容器中点燃红磷B.向NaOH溶液中不断加入水C.将浓硫酸敞口放置在空气中D.分别向等质量的锌粉和铁粉中,加入足量且质量分数相等的稀盐酸5.向盛有定量固体的烧杯中加入某溶液,固体质量变化与如图相符的是A.MnO2中加入H2O2溶液B.Cu﹣Zn合金中加入稀HClC.CuO中加入稀H2SO4D.BaCO3中加入稀HNO36.下列图象不能正确反映其对应变化关系的是()A.电解水B.向硫酸钠与盐酸的混合溶液中逐滴滴入氢氧化钡溶液C.向氢氧化钠溶液中逐滴滴入稀硫酸溶液D.向一定量的氯化亚铁和氯化铜混合溶液中加入镁粉7.向盛有HCl和CuCl2混合溶液的烧杯中逐滴加入NaOH溶液至过量。

在该过程中,下列4个图像能正确反映烧杯内物质的某些物理量变化趋势的是A.①③B.①②④C.②④D.①②③8.下列图象不能正确反应其对应变化关系的是()A.相同质量的炭粉分别在足量的氧气和空气中燃烧B.浓硫酸长期露置在空气中C.向表面生锈的铁钉中滴加过量的稀盐酸D.向一定量氯化铜溶液中滴加氢氧化钠溶液9.下列四个图象分别对应四个变化过程,其中正确的是()A.一定量的饱和石灰水中加入氧化钙B.常温下,相同质量的锌和铁分别与足量的溶质质量分数相同的稀硫酸反应C.向硫酸和硫酸铜的混合溶液中滴加过量的氢氧化钠溶液D.向氢氧化钾溶液中不断加水,溶液的pH与加入水的质量关系10.下列说法和判断合理的是①用作消毒剂的75%的医用酒精,是指每100体积的医用酒精中含75体积的乙醇②某温度下,一定质量的氯化钠饱和溶液不能再溶解氯化钠固体,但还能继续溶解一定质量的氯化钾③一定质量的某气体充分燃烧,生成2.2 g二氧化碳和1.8 g水,则该气体一定是一氧化碳和氢气的混合物④等质量的A、B两种物质,分别与等质量的同浓度的稀盐酸充分反应,过程如图所示。

第03讲二次函数的图像与性质(一般式)(原卷版)

第03讲二次函数的图像与性质(一般式)(原卷版)

第03讲 二次函数的图像与性质——一般式知识点01 二次函数的三种形式1. 二次函数的三种形式: (1)一般式:有定义可知,二次函数的一般式为 。

(2)顶点式:能直接看出二次函数的顶点的函数解析式叫二次函数的顶点式。

即。

由顶点式可知二次函数的顶点坐标为 。

(3)两点式(交点式):能直接得到二次函数与x 轴的交点坐标的二次函数解析式是二次函数的两点式,又叫做二次函数的交点式。

即 。

此时二次函数与x 轴的两个交点坐标分别为 与 。

二次函数的对称轴为 。

(4)二次函数的一般式转化为顶点式:利用配方法将一般形式转化为顶点式:过程如下: c bx ax y ++=2a b ac a b x a ca b a b x a c a ba b x a b x a cx a b x a 44242442222222222-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛-++=+⎪⎭⎫ ⎝⎛+=题型考点:①二次函数的形式转换。

【即学即练1】1.将二次函数y =x 2﹣2x ﹣1化成y =a (x ﹣h )2+k 的形式,正确的是( ) A .y =(x ﹣2)2+2 B .y =(x ﹣1)2﹣2 C .y =(x +1)2+2D .y =(x ﹣1)2+4【即学即练2】2.将二次函数y =x 2﹣4x +7化为y =(x ﹣a )2+b 的形式,那么a +b 的值为 .【即学即练3】3. 把抛物线y =(x ﹣1)2+1化成一般式是 .【即学即练4】4.把y =(2﹣3x )(6+x )变成y =ax 2+bx +c 的形式,二次项 ,一次项系数为 ,常数项为 .【即学即练5】5.对于二次函数y =4(x +1)(x ﹣3)下列说法正确的是( ) A .图象开口向下B .与x 轴交点坐标是(1,0)和(﹣3,0)C .x <1时,y 随x 的增大而减小D .图象的对称轴是直线x =﹣1知识点02 二次函数的图像与性质(一般式)1.二次函数的一般式的图像与性质:把二次函数的一般式化成顶点式可知一般式的性质如下:题型考点:①二次函数的性质。

