【人教版】七年级上册数学《期中考试试题》(带答案解析)
人教版七年级上册数学《期中考试试题》附答案解析

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.3-的倒数是( ) A.B. 13C. 13- D. 3-2.在0,2,﹣3,﹣12这四个数中,最小的数是( ) A. 0B. 2C. ﹣3D. ﹣123.如果零上2℃记作+2℃,那么零下3℃记作( ) A. -3℃ B. -2℃C. +3℃D. +2℃4.用量角器测量的度数,操作正确的是( )A.B.C.D.5.m n 322 (2)3+3+...+3⨯⨯⨯个2个=( )A. 23m nB. 23m nC. 32m nD. 23m n6. 将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于( )A. 30°10′B. 60°10′C. 59°50′D. 60°50′7.点A,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:甲:b ﹣a <0;乙:a+b >0;丙:|a|<|b|;丁:ab >0,其中正确的是( )A. 甲、乙B. 丙、丁C. 甲、丙D. 乙、丁8.如图,将下面的平面图形绕直线旋转一周,得到的立体图形是( )A. B. C. D.9.已知,都有理数,且21(4)0x y ++-=,则xy =( )A. 1B. 4C.D. 4-10.下列各组数中,互为相反数的有( ) ①()2--和2--;②()21-和21-;③和23;④()32-和32-.A. ④B. ①②C. ①②③D. ①②④11.如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若FH 平分∠BFE ,则∠GFH 的度数α是( )A. 0°<α<90°B. α=90°C. 90°<α<180°D. α随折痕GF位置的变化而变化12.如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是( )A. 以点B为圆心,OD为半径的弧B. 以点C为圆心,DC为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DC为半径弧13.如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是( )A. ∠BCD和∠ACFB. ∠ACD和∠ACFC. ∠ACB和∠DCBD. ∠BCF和∠ACF14.摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟,若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟后,3号车厢才会运行到最高点?()A. 14分钟B. 20分钟C. 15分钟D. 452分钟二、填空题15.、两地之间弯曲的公路改直,能够缩短路程,其根据的道理是________. 16.已知线段21AB =,9BC =, , ,三点在同一直线上,那么AC 等于________. 17.已知、互倒数,、互为相反数,则20192()2020ab c d -+=________. 18.观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n =+________; (2)直接写出下列各式的计算结果:111112233420192020++++=⨯⨯⨯⨯________;(3)探究并计算:111113355720172019++++=⨯⨯⨯⨯________.三、解答题19.计算(1)10(9)(4)5--+-- (2)1138842⎛⎫-⨯+- ⎪⎝⎭(3)3132(1)223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭ (4)41324812624824826555⎛⎫⨯+⨯--⨯ ⎪⎝⎭20.如图,网格图中每一小格的边长为1个单位长度.请分别画出线段AB 绕中点和三角形DEF 绕点,按顺时针方向旋转90︒后的图形线段A B '',三角形DE F ''.21.在一条不完整的数轴上从左到右有点, , ,其中2AB =,1BC =,如图所示,设点, ,所对应数的和是p.(1)若以为原点,写出点,所对应的数,并计算p 的值;若以为原点,p 又是多少? (2)若原点在图中数轴上点右边,且38CO =,求p .22.如图,点为线段AD 上一点,点为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段? (2)求AD 的长.(3)若点在直线AD 上,且3cm EA =,求BE 的长.23.黄桃是我县南楼乡东里双村的一大特产,现有20筐黄桃,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差值 (单位:千克) 3-1.5-0 1 25筐数 1 4 2 3 2 8(1)20筐黄桃中,与标准质量差值为千克的有________筐,最重的一筐重________千克,最轻的一筐重________千克,最重的一筐比最轻的一筐重________千克; (2)与标准重量比较,20筐黄桃总计超过多少千克?(3)若黄桃每千克售价3元,则出售这20筐黄桃可卖多少元? 24.下列各小题中,都有OE 平分∠AOC ,OF 平分∠BOC .(1)如图①,若点A 、O 、B 在一条直线上,∠EOF = ;(2)如图②,若点A 、O 、B 不在一条直线上,∠AOB =140°,则∠EOF = ; (3)由以上两个问题发现:当∠AOC 在∠BOC 的外部时,∠EOF 与∠AOB 的数量关系是∠EOF = ; (4)如图③,若OA 在∠BOC 的内部,∠AOB 和∠EOF 还存在上述的数量关系吗?请简单说明理由;答案与解析一、选择题1.3-的倒数是( )A. B. 13C.13- D. 3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2.在0,2,﹣3,﹣12这四个数中,最小的数是( )A. 0B. 2C. ﹣3D. ﹣1 2【答案】C【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可. 【详解】解:根据实数比较大小的方法,可得﹣3<﹣12<0<2所以最小的数是﹣3故选C.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.如果零上2℃记作+2℃,那么零下3℃记作()A. -3℃B. -2℃C. +3℃D. +2℃【答案】A【解析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃. 故选A. 4.用量角器测量的度数,操作正确的是( )A.B.C.D.【答案】C 【解析】试题分析:用量角器量一个角的度数时,将量角器的中心点对准角的角的顶点,量角器的零刻度线对准角的一边,那么角的另一边所对的刻度就是这个角的度数,故答案选C. 考点:角的比较.5.m n 322 (2)3+3+...+3⨯⨯⨯个2个=( )A. 23m nB. 23m nC. 32m nD. 23m n【答案】B【分析】根据乘方和乘法的意义即可求解.【详解】m22 (2)3+3+...