韦达定理及应用优秀课件

合集下载

韦达定理PPT教学课件

韦达定理PPT教学课件
电阻器的种类很多:常用的电阻器按照导电体的结构特征分为实芯电 阻器、薄膜电阻器和线绕电阻器;按电阻器的材料、结构又分为碳膜 电阻器、金属氧化膜电阻器、线绕电阻器、热敏电阻器、压敏电阻器 等。另外,按照各种电阻器的特性,还可分为高精度、高稳定、高阻、 大功率、高频以及超小型等各种专用类型的电阻器 。
2021/1/12
答:方程的另一个根是-3,k 的值是-2.
动动脑, 还有其 他解法

练一练: 已知 x1,x2 是方程3x2+px+q=0的两个根,分别根据下列条件求出 p和q的值.
(1) x1=1, x2=2
(2) x1=3, x2=-6 (3) x1= -√7, x2=√ 7 (4) x1=-2+√5 ,x2=-2-√ 5

0
×100
±1%
1
1
×101
±2%
2
2
×102
±3%
3
3
×103
±4%
4
4
×104

5
5
×105
±0.5%
6
6
×106
±0.2%
7
7
×107
±0.1%
88Βιβλιοθήκη ×108—9
9
×109



×10-1
±5%


×10-2
±10%



±20%
电阻的测量
• 测量实际电阻值 a.将万用表的功能选择开关旋转到适当量程的电阻挡,先调
这题怎 么做呢??
m的值是16.
试一试: 设 X1,X2是方程2X2+4X-3=0 的两个根, 求 (1) 1/X1+1/X2 ; 原式=(X1+X2)/X1X2=-2/(-3/2)=4/3 (2) X12+X22 ; 原式=(X1+X2)2-2X1X2=(-2)2-2(-3/2)

韦达定理ppt课件

韦达定理ppt课件
一元二次方程的根与系数的关系: (韦达定理)
如果一元二次方程ax2+bx+c=0(a≠0)两个根为x1 ,
x2,那么
x1
x2


b a
,
c
x1x2
. a
注:能用韦达定理的条件为△≥0即 b24ac0
韦达定理的证明:

一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
x= b b2 4ac
(4)| x1-x2 |
本题不能求根公式直接计算,应该应用两根之 和与两根之积进行变形转换。
2.利用两根关系,确定方程中未知系数的值
例2:已知方程x2-(k+1) x+3k=0的一个根是2 , 求它的另一个根及k的值。
例3:已知关于x方程x2-(k+1) x+ k2_1 =0,是否存在k, 使方程中的两个实数根的倒数等于1/2,若存在,求出 满足条件的k,若不存在,请说明理由。
4.已知两数的和与积,求这两个数
例6:解方程: (xx211)(xx211)2
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
3.已知与原方程的两根关系,构造一个新方程
例4:求一元二次方程x2+3x - 2=0的两根之和 与两根之积 为根的一元二次方程。
例5:若一原方程x2 - 3x - 2=0的两根为x1 , x2 ; 则:(1)以-x1 , - x2 为两根的方程是?
11 (2)以 x 1 , x 2 为两根的方程是?

4 ac 4a2
=
c a
推论
如果一元二次方程x2+bx+c=0两个根为x1 , x2,

韦达定理及其应用课件-2022年初高衔接数学

韦达定理及其应用课件-2022年初高衔接数学

方法总结
当 = −1时,
方程为 2 − 16 + 5 = 0,∆> 0满足题意;
当 = 17时,
方程为 2 + 30 + 293 = 0,
∆= 302 −4 × 1 × 293 < 0 ,不满足题意,
所以舍去;
综上所述: 的值为−1.
点拨精讲
变式探究2:
已知1 和2 一元二次方程4 2 − 4 + + 1 = 0的
则有
−± 2 −4

2
−+ 2 −4
−− 2 −4
−2

1 + 2 =
+
=
=− ;
2
2
2

−+ 2 −4 −− 2 −4
2 −( 2 −4)
1 ∙ 2 =

=
2
2
42
4
= 2= ;
4

知识梳理
所以,一元二次方程的根与系数之间存在下列关系:
因此这两个数是−2和6.
总结提炼
本节课重点研究了一元二次方程韦达定理的
综合应用,能够利用韦达定理求一些与实数根有
关代数式的值,并能够利用根的情况逆向构造所
需要的一元二次方程,这种思想的渗透与领悟希
望大家细细品味,学会用数学的眼光思考世界!
项系数为1)是 2 −(1 + 2 ) + 1 ∙ 2 = 0.
点拨精讲
探究一:已知方程求代数式的值
例1、 若1 和2 分别是一元二次方程2 2
+5-3=0的两根,试求下列各式的值:
(1)(1 − 5)(2 − 5)
(2)|1 − 2 |

