韦达定理ppt课件

合集下载

韦达定理PPT教学课件

韦达定理PPT教学课件
电阻器的种类很多:常用的电阻器按照导电体的结构特征分为实芯电 阻器、薄膜电阻器和线绕电阻器;按电阻器的材料、结构又分为碳膜 电阻器、金属氧化膜电阻器、线绕电阻器、热敏电阻器、压敏电阻器 等。另外,按照各种电阻器的特性,还可分为高精度、高稳定、高阻、 大功率、高频以及超小型等各种专用类型的电阻器 。
2021/1/12
答:方程的另一个根是-3,k 的值是-2.
动动脑, 还有其 他解法

练一练: 已知 x1,x2 是方程3x2+px+q=0的两个根,分别根据下列条件求出 p和q的值.
(1) x1=1, x2=2
(2) x1=3, x2=-6 (3) x1= -√7, x2=√ 7 (4) x1=-2+√5 ,x2=-2-√ 5

0
×100
±1%
1
1
×101
±2%
2
2
×102
±3%
3
3
×103
±4%
4
4
×104

5
5
×105
±0.5%
6
6
×106
±0.2%
7
7
×107
±0.1%
88Βιβλιοθήκη ×108—9
9
×109



×10-1
±5%


×10-2
±10%



±20%
电阻的测量
• 测量实际电阻值 a.将万用表的功能选择开关旋转到适当量程的电阻挡,先调
这题怎 么做呢??
m的值是16.
试一试: 设 X1,X2是方程2X2+4X-3=0 的两个根, 求 (1) 1/X1+1/X2 ; 原式=(X1+X2)/X1X2=-2/(-3/2)=4/3 (2) X12+X22 ; 原式=(X1+X2)2-2X1X2=(-2)2-2(-3/2)

数学家韦达PPT课件

数学家韦达PPT课件

.
8
当韦达提出类的运算与数的运算的区别时,就已规定 了代数与算术的分界。这样,代数就成为研究一般的 类和方程的学问,这种革新被认为是数学史上的重要 进步,它为代数学的发展开辟了道路,因此韦达被西 方称为“代数学之父”。1593年,韦达又出版了另一 部代数学专著——《分析五篇》。《论方程的识别与 订正》是韦达逝世后由他的朋友A.安德森在巴黎出版 的,但早在1591年业已完成。其中得到一系列有关方 程变换的公式,给出了G.卡尔达诺三次方程和L.费 拉里四次方程解法改进后的求解公式。而另一成就是 记载了著名的韦达定理,即方程的根与系数的关系式。 韦达还探讨了代数方程数值解的问题,1591年已有纲 要,1600年以《幂的数值解法》为题出版。
韦达从事数学研究只是出于爱好,然而他却完成了代数和三角 学方面的巨著。他的《应用于三角形的数学定律》(1579年) 是韦达最早的数学专著之一,可能是西欧第一部论述6种三角 形函数解平面和球面三角形方法的系统著作。他被称为现代代 数符号之父。韦达还专门写了一篇论文"截角术",初步讨论了 正弦,余弦,正切弦的一般公式,首次把代数变换应用到三角 学中。他考虑含有倍角的方程,具体给出了将COS(nx)表示成 COS(x)的函数并给出当n≤11等于任意正整数的倍角表达式了。
.
5
平面三角学与球面三角学; 《应用于三角形的数学定律》是韦 达最早的数学专著之一,也是早期 系统论述平面和球面三角学的著作 之一。韦达还专门写了一篇论文 “截角术”,初步讨论了正弦,余 弦,正切弦的一般公式,首次把代 数变换应用到三角学中。他考虑含 有倍角的方程,具体给出了将表示 成的函数,并给出当n等于任意正 整数的倍角表达式了。
姓名:齐慧杰 学号: 班级:
.

韦达定理及其应用课件-2022年初高衔接数学

韦达定理及其应用课件-2022年初高衔接数学

方法总结
当 = −1时,
方程为 2 − 16 + 5 = 0,∆> 0满足题意;
当 = 17时,
方程为 2 + 30 + 293 = 0,
∆= 302 −4 × 1 × 293 < 0 ,不满足题意,
所以舍去;
综上所述: 的值为−1.
点拨精讲
变式探究2:
已知1 和2 一元二次方程4 2 − 4 + + 1 = 0的
则有
−± 2 −4

2
−+ 2 −4
−− 2 −4
−2

1 + 2 =
+
=
=− ;
2
2
2

−+ 2 −4 −− 2 −4
2 −( 2 −4)
1 ∙ 2 =

=
2
2
42
4
= 2= ;
4

知识梳理
所以,一元二次方程的根与系数之间存在下列关系:
因此这两个数是−2和6.
总结提炼
本节课重点研究了一元二次方程韦达定理的
综合应用,能够利用韦达定理求一些与实数根有
关代数式的值,并能够利用根的情况逆向构造所
需要的一元二次方程,这种思想的渗透与领悟希
望大家细细品味,学会用数学的眼光思考世界!
项系数为1)是 2 −(1 + 2 ) + 1 ∙ 2 = 0.
点拨精讲
探究一:已知方程求代数式的值
例1、 若1 和2 分别是一元二次方程2 2
+5-3=0的两根,试求下列各式的值:
(1)(1 − 5)(2 − 5)
(2)|1 − 2 |

