韦达定理学习教材PPT课件
合集下载
九年级数学韦达定理应用复习(PPT)5-2

如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
年国际上以国际协议原点()作为地极原点,经度起点实际上不变。 【本岛】名几个岛屿中的主要岛屿,其名称和这几个岛屿总体的名称相同。例如我国的 湾湾包括湾湾本岛和澎湖列岛、绿岛、兰屿等许多岛屿。 【本地】名人、物所在的地区;叙事时特指的某个地区:~人|~口音|~特产。 【本分】①名本 身应尽的责任和义务:守~|~的工作。②形安; 国学加盟 国学加盟 ;于所处的地位和环境:~人|这个人很~。 【本固枝荣】ī树木主 干强固,枝叶才能茂盛,比喻事物的基础巩固了,其他部分才能发展。 【本行】名①个人一贯从事的或长期已经熟习的行业:他原来是医生,还是让他干 老~吧。②现在从事的工作:三句话不离~|熟悉~业务。 【本纪】名纪传体史书中帝王的传记,一般按年月编排重要史实,列在全书的前面,对全书起总 纲的作用。 【本家】名同宗族的人:~兄弟|他们俩住在一个村,是~。 【本家儿】〈方〉名指当事人:~不来,别人不好替他做主。 【本金】ī名①存款 者或放款者拿出的钱(区别于“利息”)。②经营工商业的本钱;营业的资本。 【本科】名大学或学院的基本组成部分(区别于“预科、专科”等)。 【本 来】①形属性词。原有的:~面貌|~的颜色。②副原先;先前:他~身体很瘦弱,现在很结实了|我~不知道,到了这里才听说有这么回事。③副表示理 所当然:~就该这样办。 【本利】名本金和利息。 【本领】名技能;能力:有~|~高强。 【本名】名①本来的名字;原来的名字(区别于“别号、官衔” 等)。②给本人起的名儿:有些外国人的全名分三部分,第一部分是~,第二部分是父名,第三部分是姓。 【本命年】名我国习惯用十二生肖记人的出生年, 每十二年轮转一次。如子年出生的人属鼠,再遇子年,就是这个人的本命年。参看页〖生肖〗。 【本末】名①树的下部和上部,东西的底部和顶部,比喻事 情从头到尾的经过:详述~|纪事~。②比喻主要的与次要的:不辨~|~颠倒。 【本末倒置】比喻把主要事物和次要事物或事物的主要方面和次要方面弄 颠倒了。 【本能】①名人类和动物不学就会的本领,如初生的婴儿会哭会吃奶,蜂酿蜜等都是本能的表现。②副机体对外界刺激不知不觉地、无意识地(做 出反应):他看见红光一闪,~地闭上了眼睛。 【本票】名出票人签发的,并承诺在见票时向收款人或持票人无条件支付确定金额的票据。 【本钱】名①用 来营利、生息、等的钱财:做买卖得有~。②比喻可以凭借的资历、能力、条件等:强壮的身体是做好工作的~。 【本人】代人称代词。①说话人指自己: 这
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
年国际上以国际协议原点()作为地极原点,经度起点实际上不变。 【本岛】名几个岛屿中的主要岛屿,其名称和这几个岛屿总体的名称相同。例如我国的 湾湾包括湾湾本岛和澎湖列岛、绿岛、兰屿等许多岛屿。 【本地】名人、物所在的地区;叙事时特指的某个地区:~人|~口音|~特产。 【本分】①名本 身应尽的责任和义务:守~|~的工作。②形安; 国学加盟 国学加盟 ;于所处的地位和环境:~人|这个人很~。 【本固枝荣】ī树木主 干强固,枝叶才能茂盛,比喻事物的基础巩固了,其他部分才能发展。 【本行】名①个人一贯从事的或长期已经熟习的行业:他原来是医生,还是让他干 老~吧。②现在从事的工作:三句话不离~|熟悉~业务。 【本纪】名纪传体史书中帝王的传记,一般按年月编排重要史实,列在全书的前面,对全书起总 纲的作用。 【本家】名同宗族的人:~兄弟|他们俩住在一个村,是~。 【本家儿】〈方〉名指当事人:~不来,别人不好替他做主。 【本金】ī名①存款 者或放款者拿出的钱(区别于“利息”)。②经营工商业的本钱;营业的资本。 【本科】名大学或学院的基本组成部分(区别于“预科、专科”等)。 【本 来】①形属性词。原有的:~面貌|~的颜色。②副原先;先前:他~身体很瘦弱,现在很结实了|我~不知道,到了这里才听说有这么回事。③副表示理 所当然:~就该这样办。 【本利】名本金和利息。 【本领】名技能;能力:有~|~高强。 【本名】名①本来的名字;原来的名字(区别于“别号、官衔” 等)。②给本人起的名儿:有些外国人的全名分三部分,第一部分是~,第二部分是父名,第三部分是姓。 【本命年】名我国习惯用十二生肖记人的出生年, 每十二年轮转一次。如子年出生的人属鼠,再遇子年,就是这个人的本命年。参看页〖生肖〗。 【本末】名①树的下部和上部,东西的底部和顶部,比喻事 情从头到尾的经过:详述~|纪事~。②比喻主要的与次要的:不辨~|~颠倒。 【本末倒置】比喻把主要事物和次要事物或事物的主要方面和次要方面弄 颠倒了。 【本能】①名人类和动物不学就会的本领,如初生的婴儿会哭会吃奶,蜂酿蜜等都是本能的表现。②副机体对外界刺激不知不觉地、无意识地(做 出反应):他看见红光一闪,~地闭上了眼睛。 【本票】名出票人签发的,并承诺在见票时向收款人或持票人无条件支付确定金额的票据。 【本钱】名①用 来营利、生息、等的钱财:做买卖得有~。②比喻可以凭借的资历、能力、条件等:强壮的身体是做好工作的~。 【本人】代人称代词。①说话人指自己: 这