中考数学复习韦达定理应用复习[人教版](教学课件201909)

中考数学复习韦达定理应用复习[人教版](教学课件201909)
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a

如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值

.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,

a b
1.设x1、x2是方程2x
x2

x1

x1 x2
(2)( x1 2)( x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程

x。1 x2
②以- x1、-x2 为两根的方程


③以x12、x2 2为两根的方程


3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一个根为 .

韦达定理应用复习 精品数学教学课件

韦达定理应用复习   精品数学教学课件

3.某商场将进货单价为18元的商品, 按每件20元销售时,每日可销售100 件.若每件提价1元,日销售量就要减 少10件,那么把商品的售出价定为多 少时,才能使每天获得的利润最大? 每天的最大利润是多少?
4.某公司试销一种成本单价为500元 /件的新产品,规定试销时的销售单 价不低于成本单价,又不高于800元/ 件.经试销调查,发现销售y(件)与销 售单价x(元/件)可近似看作一次函 数y=kx+b的关系(如图) y ⑴根据图 400 象,求一 300 200 次函数的 100 x o 10 解析式; 607080
复习十二
二次函数应用(二)
复习目标:
通过复习进一步理解并掌握 二次函数有关性质,提高对二 次函数综合题的分析和解答 的能力.
1.某学生推铅球,铅球飞 行时的高度y(m)与水平距 离x(m)之间的函数关系式 3 1 2 1 是y=- 15 x + 30 x+ 2 ,则铅球 落地的水平距离为 m.
2 1.设二次函数y=ax +bx+c的图象
与y轴交于点C(如图),若
AC=20,BC=15, 0 ∠ACB=90 ,求这个 二次函数的解析式.
A
y C
o
Bx
2.抛物线y x px q与x轴
2
交于A, B两点, 交y轴负半 轴交于C点, ACB 90 ,
0
1 1 2 且 , 求P, q及 OA OB OC ABC的外接圆的面积。
5、已知二次函数y=ax2+bx+c的图象与x 轴交于A、B两点(A在原点左侧,B在 原点右侧),与y轴交于C点,若AB=4, OB>OA,且OA、OB是方程x2+kx+3=0 的两根. 1)求A、B两点的坐标;2)若点O 3 2 到BC的的距离为 , 求此二次函 2 数的解析式. 3)若点P的横坐标为2,且⊿PAB的 外心为M(1,1),试判断点P是否在2) 中所求的二次函数图象上.

韦达定理及应用

韦达定理及应用
1,这里必须考虑k不等于0, B2 –4ac >=0 的条件,经检验,当k=-1时, B2 –4ac=-3<0,所以k=-1应当舍去,所求k值只能是1。
第第91页4页,,共共1144页页。。
例题分析
• 例题是韦达定理的直接应用,今后在简化 计算中由计算两个根的倒数和于平方和, 那将时很繁琐的,如果我们能找出两个根 的倒数和,两个根的积之间的关系,就能 够利用韦达定理较多的用处,分析时,应 着重指出如果先求出方程的两根,再进行 简便计算。
第10第页14,页,共共141页。4页。
例题:当k为何值时,方程2x2- (k+1)x+k+3=0的两根之差为1
• 设方程的两根为x1,x2,则,,x2-x1 =1(不妨设 x2>x1)。
• 因为,(x2-x1)2 =(x2+x1)2 -4 x1x2,由韦达定
理得
• (x2-x1)2 =(k+1)2 /4 –2(k+3) 所以 (k+1)2 /4 –2(k+3)=1 解得 k=9或者k=-3。 当k=9或者k=-3由B2 –4ac =4>0得, k=9或者k=-3均是
X1=3
X2=4
X1=1
X2=-4Βιβλιοθήκη X1=-2X2=1/2
第第41页4页,,共共1144页页。。
导出韦达定理——仅仅是数学猜想
• 对于一般一元二次方程都有:两根的和等于方程的 一次 项系数除以二次项系数所得商的相反数;
– 两根的积等于方程的常数项除以二次项系数所得得商,并 把它概括成“韦达定理”
第5页第1,4页,共共114页4。页。
第8页第1,4页,共共114页4。页。
例题:已知方程kx2-(2k-1)x+k-2=0 的两根为x1,x2,x12 +x22 =3,求k的值。