+3n3⨯⨯⨯个个=23mn.故选B.【点睛】此题考查有理数的混合运算,解题关键在于掌握运算法则.6. 将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于( )A. 30°10′B. 60°10′C. 59°50′D. 60°50′【答案】C【解析】【分析】根据邻补角得出∠1=180°﹣∠2﹣90°,代入求出即可.【详解】解:∵∠2=30°10′,∴∠1=180°﹣∠2﹣90°=180°﹣30°10′﹣90°=59°50′,故选C.【点睛】考点:余角和补角;度分秒的换算.7.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是( )A. 甲、乙B. 丙、丁C. 甲、丙D. 乙、丁【答案】C【解析】试题解析:,b a < 0.b a ∴-<甲正确3,03,b a <-<<0.a b ∴+<乙错误. 3,03,b a <-<<.a b ∴<丙正确. 0,03,b a <<<0.ab ∴<丁错误.故选C.8.如图,将下面的平面图形绕直线旋转一周,得到的立体图形是( )A. B. C. D.【答案】D 【解析】 【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱, 那么所求的图形是下面是圆锥,上面是圆柱的组合图形. 故选D .【点睛】此题考查点、线、面、体问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.9.已知,都是有理数,且21(4)0x y ++-=,则xy =( )A. 1B. 4C.D. 4-【答案】D 【解析】 分析】根据绝对值非负性,先求x ,y 的值,再计算的值.【详解】解:∵()2140x y ++-=,∴10x +=,40y -=,解得:1x =-,4y =,∴()144xy =-⨯=-,故选D .【点睛】理解绝对值的非负性是解题的关键,当绝对值相加和为0时,必须满足其中的每一项都等于0. 10.下列各组数中,互为相反数的有( )①()2--和2--;②()21-和21-;③和23;④()32-和32-. A. ④B. ①②C. ①②③D. ①②④ 【答案】B【解析】【分析】化简各个式子,用相反数的概念进行判断即可.【详解】解:①()2--=2和2--=-2,()2--和2--互为相反数;②()21-=1和21-=-1,()21-和21-互为相反数;③=8和23=9,不是23的相反数;④()32-=-8和32-=-8,()32-不是32-的相反数.故互为相反数的有:①、②故选B【点睛】本题考查了式子的化简及相反数的判断,掌握式子化简是解题的关键.11.如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若FH 平分∠BFE ,则∠GFH 的度数α是( )A. 0°<α<90°B. α=90°C. 90°<α<180°D. α随折痕GF 位置的变化而变化【答案】B【解析】【分析】 根据折叠的性质可以得到△GCF ≌△GEF ,即∠CFG=∠EFG ,再根据FH 平分∠BFE 即可求解.【详解】解:∵∠CFG=∠EFG 且FH 平分∠BFE .∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH 111()222EFC EFB EFC EFB =∠+∠=∠+∠ 1180902︒︒=⨯= 故选B .【点睛】本题主要考查了角平分线的定义,折叠的性质,注意在折叠的过程中存在的相等关系.12.如图,用尺规作出∠OBF=∠AOB ,所画痕迹MN 是( )A. 以点B 为圆心,OD 为半径弧B. 以点C 为圆心,DC 为半径的弧C. 以点E 为圆心,OD 为半径的弧D. 以点E 为圆心,DC 为半径的弧【答案】D【解析】分析:根据题意,所作出的是∠OBF=∠AOB ,,根据作一个角等于已知角的作法,MN 是以点E 为圆心,DC 为半径的弧.故选D .13.如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是( )A. ∠BCD 和∠ACFB. ∠ACD 和∠ACFC. ∠ACB 和∠DCBD. ∠BCF 和∠ACF【答案】A【解析】【分析】 因为是直角三角板,所以∠ACB 和∠DCF 都等于90°,所以利用角的和差把选项中的角能转化成∠ACB+∠DCF 即为正确答案.【详解】∵∠BCD+∠ACF=∠BCD+∠ACD+∠DCF=∠ACB+∠DCF=90°+90°=180°, ∴选A【点睛】本题中出现一副三角板,我们需注意到三角板中的直角,又提出问题为互补,所以我们应将相应的角,利用角的和差等量变化成直角,若能即为正确答案.14.摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟,若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟后,3号车厢才会运行到最高点?( )A. 14分钟B. 20分钟C. 15分钟D. 452分钟 【答案】C【解析】【分析】 先求出从21号旋转到3号旋转的角度占圆大小比例,再根据旋转一圈花费30分钟解答即可. 【详解】解:36362133015-+⨯=(分钟). 所以经过20分钟后,3号车厢才会运行到最高点.故选C .【点睛】本题主要考查了生活中的旋转现象,理清题意,得出从21号旋转到3号旋转的角度占圆大小比例是解答本题的关键.二、填空题15.、两地之间弯曲的公路改直,能够缩短路程,其根据的道理是________.【答案】两点之间,线段最短【解析】【分析】根据线段的性质进行解答即可.【详解】解:、两地之间弯曲的公路改直,能够缩短路程,其根据的道理是两点之间,线段最短.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.16.已知线段21AB =,9BC =, , ,三点在同一直线上,那么AC 等于________.【答案】30或12【解析】【分析】由于点C 的位置不能确定,故应分点C 在A 、B 之间与点C 在A 、B 外两种进行讨论.【详解】解:当如图1所示时,∵AB=21cm ,BC=9cm ,∴AC=AB-BC=21-9=12cm ;当如图2所示时,∵AB=21cm ,BC=9cm ,∴AC=AB+BC=21+9=30cm .∴AC 的长为30cm 或12cm .【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.17.已知、互为倒数,、互为相反数,则20192()2020ab c d -+=________. 【答案】2【解析】【分析】 根据相反数和倒数的定义及绝对值的意义可得:1ab =,0c d +=,然后代入原式即可.【详解】解:由题意得:1ab =,0c d +=, ∴()201920192210220202020ab c d -+=⨯-⨯= 故答案为2.【点睛】本题主要考考查了相反数和倒数的定义,根据题意得出1ab =,0c d +=,然后代入是解答此题的关键.18.观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)猜想并写出:1(1)n n =+________; (2)直接写出下列各式的计算结果:111112233420192020++++=⨯⨯⨯⨯________; (3)探究并计算: 111113355720172019++++=⨯⨯⨯⨯________. 