二次函数图象性质与综合应用(44题)(原卷版)

二次函数图象性质与综合应用(44题)(原卷版)

二次函数图象性质与综合应用(44题)一、单选题A.抛物线的对称轴为直线C.A,B两点之间的距离为2.(2023·浙江台州·统考中考真题)抛物线若120x x+<,则直线A.4个4.(2023·四川自贡·统考中考真题)经过为自变量)与x轴有交点,则线段A.4个B6.(2023·四川泸州·统考中考真题)已知二次函数函数值y均为正数,则aA . . . . .(2023·四川广安·统考中考真题)如图所示,二次函数2y ax bx =++轴交于点()()3,0,1,0AB −0;②若点()12,y −和(50a b c −+=;④4a c + )A.1个B.212.(2023·四川眉山·统考中考真题)如图,二次函数()1,0,对称轴为直线=1x−,2A.1个B.213.(2023·浙江宁波·统考中考真题)已知二次函数A.点(1,2)在该函数的图象上B.当1−≤≤时,a=且13xC.该函数的图象与x轴一定有交点解;③若()11,t −,()24,t 是抛物线上的两点,则12t t <;④对于抛物线,223y ax bx =+−,当23x −<<时,2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题417.(2023·四川宜宾物线与y 轴的交点B①当31x −≤≤时,1y ≤;②当ABM 的面积为32③当ABM 为直角三角形时,在AOB 内存在唯一点1893+.三、解答题(1)求抛物线的解析式;(2)设点P是直线BC上方抛物线上一点,求出PBC的最大面积及此时点(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.(1)求该抛物线的解析式;(2)点F是该抛物线上位于第一象限的一个动点,直线=时,求CD的长;①当CD CE②若CAD,CDE,CEF△的面积分别为,ABC外接圆的圆心为(1)求抛物线的函数解析式;(2)若直线()50x m m =−<<与抛物线交于点E ,与直线BC 交于点F . ①当EF 取得最大值时,求m 的值和EF 的最大值; ②当EFC 是等腰三角形时,求点E 的坐标.27.(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P −,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP 是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由.28.(2023·浙江·统考中考真题)已知点(),0m −和()3,0m 在二次函数23,(y ax bx a b =++是常数,0)a ≠的图像上.(1)当1m =−时,求a 和b 的值;时,求OBD与△(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值. (2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.(1)求点A,B的坐标;(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D.如图标及PDDB的最大值;≌;.求证:ACB BDEx(1)如果四个点()()()()0,00,21,11,1−、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上. ①=a ________;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长; ③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m −是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.38.(2023年重庆市中考数学真题(A 卷))如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,点E,求PDE△周长的最大值及此时点(3)在(2)中PDE△周长取得最大值的条件下,将该抛物线沿射线点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.40.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()4,0A −、()2,0B ,且经过点()2,6C −.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ',求APQ '△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.41.(2023·四川广安·统考中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x −,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.42.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =−−的顶点为P .直线l 过点()()0,3M m m ≥−,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.43.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++−−+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.44.(2023·湖南怀化·统考中考真题)如图一所示,在平面直角坐标系中,抛物线28y ax bx =+−与x 轴交于(4,0)(2,0)A B −、两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA 标;(3)设直线135 :4l y kx k=+−交抛物线于点M、N,求证:无论存在一点E,使得MEN∠为直角.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题08 一元二次函数的图像和性质一、知识点精讲
【问题1】函数y=ax2与y=x2的图象之间存在怎样的关系?
为了研究这一问题,我们可以先画出y=2x2,y=1
2
x2,y=-2x2的图象,通过这些函数图象与函数y=x2
的图象之间的关系,推导出函数y=ax2与y=x2的图象之间所存在的关系.
先画出函数y=x2,y=2x2的图象.
先列表:
x …-3 -2 -1 0 1 2 3 …
x2…9 4 1 0 1 4 9 …
2x2…18 8 2 0 2 8 18
从表中不难看出,要得到2x2的值,只要把相应的x2的值扩大两倍就可以了.
再描点、连线,就分别得到了函数y=x2,y=2x2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y=2x2的图象可以由函数y=x2的图象各点的纵坐标变为原来的两倍得到.
同学们也可以用类似于上面的方法画出函数y=1
2
x2,y=-2x2的图象,并研究这两个函数图象与函数y=
x2的图象之间的关系.
通过上面的研究,我们可以得到以下结论:
二次函数y=ax2(a≠0)的图象可以由y=x2的图象各点的纵坐标变为原来的a倍得到.在二次函数y=ax2(a≠0)中,二次项系数a决定了图象的开口方向和在同一个坐标系中的开口的大小.
【问题2】函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?
同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.
类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系. 通过上面的研究,我们可以得到以下结论:
二次函数y =a(x +h)2+k(a≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c(a≠0)的图象的方法:
由于y =ax 2
+bx +c =a(x 2
+b x a )+c =a(x 2
+b x a +224b a
)+c -
24b a 2
24()24b ac b a x a a
-=++
, 所以,y =ax 2+bx +c(a≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c(a≠0)具有下列性质:
(1)当a >0时,函数y =ax 2
+bx +c 图象开口向上;顶点坐标为2
4(,)24b ac b a a
--,
对称轴为直线x =-2b a ;当x <2b a -
时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2b
a
-时,函数取最小值y =2
44ac b a
-.
(2)当a<0时,函数y =ax2+bx+c图象开口向下;顶点坐标为
2
4
(,)
24
b a
c b
a a
-
-,对称轴为直线x=-
2
b
a