韦达定理ppt

韦达定理ppt

包权
人书友圈7.三端同步
∴ k=0
如果方程x2+px+q=0的两根是
X1 ,X2,那么X1+X2= -P ,
X1X2= q
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
1、解方程 6x2 13x 5 0 可以检验一元二次方程的解是否正确;
2、已知3x2+2x-9=0的两根是x1 , x2 求关于一元二次方程的两根x1,x2的代数式的值;
3、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。
可以不解方程,根据一个根直接求另一根
4、已知一个一元二次方程的二次项系数是3,
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
当k=9或-3时,由于△≥0,∴k的值为9或-3。
1、韦达定理及证明
2、韦达定理的简单应用 3、利用韦达定理解决有关一元二次方程 根与系数问题时,注意隐含条件:
根的判别式△ ≥0
2、设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且 x12+x22=4,求k的值。

第03讲 韦达定理

第03讲 韦达定理

第3讲 韦达定理没有不能解决的问题. ——韦达知识方法扫描韦达定理,即一元二次方程的根与系数的关系,是方程理论的一个重要的内容。

运用这个定理,我们可以不解方程,就可以确定根的符号、可以求出关于两根的对称式的值,可以构造以某两个数为根的一元二次方程等等在运用韦达定理解题时,首先要注意运用判别式判断这个方程有没有实数根。

必要时要将韦达定理与判别式综合运用。

要掌握将一个关于两根的对称式如x 1n +x 2n 转化为两个基本对称式x 1+x 2与x 1x 2 的方法。

在求关于两根的非对称式的值时,除了运用根与系数的关系得关系外,还要注意运用根的定义来解题。

经典例题解析例1(1999年全国初中数学竞赛试题)设实数s 、t 分别满足19s 2+99s+1=0,t 2+99t+19=0, 并且st≠1。

求41st s t++的值 解 因为s≠0,所以,第一个等式可以变形为 019)1(99)1(2=++ss又因为st≠1, 所以s1,t 是一元二次方程x 2+99x+19=0的两个不同的实根,于是,有,191,991=∙-=+t st s 即st+1=-99s, t=19s. ∴51949914-=+-=++sss t s st . 例2(浙江省第二届初中数学竞赛题)设方程x 2+px+q=0的两实数根为a 、b ,且有I 1=a+b, I 2=a 2+b 2, …I n =a n +b n , 求当n≥3时,I n +pI n-1+qI n-2的值。

分析 直接求解犹如“海底捞针”,若利用方程根的意义求解,不仅能以简驭繁,且有出奇制胜之妙,我们知道x=x 0是方程ax 2+bx+c=0的根2000ax bx c ⇔++=,利用它显得思路清晰,运算简捷。