【答案】 (1).111n n -+ (2). 20192020(3). 10092019 【解析】【分析】 (1)根据已知等式做出猜想,写出即可; (2)原式利用得出的规律变形,计算即可得到结果;(3)仿照(2)将:111113355720172019++++⨯⨯⨯⨯转换成11111111123355720172019⎛⎫⨯-+-+-++- ⎪⎝⎭,即可算出结果. 【详解】解:(1)依题意得:()11111n n n n =-++; (2)111112233420192020++++⨯⨯⨯⨯ 111111112233420192020-+-+-++-= 12019120202020=-= (3)111113355720172019++++⨯⨯⨯⨯ 11111111123355720172019⎛⎫=⨯-+-+-++- ⎪⎝⎭ 11122019⎛⎫=⨯- ⎪⎝⎭10092019= 【点睛】本题考查了数字的变换规律问题,解题的关键是能够总结出规律等式()11111n n n n =-++并应用于求和运算. 三、解答题19.计算(1)10(9)(4)5--+-- (2)1138842⎛⎫-⨯+- ⎪⎝⎭(3)3132(1)223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭ (4)41324812624824826555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)10;(2)9;(3)112-;(4)24800. 【解析】【分析】 (1)利用有理数的加减法则计算即可;(2)利用乘法分配律计算;(3)先算乘方,再算乘除,最后算加减;(4)利用乘法分配律的逆运算计算即可.【详解】解:(1)()()10945--+--()()10945=++-+-10=(2)1138842⎛⎫-⨯+- ⎪⎝⎭ ()()()113888842=-⨯+-⨯--⨯ ()()()1212=-+---9=(3)()31321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭()1112=-+- 32=- (4)41324812624824826555⎛⎫⨯+⨯--⨯ ⎪⎝⎭41324812626555⎡⎤⎛⎫=⨯+-- ⎪⎢⎥⎝⎭⎣⎦ 248100=⨯24800=【点睛】本题考查了有理数的混合计算,熟悉运算法则是解题的关键.20.如图,网格图中每一小格的边长为1个单位长度.请分别画出线段AB 绕中点和三角形DEF 绕点,按顺时针方向旋转90︒后的图形线段A B '',三角形DE F ''.【答案】作图见解析.【解析】【分析】根据题意,旋转90︒后作出''A B AB ⊥,'F D FD ⊥,在DF 上,连接后得出三角形''F DE 即可.【详解】解:依题意,作图如下:【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 21.在一条不完整的数轴上从左到右有点, , ,其中2AB =,1BC =,如图所示,设点, ,所对应数的和是p.(1)若以为原点,写出点,所对应的数,并计算p 的值;若以为原点,p 又是多少?(2)若原点在图中数轴上点的右边,且38CO =,求p .【答案】(1)-1;(2)-118【解析】【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=38,可得C 表示-38,根据点离原点的距离可得,据此可得p 的值.【详解】(1)以为原点,则C 表示1,A 表示-2,∴2011p =-++=-;以为原点,∴()()12104p =--+-+=-,(2)()()()381238138118p =---+--+-=-.【点睛】本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.22.如图,点为线段AD 上一点,点为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段?(2)求AD 的长.(3)若点在直线AD 上,且3cm EA =,求BE 的长.【答案】(1)图中共有6条线段;(2)AD=10cm ;(3)BE=11cm 或5cm.【解析】【分析】(1)根据线段的定义找出线段即可;(2)先根据点B 为CD 的中点,BD=2cm 求出线段CD 的长,再根据AD AC CD =+即可得出结论;(3)由于不知道E 点的位置,故应分E 在点A 的左边与E 在点A 的右边两种情况进行解答.【详解】解:(1)图中共有6条线段,分别为:AC ,AB ,AD ,CB ,CD ,BD ;(2)因为点为CD 的中点,2cm BD =,所以24cm CD BD ==,又因为6cm AC =,所以10cm AD AC CD =+=(3)当在点的左侧时,则BE EA CA BC =++,因为点为CD 中点,所以2cm BC BD ==,因为3cm EA =,6cm CA =,所以23611cm BE =++=当在点的右侧时,则6235cm BE AB AE AC BC AE =-=+-=+-=【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 23.黄桃是我县南楼乡东里双村的一大特产,现有20筐黄桃,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差值 3- 1.5- 0 1 2.5(1)20筐黄桃中,与标准质量差值为千克的有________筐,最重的一筐重________千克,最轻的一筐重________千克,最重的一筐比最轻的一筐重________千克;(2)与标准重量比较,20筐黄桃总计超过多少千克?(3)若黄桃每千克售价3元,则出售这20筐黄桃可卖多少元?【答案】(1)4,27.5,22,5.5;(2)总计超出8千克;(3)共收入1524元.【解析】【分析】(1)根据图表数据,根据有理数的大小,确定最重的和最轻的质量,相减即可得;(2)根据图表数据列出算式,然后计算即可得解;(3)求出20框猕猴桃的总质量,乘以3即可得.【详解】(1)根据图表可得:与标准质量差值为千克的有4筐,最重的一筐重量为:25+2.5=27.5(千克),最轻的一筐重量为:25-3=22(千克),最重的一筐比最轻的一筐重27.5-22=5.5(千克)(2)依题意得:()()3124 1.5212 2.588-⨯+-⨯+-⨯++⨯=千克答:总计超出8千克(3)依题意得:()3252081524⨯⨯+=元答:共收入1524元.【点睛】此题主要考查了正负数的意义,有理数加法的应用,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 24.下列各小题中,都有OE 平分∠AOC ,OF 平分∠BOC .(1)如图①,若点A 、O 、B 在一条直线上,∠EOF = ;(2)如图②,若点A 、O 、B 不在一条直线上,∠AOB =140°,则∠EOF = ;(3)由以上两个问题发现:当∠AOC 在∠BOC 的外部时,∠EOF 与∠AOB 的数量关系是∠EOF = ;(4)如图③,若OA 在∠BOC 的内部,∠AOB 和∠EOF 还存在上述的数量关系吗?