韦达定理及其应用课件-2022年初高衔接数学

方法总结
当 = −1时,
方程为 2 − 16 + 5 = 0,∆> 0满足题意;
当 = 17时,
方程为 2 + 30 + 293 = 0,
∆= 302 −4 × 1 × 293 < 0 ,不满足题意,
所以舍去;
综上所述: 的值为−1.
点拨精讲
变式探究2:
已知1 和2 一元二次方程4 2 − 4 + + 1 = 0的
则有
−± 2 −4
,
2
−+ 2 −4
−− 2 −4
−2
1 + 2 =
+
=
=− ;
2
2
2
−+ 2 −4 −− 2 −4
2 −( 2 −4)
1 ∙ 2 =
∙
=
2
2
42
4
= 2= ;
4
知识梳理
所以,一元二次方程的根与系数之间存在下列关系:
因此这两个数是−2和6.
总结提炼
本节课重点研究了一元二次方程韦达定理的
综合应用,能够利用韦达定理求一些与实数根有
关代数式的值,并能够利用根的情况逆向构造所
需要的一元二次方程,这种思想的渗透与领悟希
望大家细细品味,学会用数学的眼光思考世界!
项系数为1)是 2 −(1 + 2 ) + 1 ∙ 2 = 0.
点拨精讲
探究一:已知方程求代数式的值
例1、 若1 和2 分别是一元二次方程2 2
+5-3=0的两根,试求下列各式的值:
(1)(1 − 5)(2 − 5)
(2)|1 − 2 |
中考数学复习韦达定理应用复习[人教版](教学课件201909)
](https://img.taocdn.com/s3/m/7f8bd468bb68a98271fefadf.png)
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值
是
.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,
求
a b
1.设x1、x2是方程2x
x2
x1
x1 x2
(2)( x1 2)( x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程
为
x。1 x2
②以- x1、-x2 为两根的方程
为
。
③以x12、x2 2为两根的方程
为
。
3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一个根为 .
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值
是
.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,
求
a b
1.设x1、x2是方程2x
x2
x1
x1 x2
(2)( x1 2)( x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程
为
x。1 x2
②以- x1、-x2 为两根的方程
为
。
③以x12、x2 2为两根的方程
为
。
3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一个根为 .
韦达定理应用复习 精品数学教学课件

3.某商场将进货单价为18元的商品, 按每件20元销售时,每日可销售100 件.若每件提价1元,日销售量就要减 少10件,那么把商品的售出价定为多 少时,才能使每天获得的利润最大? 每天的最大利润是多少?
4.某公司试销一种成本单价为500元 /件的新产品,规定试销时的销售单 价不低于成本单价,又不高于800元/ 件.经试销调查,发现销售y(件)与销 售单价x(元/件)可近似看作一次函 数y=kx+b的关系(如图) y ⑴根据图 400 象,求一 300 200 次函数的 100 x o 10 解析式; 607080
复习十二
二次函数应用(二)
复习目标:
通过复习进一步理解并掌握 二次函数有关性质,提高对二 次函数综合题的分析和解答 的能力.