当x<
2
b
a
-时,y随着x的增大而增大;当x>
2
b
a
-时,y随着x的增大而减小;当x=
2
b
a
-时,函数取最大值y=
2
4
4
ac b
a
-

上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数
问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.
一元二次不等式与相应的一元二次函数及一元二次方程的关系表
判别式Δ=b2-4ac Δ>0Δ=0 Δ<0
二次函数
y=ax2+bx+c(a>0)
的图象
一元二次方程
ax2+bx+c=0(a>0)
的根
有两相异实根
x1,x2(x1<x2)
有两相等实根
x1=x2=-
b
2a
没有实数根ax2+bx+c>0(a>0)
的解
12
x x x x
<>

2
b
x
a
≠-全体实数Δ=b2-4ac
ax2+bx+c<0(a>0)
的解
12
x x x
<<无解无解
二、典例精析
【典例1】求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象.
【说明】:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.
【典例2】某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之间关系如下表所示:
若日销售量y是销售价x的一次函数,那么,要使每天所获得最大的利润,每件产品的销售价应定为多少元?此时每天的销售利润是多少?
【典例3】把二次函数y=x2+bx+c的图像向上平移2个单位,再向左平移4个单位,得到函数y=x2的图像,求b,c的值.
【说明】:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.
这两种解法反映了两种不同的思维方法:
解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.
【典例4】已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.
【说明】:在本例中,利用了分类讨论的方法,对a的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.
三、对点精练
1. 选择题:
(1)下列函数图象中,顶点不在坐标轴上的是()
(A)y=2x2(B)y=2x2-4x+2
(C)y=2x2-1 (D)y=-2x2-4x-2
(2)函数y=2(x-1)2+2是将函数y=2x2()
(A)向左平移1个单位、再向上平移2个单位得到的
(B)向右平移2个单位、再向上平移1个单位得到的
(C)向下平移2个单位、再向右平移1个单位得到的
(D)向上平移2个单位、再向右平移1个单位得到的
2.填空题
(1)二次函数y=2x2-mx+n图象的顶点坐标为(1,-2),则m=__________,
n=______________.
(2)已知二次函数y=x2+(m-2)x-2m,当m=________时,函数图象的顶点在y轴上;当m=___________时,函数图象的顶点在x轴上;当m=__________时,函数图象经过原点.
(3)函数y=-3(x+2)2+5的图象的开口向___________,对称轴为_________,顶点坐标为___________;当x=___________时,函数取最________值y=__________;当_______时,y随着x的增大而减小.3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3;
(2)y=1+4x-x2.
4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:
(1)x≤-2;(2)x≤2;
(3)-2≤x≤1;(4)0≤x≤3.。

相关文档
最新文档