请简单说明理由;【答案】(1)90°;(2)70°;(3)12∠AOB;(4)存在.【解析】试题分析:(1)根据OE平分∠AOC,OF平分∠BOC,点A、O、B在一条直线上,即可得到∠EOF的度数;(2)根据OE平分∠AOC,OF平分∠BOC,∠AOB=140°,即可得到∠EOF的度数;(3)根据(2)中的方法,即可得到∠EOF与∠AOB的数量关系;(4)若OA在∠BOC的内部,∠AOB和∠EOF还存在上述的数量关系,方法同(3).试题解析:解:(1)∵OE平分∠AOC,OF平分∠BOC,∴∠COF=12∠COB;∠COE=12∠AOC,又∵∠AOB=180°,∴∠EOF=12∠COB+12∠AOC=12(∠BOC+∠AOC)=12∠AOB=90°;(2)∵OE平分∠AOC,OF平分∠BOC,∴∠COF=12∠COB;∠COE=12∠AOC,又∵∠AOB=140°,∴∠EOF=12∠COB+12∠AOC=12(∠BOC+∠AOC)=12∠AOB=70°;(3)∵OE平分∠AOC,OF平分∠BOC,∴∠COF=12∠COB;∠COE=12∠AOC,∴∠EOF=12∠COB+12∠AOC=12(∠BOC+∠AOC)=12∠AOB;(4)存在.∵OF平分∠BOC,OE平分∠AOC,∴∠COF=12∠COB;∠COE=12∠AOC;∴∠EOF=12∠COB﹣12∠AOC=12(∠BOC﹣∠AOC)=12∠AOB.点睛:本题主要考查了角的计算以及角平分线的定义的运用,解决问题的关键是依据角的和差关系进行计算.。
最新人教版七年级上册数学《期中考试试题》(含答案解析)

期 中 测 试 卷一、选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. ﹣3的相反数是( ) A. 13-B.13C. 3-D. 32.如果收入80元记作+80元,那么支出20元记作( ) A. +20元B. -20元C. +100元D. -100元3.如图,在数轴上点A 表示的数可能是( )A. 1.5B. -1.5C. -2.4D. 2.44.下列各组数中,互为倒数的是( ) A. -2 和12-B. -1和1C. 23-和1.5 D. 0和05.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A. 2.748×102B. 274.8×104C. 2.748×106D. 0.2748×1076.把()()()()5315+-+--+-写成省略括号的和的形式是( ) . A .5315--+- B. 5315-+- C. 5315++-D. 5315---7.将有理数-22,(-2) 3,2--,-12按从小到大的顺序排列为( ) A. (-2) 3<-22<2--<-12B. -12<2--<-22<(-2) 3C. 2--<-12<-22<(-2) 3 D. -22<(-2)3<-12<2--8.对于23-与()23-,下列说法正确的是( ). A. 底数不同,结果不同 B. 底数不同,结果相同 C. 底数相同,结果不同D. 底数相同,结果相同9.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是( ) A. 5xB. 305+xC. 300+5xD. 300+15x 10.下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0②12ab - 是单项式 ③ xyz -的系数为-1,次数是1④ π是单项式,而2不是单项式 A. 0个B. 1个C. 2个D. 3个11.下列说法正确的个数有( ).①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、1-;④有理数不是整数就是分数;⑤有理数不是正数就是负数. A. 1个B. 2个C. 3个D. 4个12.下列说法错误的个数是( )①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和②7x 和75x y + 都是整式 ③ 2143a b + 和2326x y -+都是多项式④ 32429x y -+ 是三次三项式 A. 3个B. 2个C. 1个D. 0个13.若a <c <0<b ,则abc 与0的大小关系是( ) A. abc <0 B. abc=0 C. abc >0D. 无法确定14.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中规律,猜想20193的末位数字是( ) A. 3B. 9C. 7D. 115.某月的月历上连续三天的日期之和不可能是 ( ) A. 87B. 52C. 18D. 916.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种规律下去,第n 次移动到点A n ,如果点A n ,与原点的距离不少于20,那么n 的最小值是( )A. 11B. 12C. 13D. 20二、填空题(本大题有4个小题,共15分.17-19各3分,20题有两个空,每个空3分)17.如果a 与1互为相反数,则|a +2|=_________. 18.“比 a的123多 4”用代数式表示为_____ 19.若有理数m 、n 满足22(1)0m n ++-=,则2019()m n +=______. 20.阅读材料:如果a b =N (a >0,且a ≠1),那么数b 叫做以a 为底N 的对数,记作b =log a N .例如23=8,则log 28=3.根据材料填空:log 39=_____, log 464=_____.三、解答题(本大题有6个小题,共63分)21.将下列各数分别填在相应的集合里.4-,5,0.7-,134,0,13-,1251-,100,21,3. 正数集合{ ⋯⋯} 负数集合{ ⋯⋯} 整数集合{ ⋯⋯} 分数集合{ ⋯⋯} 22.计算(1)﹣28﹣(﹣19)+(﹣24); (2) 4.3-﹣ 1.7-﹣6.3;(3)()(36)61752119+-⨯-; (4)1111(1)()2323-+-⨯-÷--.23.定义一种新运算“※”,即m ※n=(m +2)×3-n ,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗? 24.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点1与−1表示的点重合,则−2表示的点与_____表示的点重合; 操作二:(2)折叠纸面,使−1表示的点与3表示的点重合,那么5表示的点与_____表示的点重合,此时若数轴上A 、B 两点之间距离为9,(A 在B 的左侧),且A 、B 两点经折叠后重合,那么A 、B 两点表示的数分别是______、______; 操作三:(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,那么a 的值是____.25.一自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超出部分每辆另加15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少? 26.从2开始,连续的偶数相加,它们和的情况如下表: (1)若n=8时,则 S 的值为_____________.