1.某学生推铅球,铅球飞 行时的高度y(m)与水平距 离x(m)之间的函数关系式 3 1 2 1 是y=- 15 x + 30 x+ 2 ,则铅球 落地的水平距离为 m.
2 1.设二次函数y=ax +bx+c的图象
与y轴交于点C(如图),若
AC=20,BC=15, 0 ∠ACB=90 ,求这个 二次函数的解析式.
A
y C
o
Bx
2.抛物线y x px q与x轴
2
交于A, B两点, 交y轴负半 轴交于C点, ACB 90 ,
0
1 1 2 且 , 求P, q及 OA OB OC ABC的外接圆的面积。
5、已知二次函数y=ax2+bx+c的图象与x 轴交于A、B两点(A在原点左侧,B在 原点右侧),与y轴交于C点,若AB=4, OB>OA,且OA、OB是方程x2+kx+3=0 的两根. 1)求A、B两点的坐标;2)若点O 3 2 到BC的的距离为 , 求此二次函 2 数的解析式. 3)若点P的横坐标为2,且⊿PAB的 外心为M(1,1),试判断点P是否在2) 中所求的二次函数图象上.
韦达定理ppt

包权
人书友圈7.三端同步
∴ k=0
如果方程x2+px+q=0的两根是
X1 ,X2,那么X1+X2= -P ,
X1X2= q
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
1、解方程 6x2 13x 5 0 可以检验一元二次方程的解是否正确;
2、已知3x2+2x-9=0的两根是x1 , x2 求关于一元二次方程的两根x1,x2的代数式的值;
3、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。
可以不解方程,根据一个根直接求另一根
4、已知一个一元二次方程的二次项系数是3,
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
当k=9或-3时,由于△≥0,∴k的值为9或-3。
1、韦达定理及证明
2、韦达定理的简单应用 3、利用韦达定理解决有关一元二次方程 根与系数问题时,注意隐含条件:
根的判别式△ ≥0
2、设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且 x12+x22=4,求k的值。
中考数学复习韦达定理应用复习[人教版](PPT)5-2
5-2](https://img.taocdn.com/s3/m/400a61dd3b3567ec102d8ac7.png)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x方式,把物拟做人或把人拟做物。 【比年】〈书〉①名近年:~以来,缠绵病榻。②副每年;连年:~五谷不登。‖也说 比岁。 【比配】形相称;相配:这两件摆放在一起很不~。 【比拼】ī动拼力比试:双方将在半决赛中~,争夺决赛权。 【比丘】名佛教指和尚。 【比丘尼】 名佛教指尼姑。 【比热】名比; 幼儿教育加盟品牌 幼儿教育加盟品牌 ;热容的简称。 【比热容】名单位质量的物质,温度升高(或 降低)℃所吸收(或放出)热量,叫做该物质的比热容。简称热。 【比如】动举例时的发端语:有些题已经作出决定,~招多少学生,分多少班,等等。 【比萨饼】名一种意大利式饼,饼上放番茄、奶酪、肉类等,用烤箱烘烤而成。[比萨,英a] 【比赛】①动在体育、生产等活动中,比较本领、技术的高 低:~篮球。②名指这种活动:今晚有一场足球~。 【比试】?动①彼此较量高低:咱们~一下,看谁做得又快又好。②做出某种动作的姿势:他把大一~, 不在乎地说,叫他们来吧。 【比岁】①名比年?。②副比年?。 【比索】名①西班牙的旧本位货币。②菲律宾和一部分拉丁美洲国家的本位货币。[西] 【比特】量信息量单位,二进制数的一位所包含的信息量就是比特。如二进制数包含的信息量为比特。[英] 【比武】∥动比赛武艺,也泛指比赛技艺。 【比翼】动翅膀挨着翅膀(飞):~齐飞。 【比翼鸟】名传说中的一种鸟,雌雄老在一起飞,古典诗词里用作恩爱夫妻的比喻。 【比翼齐飞】比喻夫妻恩爱,
x2;则
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a