解 I n +pI n-1+qI n-2=(a n +b n )+p(a n-1+b n-1)+q(a n-2+b n-2) (n≥3) =(a n +pa n-1+qa n-2)+(b n +pb n-1+qb n-2) =(a 2+pa+q) a n-2 +(b 2+pb+q)b n-2 =0+0=0. 例3(1995年第八届“祖冲之杯”初中数学邀请赛题)已知α、β是方程x 2-7x+8=0的两根,且α>β,不解方程利用根与系数的关系,求232βα+的值分析 待求式是已知一元二次方程根的非对称式,我们可以设法构造一个待求式相应的代数式一起参与运算,从而使问题迅速获得解决解 设22223,3,A B βααβ+=+=∵α、β是方程x 2-7x+8=0的两根,且α>β, ∴α+β=7,αβ=8,β-α=-174)(2-=-+αββα ∴A+B=222233βααβ+++=αβαβ)(2++3[(β+α)2-2αβ]=4403① A-B=223232αββα--+=17485))((3)(2-=-++-αβαβαβαβ ② ①+②得:2A=,174854403- ∴A=178858403-故178858403:322-+的值为βα 例4 (2003年山东省初中数学竞赛试题)设方程20022x 2-2003·2001x-1=0的较大根是r ,方程2001x 2-2002x+1=0的较小根是s ,求r-s 的值.解 因20022-2003·2001-1=0,故1是方程20022x 2-2003·2001x-1=0的根,由根与系数的关系知两根之积为负,所以1是方程20022x 2-2003·2001x-1=0的较大根,r=1.因2001x 2-2002x+1=0, 故1也是方程2001x 2-2002x+1=0的根,由根与系数的关系知两根之积为12001,所以12001是方程的较小根s=12001.故r-s=1-12001=20002001. 例5 (2004年全国初中数学竞赛预选赛湖北赛区试题)已知关于x 的一元二次方程ax 2+bx+c=0没有实数根.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某项系数的符号,误求得两根为-1和4,求23b ca +的值.解 甲看错了二次项系数,设他所解的方程为a′x 2+bx+c=0,于是有:24'b a +=- 24'ca ⨯=,故34bc-= ① 设乙看错了一次项系数的符号,则他所解的方程为ax 2-bx+c=0.于是-1+4=ba. ②由①,②知,△=b 2-4ac=b 2-4·3b ·(43-b)= 259b 2≥0,与题设矛盾.故乙看错的只是常数项,即他所解的方程为ax 2+bx-c=0,则-1+4=ba- ③由①,③可知:232426b c b b ba a a+-==-= 例6 (2003年全国初中数学竞赛预选赛黑龙江预赛试题)设a 2+2a-1=0,b 4-2b 2-1=0,且1-ab 2≠0,求22200421()ab b a a+-+的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题:已知方程kx2-(2k-1)x+k-2 =0的两根为x1,x2,x12 +x22 =3,求 k的值。
• 由韦达定理得: x12 +x22 =(x1 +x2 )2__2
• x1x2=(2k-1) 2/k 2 __ 2(k-1)/k= (2k+1) 2 /k 2 =3,解 得,k=+-1,这里必须考虑k不等于0, B2 –4ac >=0 的 条件,经检验,当k=-1时, B2 –4ac=-3<0,所以k=-1应 当舍去,所求k值只能是1。
• 设 x2方>x程1)的。两根为x1,x2,则,,x2-x1 =1(不妨设 • 因 韦为 达,定(理x2得-x1)2 =(x2+x1)2 -4 x1x2,由 • (x2-x1)2 =(k+1)2 /4 –2(k+3) 所以 (k+1)2 /4 –2(k+3)=1 解得 k=9或者k=-3。 当k=9或者k=-3由B2 –4ac =4>0得, k=9或者
例题分析
• 例题是韦达定理的直接应用,今后在简 化计算中由计算两个根的倒数和于平方 和,那将时很繁琐的,如果我们能找出 两个根的倒数和,两个根的积之间的关 系,就能够利用韦达定理较多的用处, 分析时,应着重指出如果先求出方程的 两根,再进行简便计算。
例题:当k为何值时,方程2x2 -(k+1)x+k+3=0的两根之差 为1
– 两根的积等于方程的常数项除以二次项系数所得得商,
并把它概括成“韦达定理”
韦达定理的公式(牢记!)
x1+x2=-b/a x1•x2=c/a
在实数范围内应用韦达定理时必 须注意!
•B2 –4ac >=0
• (方程实数根存在条件)
下面请同学们看例题
• 请同学们动笔思考。 5分钟后,看有没有 同学已经求得了答案。
• 3,4x2 –11x-6=0 (2, 3/4)
公布答案!
• 1,是。 • 2,不是。 • 3,是。
k=-3均是本题得解。
启发:
• (1)由方程的一个根是2,根据方程根 的含义,能否先求出k的值,怎样求。
• (2)求出k的值后,怎样求另一个根才 简便
适当延伸:补充下题,利用韦达定理可检验下列 每个方程后括号内的两个数是否都是方程的两个 根:
• 1,x2 –3x-10=0 (5, -2)
• 2, x2 –2x-8=0ቤተ መጻሕፍቲ ባይዱ(2, -4)
• 解右面的方程。比一比,看谁算得又快又准。 解完后观察一下所求得的结果,看看有没有什 么新发现
对一对答案,观察一下方程看看有没 有规律。比比谁先发现新大陆
X1=3
X2=4
X1=1
X2=-4
X1=-2
X2=1/2
导出韦达定理——仅仅是数学猜 想
• 对于一般一元二次方程都有:两根的和等于方程 的 一次项系数除以二次项系数所得商的相反数;
韦达定理及应用优秀课件
回忆一元二次方程的求根公式
学习这章需要达到的目的
• 1,理解韦达定理的推导过程。 • 2,掌握韦达定理,并能应用韦达定理解决一元
二次方程有关根与系数的一些简单问题。 • 3,能不解方程熟练地求方程两根的 一些简单
对称式的值。 • 4通过参与韦达定理的“发现”,不完全归纳法
的验证以及演绎证明等过程,提高观察,分析 和综合判断能力。
相关文档
最新文档