(2)根据表中的规律猜想:用n 的式子表示S 的公式为:S=2+4+6+8+…+2n=____________. 加数的个数nS12 = 1×2(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.答案与解析一、选择题(本大题有16个小题,共42分.1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. ﹣3的相反数是()A.13- B.13C. 3-D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.如果收入80元记作+80元,那么支出20元记作( )A. +20元B. -20元C. +100元D. -100元【答案】B【解析】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.考点:具有相反意义的量.3.如图,在数轴上点A表示的数可能是( )A. 1.5B. -1.5C. -2.4D. 2.4【答案】C【解析】【分析】根据点在数轴上的表示方法即可得出答案.【详解】由图可知,点A在-2和-3之间,故答案选择C.【点睛】本题考查的是点在数轴上的表示,比较简单,需要熟练掌握数轴的性质. 4.下列各组数中,互为倒数的是( ) A. -2 和12-B. -1和1C. 23-和1.5 D. 0和0【答案】A 【解析】 【分析】分别计算各选项中两个数的乘积,根据倒数的概念,如果积为1,那么这两个数互为倒数. 【详解】A. -2×(12-)=1,选项正确; B. −1×1=−1,选项错误; C. 23-×1.5=-1,选项错误; D. 0×0=0,选项错误. 故选A.【点睛】此题考查倒数,解题关键在于掌握其性质.5.十年来,我国知识产权战略实施取得显著成就,全国著作权登记量已达到274.8万件.数据274.8万用科学记数法表示为( ) A. 2.748×102 B. 274.8×104C. 2.748×106D. 0.2748×107【答案】C 【解析】 【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数据274.8万用科学记数法表示为274.8×104=2.748×106. 故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.把()()()()5315+-+--+-写成省略括号的和的形式是( ) . A. 5315--+-B. 5315-+-C. 5315++-D. 5315---【答案】B 【解析】 【分析】先把加减法统一成加法,再省略括号和加号.【详解】解:原式=(+5)+(-3)+(+1)+(-5)=5-3+1-5. 故选B .【点睛】本题考查有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.7.将有理数-22,(-2) 3,2--,-12按从小到大的顺序排列为( ) A. (-2) 3<-22<2--<-12B. -12<2--<-22<(-2) 3C. 2--<-12<-22<(-2) 3 D. -22<(-2)3<-12<2--【答案】A 【解析】试题分析:负数之间的大小比较,绝对值大的数反而小.=-4;;-2.考点:数的大小比较8.对于23-与()23-,下列说法正确的是( ). A. 底数不同,结果不同 B. 底数不同,结果相同 C. 底数相同,结果不同 D. 底数相同,结果相同 【答案】A 【解析】 【分析】n 个相同的因数a 相乘,记作n a ,其中底数是a ,【详解】解:23-的底数为3,()23-的底数为-3,239=--,()239=-,故23-与()23-底数不同,结果不同, 故选A.【点睛】此题考查的是乘方的定义,n 个相同的因数a 相乘,记作n a ,这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.在乘方运算n a 中,a 叫做底数,n 叫做a 的幂的指数,简称指数.9.某公司在销售一种智能机器人时发现,每月可售出300个,当每个降价1元时,可多售出5个,如果每个降价x 元,那么每月可售出机器人的个数是( ) A. 5x B. 305+xC. 300+5xD. 300+15x 【答案】C 【解析】 【分析】降价x 元就可多售出5x 个,再加上300即为所求.【详解】由题意可得,如果每个降价x 元,那么每月可售出机器人的个数是:300+5x ,故选C . 【点睛】本题考查如何列代数式,能够读懂题意是解题关键. 10.下列说法正确的个数是( ) ①单项式a 的系数为0,次数为0②12ab - 是单项式 ③ xyz -的系数为-1,次数是1④ π是单项式,而2不是单项式 A. 0个 B. 1个C. 2个D. 3个【答案】A 【解析】 【分析】直接根据单项式、单项式系数及次数的定义进行解答即可. 【详解】解:①单项式a 的系数为1,次数为1,故原说法错误;②12ab - 多项式,故原说法错误; ③ xyz -的系数为-1,次数是3,故原说法错误;④ π是单项式,2也是单项式,故原说法错误; 正确的个数是0,故选A.【点睛】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键. 11.下列说法正确的个数有( ).①倒数等于本身的数只有1;②相反数等于本身的数只有0;③平方等于本身的数只有0、1、1-;④有理数不是整数就是分数;⑤有理数不是正数就是负数. A. 1个 B. 2个 C. 3个 D. 4个【答案】B 【解析】分析:根据倒数、相反数、平方的定义及性质和有理数的分类进行判断即可. 详解:①的说法是错误的,其中-1的倒数也是等于它本身的; ②相反数等于本身的数只有0,故②正确; ③平方等于本身的数是0和1,故③错误; ④有理数不是整数就是分数,④正确; ⑤有理数分为正数就是负数和0,⑤错误. 所以正确的结论为②④两个, ①、③、⑤错误. 故选B.点睛:本题主要考查了倒数、相反数、平方的定义及性质和有理数的分类等相关知识,熟记概念与性质是解题的关键..12.下列说法错误的个数是( )①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和②7x 和75x y + 都是整式 ③ 2143a b + 和2326x y -+都是多项式④ 32429x y -+ 是三次三项式 A. 3个 B. 2个C. 1个D. 0个【答案】C 【解析】 【分析】根据单项式、多项式、整式以及多项式次数和项数的定义求解.【详解】解:①多项式 23217x xy -+ 是单项式23x ,2xy - ,17 的和,正确; ②7x是分式,原说法错误; ③ 2143a b + 和2326x y -+都是多项式,正确; ④ 32429x y -+ 是三次三项式,正确,错误的有1个,故选C.【点睛】本题主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和.13.若a <c <0<b ,则abc 与0的大小关系是( )A. abc <0B. abc=0C. abc >0D. 无法确定 【答案】C【解析】【详解】∵a <c <0<b ,∴abc >0.故选C .14.