,
如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x方式,把物拟做人或把人拟做物。 【比年】〈书〉①名近年:~以来,缠绵病榻。②副每年;连年:~五谷不登。‖也说 比岁。 【比配】形相称;相配:这两件摆放在一起很不~。 【比拼】ī动拼力比试:双方将在半决赛中~,争夺决赛权。 【比丘】名佛教指和尚。 【比丘尼】 名佛教指尼姑。 【比热】名比; 幼儿教育加盟品牌 幼儿教育加盟品牌 ;热容的简称。 【比热容】名单位质量的物质,温度升高(或 降低)℃所吸收(或放出)热量,叫做该物质的比热容。简称热。 【比如】动举例时的发端语:有些题已经作出决定,~招多少学生,分多少班,等等。 【比萨饼】名一种意大利式饼,饼上放番茄、奶酪、肉类等,用烤箱烘烤而成。[比萨,英a] 【比赛】①动在体育、生产等活动中,比较本领、技术的高 低:~篮球。②名指这种活动:今晚有一场足球~。 【比试】?动①彼此较量高低:咱们~一下,看谁做得又快又好。②做出某种动作的姿势:他把大一~, 不在乎地说,叫他们来吧。 【比岁】①名比年?。②副比年?。 【比索】名①西班牙的旧本位货币。②菲律宾和一部分拉丁美洲国家的本位货币。[西] 【比特】量信息量单位,二进制数的一位所包含的信息量就是比特。如二进制数包含的信息量为比特。[英] 【比武】∥动比赛武艺,也泛指比赛技艺。 【比翼】动翅膀挨着翅膀(飞):~齐飞。 【比翼鸟】名传说中的一种鸟,雌雄老在一起飞,古典诗词里用作恩爱夫妻的比喻。 【比翼齐飞】比喻夫妻恩爱,
x2;则
韦达定理PPT课件

(b)2
(b2 4a2
4ac)
b2 b2 4ac
4a2
4ac 4a2
=
c a
推论
如果一元二次方程x2+bx+c=0两个根为x1 , x2,
那么
x1 x2 -b
x1x2 c
SUCCESS
THANK YOU
2019/8/19
韦达定理常见题型总结:
1.不解方程,进行变形求值
例5:若一原方程x2 - 3x - 2=0的两根为x1 , x2 ; 则:(1)以-x1 , - x2 为两根的方程是?
11
(2)x1 以x2
,
为两根的方程是?
4.已知两数的和与积,求这两个数
例6:解方程:
(x2 1) x 1
(x 1) x2 1
2
SUCCESS
THANK YOU
2019/8/19
韦达定理
一元二次方程的根与系数的关系:ቤተ መጻሕፍቲ ባይዱ(韦达定理)
如果一元二次方程ax2+bx+c=0(a≠0)两个根为
x1
,
x2,那x1么 x2
b, a
c
x1x2
. a
注:能用韦达定理的条件为△≥0即b2 4ac 0
韦达定理的证明:
一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
求它的另一个根及k的值。
例3:已知关于x方程x2-(k+1) x+ k2_1 =0,是否存在k,
使方程中的两个实数根的倒数等于1/2,若存在,求出 满足条件的k,若不存在,请说明理由。
韦达定理优秀课件

那么
x1x2 -b
x1x2 c
4
韦达定理常见题型总结:
1.不解方程,进行变形求值
例1:已知x2-2x-1=0的两根是x1 , x2 ,求
(1)
11 x1 x2
(2) x12+x22 Nhomakorabea(3)x2 x1 x1 x2
(4)| x1-x2 |
本题不能求根公式直接计算,应该应用两根之 和与两根之积进行变形转换。
5
2.利用两根关系,确定方程中未知系数的值
例2:已知方程x2-(k+1) x+3k=0的一个根是2 , 求它的另一个根及k的值。
例3:已知关于x方程x2-(k+1) x+ k2_1 =0,是否存在k, 使方程中的两个实数根的倒数等于1/2,若存在,求出 满足条件的k,若不存在,请说明理由。
6
3.已知与原方程的两根关系,构造一个新方程
例4:求一元二次方程x2+3x - 2=0的两根之和 与两根之积 为根的一元二次方程。
例5:若一原方程x2 - 3x - 2=0的两根为x1 , x2 ; 则:(1)以-x1 , - x2 为两根的方程是?
11 (2)以 x 1 , x 2 为两根的方程是?