韦达定理

韦达定理
2 2 2
x1 x 2 ( x1 x 2) 2 4 x1x 2
x1 x 2 ( x1 x 2) 2 4 x1x 2
x13 x23 ( x1 x2)(x12 x1x2 x22 )
判断根的正负性,包括:
• 两根为正: ≥0 x1+x2>0 x1x2>0 • 两根为负: ≥0 x1+x2<0 x1x2>0 • 一正一负且 正根绝对值>负根绝对值: >0 x1x2<0 x1+x2>0 • 一正一负且 正根绝对值>负根绝对值: >0 x1x2<0 x1+x2<0 • 两根同号: ≥0 x1x2>0 • 两根异号:x1x2<0 a*c<0
原式
b x1 x 2 a
c x1* x 2 a
已知根求方程:以x1、x2为根的一元二次方程
变形式
a( x x1)(x x2) 0
x1 x 2 ( x1 x 2) 2 x1x 2 1 1 x1 x 2 x1 x 2 x1* x 2 x 2 x1 x12 x 2 2 x1 x 2 x1* x 2
Thanks
for watching
韦达定理 —知识总结
简介Βιβλιοθήκη 韦达定理说明了一元n次方程中根和系数之间的关 系。因为他是由法国数学家韦达最早发现,所以人 们把这个关系称为韦达定理。
韦达(1540-1603)他一生中最重要的贡献是对代数学 的推进,他最早系统地引入代数符号,推进了方程论。 他创设了大量的代数符号,用字母代替未知数,系统阐 述并改良了多次方程的解法,指出了根与系数之间的关 系。主要著有《分析法入门》、《论方程的识别与修 正》、《分析五章》、《应用于三角形的数学定律》。

韦达定理

韦达定理
也可先把 -2 代入方程求得 k 后,再求另一个根。
下一页
按空格键(或点击鼠标)继续......
返回主页
三、已知两数的和与积,求这两个数。
例4、已知两数的和是 -4,两数积是 3,则这两个数是 -1和-3 。
提示:根据韦达定理,可将两数看成方程 x² +4x+3=0 的两根,再求得 方程的两根 -1、-3,从而求得这两数。
下一页
按空格键(或点击鼠标)继续......
返回主页
一、检验一元二次方程的根的正确性。
例1、对于方程 x² -2x-3=0,根据韦达定理,下列答案中正确的是( C ) x1=1, x2=3; x1= -1, x2=3; x1=1, x2= -3; x1= -1, x2= -3。
例2、以 -1,2为根的一元二次方程是( D ) x² +x-2=0; x² +x+2=0; x² -x+2=0; x² -x-2=0。
下一页
按空格键(或点击鼠标)继续......
返回主页
一、检验一元二次方程的根的正确性。
例1、对于方程 x² -2x-3=0,根据韦达定理,下列答案中正确的是( C ) x1=1, x2=3; x1= -1, x2=3; 例2、以 -1,2为根的一元二次方程是( x² +x-2=0; x² +x+2=0; x1=1, x2= -3; x1= -1, x2= -3。 ) x² -x+2=0; x² -x-2=0。
按空格键(或点击鼠标)继续......
一、检验一元二次方程的根的正确性。
二、已知方程的一个根,求另一个根。 三、已知两数的和与积,求这两个数。 四、已知一元二次方程,不解方程,求与根有关的代数式的值。 五、不解方程,求作一个一元二次方程,使其根与原一元二次方程的根有给定的某些关系。 六、应用二次方程的根所满足的条件,确定方程中字母系数(或范围)。 七、把一元二次方程的根的判别式与韦达定理结合起来,可判别二次方程的根的符号。

韦达定理ppt

韦达定理ppt

包权
人书友圈7.三端同步
∴ k=0
如果方程x2+px+q=0的两根是
X1 ,X2,那么X1+X2= -P ,
X1X2= q
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
1、解方程 6x2 13x 5 0 可以检验一元二次方程的解是否正确;
2、已知3x2+2x-9=0的两根是x1 , x2 求关于一元二次方程的两根x1,x2的代数式的值;
3、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。
可以不解方程,根据一个根直接求另一根
4、已知一个一元二次方程的二次项系数是3,
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
当k=9或-3时,由于△≥0,∴k的值为9或-3。
1、韦达定理及证明
2、韦达定理的简单应用 3、利用韦达定理解决有关一元二次方程 根与系数问题时,注意隐含条件:
根的判别式△ ≥0
2、设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且 x12+x22=4,求k的值。