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,732187=,836561=……根据上述算式中的规律,猜想20193的末位数字是( )A. 3B. 9C. 7D. 1【答案】C【解析】【分析】根据已知的等式找到末位数字的规律,再求出20193的末位数字即可.【详解】∵133=,末位数字为3,239=,末位数字为9,3=,末位数字为7,3274=,末位数字为1,3815=,末位数字为3,324363729=,末位数字为9,7=,末位数字为7,321878=,末位数字1,36561故每4次一循环,∵2019÷4=504 (3)3的末位数字为7∴2019故选C【点睛】此题主要考查规律探索,解题的关键是根据已知条件找到规律进行求解.15.某月的月历上连续三天的日期之和不可能是( )A. 87B. 52C. 18D. 9【答案】B【解析】【分析】根据题意设中间一天为x日,则前一天的日期为x-1,后一天的日期为x+1日,然后列出代数式对选项进行分析,即可求出答案.【详解】设中间一天为x日,则前一天日期为:x-1,后一天的日期为x+1日,根据题意得:连续三天的日期之和是:(x-1)+x+(x+1)=3x,所以连续三天的日期之和是3的倍数,52不是3的倍数,故选B.【点睛】本题考查列代数式,解题关键是要读懂题目的意思,根据题目给出的条件,列出代数式.16.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种规律下去,第n次移动到点A n,如果点A n,与原点的距离不少于20,那么n的最小值是()A. 11B. 12C. 13D. 20【答案】C【解析】【分析】当n为奇数的点在点A的左边,各点所表示的数依次减少3,当n为偶数的点在点A的右侧,各点所表示的数依次增加3.【详解】根据题目已知条件,A1表示的数,1﹣3=﹣2;A2表示的数为﹣2+6=4;A3表示的数为4﹣9=﹣5;A4表示的数为﹣5+12=7;A5表示的数为7﹣15=﹣8;A6表示的数为7+3=10,A7表示的数为﹣8﹣3=﹣11,A8表示的数为10+3=13,A9表示的数为﹣11﹣3=﹣14,A10表示的数为13+3=16,A11表示的数为﹣14﹣3=﹣17,A12表示的数为16+3=19,A13表示的数为﹣17﹣3=﹣20.所以点A n与原点的距离不小于20,那么n的最小值是13.故选C.【点睛】本题考查了数字变化的规律,根据数轴发现题目规律,按照规律解答即可.二、填空题(本大题有4个小题,共15分.17-19各3分,20题有两个空,每个空3分)17.如果a与1互为相反数,则|a+2|=_________.【答案】1【解析】∵a与1互为相反数,∴1a=-,∴21211a+=-+==.18.“比a 的123多4”用代数式表示为_____【答案】54 3a+【解析】【分析】根据题意即可列出代数式.【详解】比 a 的123多 4”用代数式表示为543a + 故填:543a +. 【点睛】此题主要考查列代数式,解题的关键是根据题意写出代数式.19.若有理数m 、n 满足22(1)0m n ++-=,则2019()m n +=______.【答案】-1【解析】【分析】根据绝对值和平方的非负性求出m 和n 的值,代入后面的式子计算即可得出答案.【详解】根据题意可得:m+2=0,n-1=0解得:m=-2,n=1∴()()20192019211m n +=-+=-故答案为-1.【点睛】本题考查的是绝对值的非负性,难度不大,一个数的绝对值一定是一个大于等于0的数.20.阅读材料:如果a b =N (a >0,且a ≠1),那么数b 叫做以a 为底N 的对数,记作b =log a N .例如23=8,则log 28=3.根据材料填空:log 39=_____, log 464=_____.【答案】 (1). 2 (2). 3【解析】【分析】根据对数的定义即可得出答案.【详解】∵239=∴392log =∵3464=∴4643log =故答案为2,3.【点睛】本题考查的是新定义,认真审题,弄懂对数的定义是解决本题的关键.三、解答题(本大题有6个小题,共63分)21.将下列各数分别填在相应的集合里.4-,5,0.7-,134,0,13-,1251-,100,21,3. 正数集合{ ⋯⋯} 负数集合{ ⋯⋯} 整数集合{ ⋯⋯} 分数集合{ ⋯⋯} 【答案】正数集合{5,134,100,21,3 ⋯⋯} 负数集合{4-,0.7-,13-,1251- , ⋯⋯} 整数集合{4-,5,0,100,21,3 ⋯⋯} 分数集合{0.7-,134,13-,1251- , ⋯⋯} 【解析】【分析】根据整数的分类即可进行求解.【详解】正数集合{5,134,100,21,3 ⋯⋯} 负数集合{4-,0.7-,13-,1251- , ⋯⋯} 整数集合{4-,5,0,100,21,3 ⋯⋯} 分数集合{0.7-,134,13-,1251- , ⋯⋯} 【点睛】考查了有理数,认真掌握正数、负数、整数、分数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.22.计算(1)﹣28﹣(﹣19)+(﹣24);(2) 4.3-﹣ 1.7-﹣6.3;(3)()(36)61752119+-⨯-; (4)1111(1)()2323-+-⨯-÷--.【答案】(1)-33;(2)-3.7;(3)-25;(4)1 22 -.【解析】【分析】(1)根据有理数的加减运算法则计算即可得出答案;(2)先去绝对值,再根据有理数的加减运算法则计算即可得出答案;(3)根据乘法分配律去括号,再利用有理数的混合运算法则计算即可得出答案;(4)先算括号和绝对值,再利用有理数的混合运算法则计算即可得出答案.【详解】解:(1)原式=281924-+-=33-(2)原式=4.3 1.7 6.3--= 3.7-(3)原式=283033--+=25-(4)原式=11326-+⨯-=1 22 -【点睛】本题考查的是有理数的混合运算,比较简单,需要熟练掌握有理数的混合运算法则.23.定义一种新运算“※”,即m※n=(m+2)×3-n,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗?【答案】(1)27;(2)不相等,理由见解析【解析】【分析】(1)利用题中的新定义计算即可得到结果;(2)分别计算出两式的值,即可做出判断.【详解】(1)6※(−3)=(6+2)×3−(−3)=24+3=27;(2)(−3) ※6=(−3+2)×3−6=−3−6=−9,所以6※(−3)与(−3) ※6值不相等.【点睛】此题考查有理数的混合运算,解题关键在于利用新定义计算法则进行计算.24.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的点1与−1表示的点重合,则−2表示的点与_____表示的点重合;操作二:(2)折叠纸面,使−1表示的点与3表示的点重合,那么5表示的点与_____表示的点重合,此时若数轴上A 、B 两点之间距离为9,(A 在B 的左侧),且A 、B 两点经折叠后重合,那么A 、B 两点表示的数分别是______、______;操作三:(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,那么a 的值是____.【答案】(1)2;(2)-3,-3.5,5.5;(3)±2.