基本初等函数图像

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数及图形

基本初等函数为以下五类函数:

(1) 幂函数 ,y x μμ=是常数;

1.当μ为正整数时,函数的定义域为区间(,)x ∈-∞+∞,他们的图形都经过原点,并当μ>1时在原点处与x 轴相切。且μ为奇数时,图形关于原点对称;μ为偶数时图形关于y 轴对称;

2.当μ为负整数时。函数的定义域为除去x =0的所有实数。

3.当μ为正有理数m n 时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1). 如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称

.4.当μ为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x =0以外的一切实数.

(2) 指数函数 x a y =(a 是常数且01a a >≠,),),(+∞-∞∈x ;

1.当μ为正整数时,函数的定义域为区间 ,他们的图形都经过原点,并当μ>1时在原点处与x 轴相切。且μ为奇数时,图形关于原点对称;μ为偶数时图形关于y 轴对称;

2.当μ为负整数时。函数的定义域为除去x =0的所有实数。

3.当μ为正有理数m n

时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1). 如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称.

4.当μ为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x =0以外的一切实数.

(3) 对数函数

x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞;

1. 他的图形为于y 轴的右方.并通过点(1,0)

2. 当a >1时在区间(0,1),y 的值为负.图形位于x 的下方,在区间(1,)+∞,y 值为正,图形位于x 轴上方.在定义域是单调增函数.a <1在实用中很少用到.

(4) 三角函数

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y ,

余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y ,

正切函数 x y tan =,2ππ+≠k x ,k Z ∈,),(+∞-∞∈y ,

余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

(5) 反三角函数

反正弦函数 x y arcsin =, ]1,1[-∈x ,]2,2[ππ

-∈y ,

反余弦函数 x y arccos =,]1,1[-∈x ,],0[π∈y ,

反正切函数 x y arctan =,),(+∞-∞∈x ,)2,2(π

π

-∈y ,

反余切函数

x y cot arc =,),(+∞-∞∈x ,),0(π∈y . 隐函数 百科名片 一般地,如果变量x 和y 满足一个方程F (x ,y)=0,在一定条件下,当x 取某区间内的任一值时,相应地总有满足这个方程的唯一的y 值(不一定唯一,如x^2+y^2=1)存在,那么就说方程F (x ,y )=0在该区间内确定了一个隐函数。

目录

特点

求导法则

推理过程

隐函数的导数

特点

隐函数不一定能写为y=f(x)的形式,如x^2+y^2=1。因此按照函数“设x 和y 是两个变量,D 是实数集的某个子集,若对于D 中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,称变量y 为变量x 的函数,记作 y=f(x).”的定义,隐函数不一定是“函数”,而是“方程”。

求导法则

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有y' 的一个方程,然后化简得到y' 的表达式。

隐函数导数的求解一般可以采用以下方法:

隐函数左右两边对x求导(但要注意把y看作x的函数);利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'yF'x 分别表示y和x对z的偏导数)来求解。

推理过程

一个函数y=ƒ(x),隐含在给定的方程

(1)

隐函数

中,作为这方程的一个解(函数)。例如

给出

隐函数

如果不限定函数连续,则式中正负号可以随x而变,因而有无穷个解;如果限定连续,则只有两个解(一个恒取正号,一个恒取负号);如果限定可微,则要排除x=

方程的一个点(x,y)=( x0,y0)的邻近范围内,则只有一个惟一的解(当起点(x0,y0)在上半平面时取正号,在下半平面时取负号)。

微分学中主要考虑函数z=F(x,y)与y=ƒ(x)都连续可微的情形。这时可以利用复合函数的微分法对方程(1)直接进行微分:

隐函数

(2)

可见,即使在隐函数y=ƒ(x)难于解出的情形,也能够直接算出它的导数,惟一的条件是

隐函数

(3)

隐函数理论的基本问题就是,在适合原方程(1)的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程(1)确定一个惟一的函数y =ƒ(x),不仅单值连续,而且连续可微,其导数由(2)完全确定。隐函数存在定理就在于断定(3)就是这样的一个条件,不仅必要,而且充分。

这个结果能够推广到方程组

隐函数

相当于(2)的微分式给出相当于(3)的条件

相关文档
最新文档