23.9 韦达定理

23.9 韦达定理

课后作业 《优等生数学》九年级 P22-23 T1、T2写在作业本上; P25-26 T1、T3写在作业本上; 预习《优等生数学》九年级的第12节、 遗留问题.
如何提高数学解题能力?
基础问题全面做,困难问题典型做; 数学基础打牢固,简单问题不犯错; 系统知识弄明白,常见方法弄清楚; 多学多练多总结,数学难题轻松解!
第二十三章 一元二次方程
23.9 韦达定理
典型例题
例. 已知关于x的方程2x2-9x+a=0有一个根
9 17 为 . 4
(1)求方程的另一个根及a的值; (2)求作一个一元二次方程,使它的一个根 为上面方程两个根的倒数和,另一个根为上 面方程两根的差的平方.
+q=0(p、q为参数)
练4. 已知关于x的一元二次方程ax2+bx+c=0没
有实数根.甲由于看错了二次项系数,求得两 个根为2和4;乙由于看错了某一项系数的符 号,求得两根-1和4.求(2b+3c)/a的值.
课堂小结
1. 韦达定理,是方程理论的一个重要的内容,运用这 个定理,我们可以不解方程,就可以确定根的符号 ,可以求出关于两根的对称式的值,可以构造以某 两个数为根的一元二次方程等等; 2. 在运用韦达定理解题时,首先要注意运用判别式判 断这个方程有没有实数根,必要时要将韦达定理与 判别式综合运用; 3. 在求关于两根的非对称式的值时,除了运用根与系 数的关系得关系外,还要注意运用根的定义来解题 .
的两个根α、β,求作一个以α3、β3为根的一 元二次方程.
练2. 设关于x的方程4x2+2mx+m=0有两个根x1、
x2,且满足 求m的值.
m 6 x mx1 4 x2 3 0 , 2

韦达定理PPT课件

韦达定理PPT课件


(b)2
(b2 4a2

4ac)
b2 b2 4ac

4a2

4ac 4a2
=
c a
推论
如果一元二次方程x2+bx+c=0两个根为x1 , x2,
那么
x1 x2 -b
x1x2 c
SUCCESS
THANK YOU
2019/8/19
韦达定理常见题型总结:
1.不解方程,进行变形求值
例5:若一原方程x2 - 3x - 2=0的两根为x1 , x2 ; 则:(1)以-x1 , - x2 为两根的方程是?
11
(2)x1 以x2
,
为两根的方程是?
4.已知两数的和与积,求这两个数
例6:解方程:
(x2 1) x 1

(x 1) x2 1

2
SUCCESS
THANK YOU
2019/8/19
韦达定理
一元二次方程的根与系数的关系:ቤተ መጻሕፍቲ ባይዱ(韦达定理)
如果一元二次方程ax2+bx+c=0(a≠0)两个根为
x1
,
x2,那x1么 x2


b, a
c
x1x2
. a
注:能用韦达定理的条件为△≥0即b2 4ac 0
韦达定理的证明:
一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
求它的另一个根及k的值。
例3:已知关于x方程x2-(k+1) x+ k2_1 =0,是否存在k,
使方程中的两个实数根的倒数等于1/2,若存在,求出 满足条件的k,若不存在,请说明理由。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的根与系数的关系: (韦达定理)
如果一元二次方程ax2+bx+c=0(a≠0)两个根为x1 ,
x2,那么
x1
x2


b a
,
c
x1x2
. a
注:能用韦达定理的条件为△≥0即 b24ac0
韦达定理的证明:

一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
x= b b2 4ac
(4)| x1-x2 |
本题不能求根公式直接计算,应该应用两根之 和与两根之积进行变形转换。
2.利用两根关系,确定方程中未知系数的值
例2:已知方程x2-(k+1) x+3k=0的一个根是2 , 求它的另一个根及k的值。
例3:已知关于x方程x2-(k+1) x+ k2_1 =0,是否存在k, 使方程中的两个实数根的倒数等于1/2,若存在,求出 满足条件的k,若不存在,请说明理由。
4.已知两数的和与积,求这两个数
例6:解方程: (xx211)(xx211)2
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
3.已知与原方程的两根关系,构造一个新方程
例4:求一元二次方程x2+3x - 2=0的两根之和 与两根之积 为根的一元二次方程。
例5:若一原方程x2 - 3x - 2=0的两根为x1 , x2 ; 则:(1)以-x1 , - x2 为两根的方程是?
11 (2)以 x 1 , x 2 为两根的方程是?

4 ac 4a2
=
c a
推论
如果一元二次方程x2+bx+c=0两个根为x1 , x2,
那么
x1x2 -b
x1x2 c
韦达定理常见题型总结:
1.不解方程,进行变形求值
例1:已知x2-2x-1=0的两根是x1 , x2 ,求
(1) 1 1 x1 x2
(2) x12+x22
(3)
x2 x1 x1 x2
2a
x1 b b24ac x2 b b2 4ac
2a
2a
x1x2 b
b2 4ac +
2a
=
2b 2a
=
-b a
b b2 4ac 2a
x1x2b2 b a 24a* cb2 b a 24ac
(b)2
(b2 4a2
4ac)
b2 b2 4ac 4a2
相关文档
最新文档