【解析】【分析】(1)先求出折痕点,再根据到折痕点的距离相等计算即可得出答案;(2)先求出折痕点,再根据到折痕点的距离相等计算即可答案;先求出点A 和点B 到折痕点的距离,再根据距离公式计算即可得出答案;(3)分两种情况进行讨论:①往左移动,②往右移动,再利用相反数的性质计算即可得出答案.【详解】解:(1)∵折叠纸面,点1和点-1表示的点重合∴折痕点为0∴-2表示的点与2表示的点重合(2)∵-1表示的点与3表示的点重合∴折痕点为1∴5表示的点与-3表示的点重合∵AB 之间的距离为9∴AB 两点与中心点的距离为9÷2=4.5∴点A 表示的点为-3.5,点B 表示的点为5.5(3)①若点A 往左移动4个单位长度则可得:a-4+a=0解得:a=2②若点A 往右移动4个单位长度则可得:a+4+a=0解得:a=-2综上所述a=±2【点睛】本题考查的是数轴上两点间的距离,难度适中,需要理解并记忆两点之间的距离公式.25.一自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产记为正,减产记为负(1)根据记录的数据可知该厂星期四生产自行车多少辆?(2)根据记录的数据可知该厂本周实际生产自行车多少辆?(3)产量最多的一天比产量最少的一天多生产自行车多少辆?(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超出部分每辆另加15元,少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【答案】(1)213;(2)1409;(3)26;(4)85215;【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据有理数的加法,可得答案;(4)根据基本工资加奖金,可得答案.【详解】(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2) 根据题意5−2−4+13−10+16−9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216−190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=(7×200+9)×60+9×15=85215元,故该厂工人这一周的工资总额是85215元.【点睛】此题考查正数和负数,解题关键在于根据题意列出式子进行计算.26.从2开始,连续的偶数相加,它们和的情况如下表:(1)若n=8时,则S的值为_____________.(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=____________.(3)根据上题的规律计算2+4+6+8+10+…+2018+2020的值.【答案】(1)72.(2)n(n+1).(3)1021110.【解析】【分析】设加数的个数为n时,它们的和为S n(n为正整数),根据给定的部分S n的值找出变化规律“S n=2+4+6+…+2n=n(n+1)”.(1)依照规律“S n=2+4+6+…+2n=n(n+1)”代入n=8即可得出结论;(2)依照规律“S n=2+4+6+…+2n=n(n+1)”即可得出结论;(3)依照规律“S n=2+4+6+…+2n=n(n+1)”代入n=1010即可得出结论.【详解】解:设加数的个数为n时,它们的和为S n(n为正整数),观察,发现规律:S1=2=1×2,S2=2+4=2×3,S3=2+4+6=3×4,S4=2+4+6+8=4×5,…,∴S n=2+4+6+…+2n=n(n+1).(1)当n=8时,S8=8×9=72.故答案为72.(2)S n=2+4+6+…+2n=n(n+1).故答案为n(n+1).(3)∵2+4+6+8+10+…+2018+2020中有1010个数,∴S1010=2+4+6+8+10+…+2018+2020=1010×1011=1021110.【点睛】本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“S n=2+4+6+…+2n=n(n +1)”.本题属于基础题,难度不大,根据给定的部分S n的值,找出变化规律是关键.。
人教版七年级上学期期中数学试卷(含答案)

人教版七年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.63.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×1094.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.5.(3分)计算:8×5的结果是()A.8B.25C.40D.416.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣88.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是210.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.12.(2分)化简分数:﹣=.13.(2分)计算:(+5)+(﹣6)+(﹣4)=.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回元.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日柚子销售超过或不足计划量情况(单位:千克)+3﹣5﹣2+11﹣7+13+5(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.(参考答案与详解)一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【解答】解:﹣2022的相反数是2022,故选:D.2.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.3.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×109【解答】解:110425000=1.10425×108.故选:C.4.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.【解答】解:A选项的数轴1,2的位置不对,故不符合题意;B选项的数轴有单位长度,有正方向,有原点,故符合题意;C选项的数轴正数和负数的位置反了,不符合题意;D选项的数轴单位长度不一致,故不符合题意;故选:B.5.(3分)计算:8×5的结果是()A.8B.25C.40D.41【解答】解:8×5=×5=41.故选:D.6.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃【解答】解:﹣2+5=3(℃),即该地15:00的气温是3℃.故选:B.7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣8【解答】解:积最大的是(﹣4)×(﹣3)=12,故选:B.8.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b【解答】解:由题意可知,a<b<0,∴a<b<﹣b<﹣a.