7
4.已知两数的和与积,求这两个数
例6:解方程: (xx211)(xx211)2
一元二次方程的根与系数的关系: (韦达定理)
如果一元二次方程ax2+bx+c=0(a≠0)两个根为x1 ,
x2,那么
x1 x2
b a
,
c
x1x2
. a
注:能用韦达定理的条件为△≥0即 b24ac0
1
韦达定理的证明:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找到 规律#43;c=0(a≠0) 的两个根是 x1,x2 那么 x1+x2=-b/a, x1· x2=c/a 一元二次方程的根与系数的关系———韦达定理
推论
如果方程 x2+px+q=0 的两个根是 x1,x2 那么 x1+x2=-p ,x1x2=q
大家动手 来证明 一下吧
P = 0 , q =-21
P = 12, q =-3
提示:应用韦达定理得 x1+x2= - p/3 ; x1x2= q/3
想一想:
已知方程 3x2-19x+m=0 的一个根是1,求它的另一个根 及 m的值.
这题怎 么做呢??
答案:
另一个根是16/3,
m的值是16.
试一试: 设 X1,X2是方程2X2+4X-3=0 的两个根, 求 (1) 1/X1+1/X2 ;
原式=(X1+X2)/X1X2=-2/(-3/2)=4/3
(2) X12+X22 ; 原式=(X1+X2)2-2X1X2=(-2)2-2(-3/2) =7 (3) (X1+1)(X2+1); 原式=X1+X2+X1X2+1= (-2)+(-3/2)+1=-5/2 (4) X1/X2+X2/X1 ; 原式=(X12+X22)/X1X2 = 7/(-3/2)=-14/3
———韦达定理 这就是我们 今天主要学 习的内容. 你学会了吗?
推论 如果方程 x2+px+q=0 的两个根是 那么 x1+x2=-p ,x1x2=q x1,x2
例1 求 3x2+2x-9=0 的两个根的 (1)倒数和; (2)平方和. 解:设方程的两个根是 x1, x2 ,那么 x1+x2= -2/3 , x 1· x2=-3.
(1)1/x1 + 1/x2 = (x1+x2) / x1x2 = 2/9; (2) ∵ (x1+x2)2=x12+2x1x 2+x22 , ∴x12+x22= (x1+x2)2-2x1x2 =(-2/3)2-2×(-3) = 58/9.
韦达定理
执教人: 丁敏敏
解下列一元二次方程
(1)x2-7x+12=0 ; 解: (x-3)(x-4)=0 x1=3 , x2=4 (2)2x2+3x-2=0 解:(2x-1)(x+2)=0 x1=1/2, x2=-2
求出两根之和与两根之积?
x+x2=7
x1 · x2=12
x1+x2=-3/2
x1 ·x2=-1
答:方程的两个根的倒数和是2/9,平方和是58/9.
例2 已知方程 x2-(k+1)x+3k=0 的一个根是2,求它的 另一个根和 k 的值.
解:设方程的另一个根为 x1
把 x=2代入方程,得 4-2(k+1)+3k=0,
解这个方程,得 由韦达定理,得 即 ∴ k=-2, x1 · 2=3k , 动动脑, 还有其 他解法 吗
让我们来 练一练
说出下列各方程的两根之和与两根之积:
(1) x2-2x-1=0 (2) 2x2-3x+1/2=0 (3) 2x2-6x=0 (4) 3x2=4 x1+x2= 2; x1+x2= 3/2; x1+x2= 3; x1+x2= 0; x 1· x2=-1 x1· x2=1/4
x 1· x2=0 x 1· x2=-4/3
可否利用(X1+X2) 和X1X2的表达式表示下列各式?
(1) (X1-X2)2 =
(X1+X2)2 -4X1X2
(2) ︱X1-X2︱= √(X1+X2)2 -4X1X2
(3) X13+X23 = (X1+X2)[(X1+X2)2-3X1X2]
你想到了 吗??
如果方程 ax2+bx+c=0(a≠0) 的两个根是 x1,x2 那么 x1+x2=-b/a, x1· x2=c/a
2x1=-6, x1=-3.
答:方程的另一个根是-3,k 的值是-2.
练一练: 已知 x1,x2 是方程3x2+px+q=0的两个根,分别根据下列条件求出 p和q的值.
(1) x1=1, x2=2
(2) x1=3, x2=-6 (3) x1= -√7, x2=√ 7 (4) x1=-2+√5 ,x2=-2-√ 5 P = -9 , q = 6 P = 9 , q = -54 你会 做吗?