故选:A.9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是2【解答】解:A、﹣15x2y的系数是﹣15,次数是3,故A不符合题意;B、多项式﹣x3﹣2x2y2+3y2有3项,次数是4,正确,故B符合题意;C、单项式x的系数是1,次数是1,故C不符合题意;D、多项式4x2﹣4x2y+y2的次数是3,故D不符合题意,故选:B.10.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元【解答】解:的意义是将原价打6折之后,再降低8元.故选:A.二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.【解答】解:有理数的倒数是.故答案为:.12.(2分)化简分数:﹣=﹣.【解答】解:﹣=﹣=﹣,故答案为:﹣.13.(2分)计算:(+5)+(﹣6)+(﹣4)=﹣5.【解答】解:(+5)+(﹣6)+(﹣4)=5+[(﹣6)+(﹣4)]=5+(﹣10)=﹣5.故答案为:﹣5.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回3225元.【解答】解:3000+3000×3.75%×2=3000+225=3225(元),∴到期时他取回3225元,故答案为:3225.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为2n+1.【解答】解:搭1个三角形需要火柴棒的根数为:3,搭2个三角形需要火柴棒的根数为:5=3+2=3+2×1,搭3个三角形需要火柴棒的根数为:7=3+2+2=3+2×2,…搭n个三角形需要火柴棒的根数为:3+2(n﹣1)=2n+1,故答案为:2n+1.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).【解答】解:原式=[(﹣0.5)+(﹣5.5)]+(3.25+2.75)=﹣6+6=0.17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.【解答】解:﹣22×[5﹣(﹣1)2022]+|﹣1+5|=﹣4×(5﹣1)+4=﹣4×4+4=﹣16+4=﹣12.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.【解答】解:原式=x2y+4xy2﹣6x2y﹣3xy2+6x2y﹣3=(1﹣6+6)x2y+(4﹣3)xy2﹣3=x2y+xy2﹣3,当x=﹣2,y=1时,原式=(﹣2)2×1+(﹣2)×12﹣3=4×1﹣2×1﹣3=4﹣2﹣3=﹣1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?【解答】解:(1)10﹣9+8﹣6+7.5﹣6+8﹣7=10+8+7.5+8﹣9﹣6﹣6﹣7=33.5﹣28=5.5(cm),答:停止时所在位置距A点5.5cm,在A点的右方;(2)10+9+8+6+7.5+6+8+7=61.5(cm),61.5÷2=30.75(秒).答:共用30.75秒.20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日+3﹣5﹣2+11﹣7+13+5柚子销售超过或不足计划量情况(单位:千克)(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?【解答】解:(1)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(2)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?Array【解答】解:(1)这套房子的总面积为:3x+xy+6y+3x=(6x+6y+xy)m2,答:这套房子的总面积为(5x+6y+xy)m2;(2)当x=5,y=8时,房子的总面积为:30+48+40=118(m2),0.5×118=59(万元),答:购买这套房子共需要59万元.22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5,∴A﹣3B=(3x2﹣x+2y﹣4xy)﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵+|xy+1|=0,∴x+y﹣=0,xy+1=0,∴x+y=,xy=﹣1,∴A﹣3B=5x+5y﹣7xy+15=5(x+y)﹣7xy+15=5×﹣7×(﹣1)+15=4+7+15=26.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.【解答】解:(1)∵|x﹣3|=|x+1|,∴x=(﹣1+3)=1;(2)由数轴得:|x﹣3|+|x+1|≤4,∴式子|x﹣3|+|x+1|的最小值为4.。
人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。
七年级上册数学《期中考试试题》(带答案解析)

A.4B.3C.2D.1
【答案】C
【解析】
【分析】
分别计算后进行判断即可.
【详解】解: , , , ,负数有2个,故选C.
3.下列说法中正确的是( )
A.没有最小的有理数B.0既是正数也是负数
C.整数只包括正整数和负整数D.﹣1是最大的负有理数
C. ,故错误;
D. ,故错误.
故选B.
【点睛】本题主要考查了有理数与实数的运算,熟练掌握运算法则是解题的关键.
5.自行车环城赛某一赛段约12900 m,把12900 m用科学记数法可以记为()
A. B. C. D.
【答案】C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
14.比较大小 ____ (填” “或” “).
【答案】
【解析】
【分析】
求出两个负数的绝对值,根据绝对值大的反而小比较即可.
【详解】解:∵ , ,
∴ ,
∴ ,
故答案为:<.
【点睛】本题考查了绝对值和有理数的大小比较,注意:有理数的大小比较法则是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
【答案】B
【Байду номын сангаас析】
试题分析:有理数的计算,∵c<b<0<a,则abc>0,a-b>0, > ,c-a<0
考点:有理数 计算
二、填空题(每小题3分,共18分)
【人教版】七年级上册数学《期中考试试卷》及答案解析

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷一、选择题(每小题3分,共30分)1.温度由3C ︒-上升6C ︒是( )A. 3C ︒B. 9C -︒C. 3C -︒D. 9C ︒2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走2米记为+2米,那么向西走5米记为( )A. +5米B. +2米C. -5米D. -2米3.若一个整数21500…0用科学记数法表示为102.1510⨯,则原数中“0”的个数为( )A. 7B. 8C. 9D. 104.有一个两位数,它的十位数字是x ,个位数字是y ,则这个两位数为( )A. xyB. +x yC. 10x y +D. 10(x y +)5.在如图所示的数轴上,表示-1.25的点是( )A. 点EB. 点FC. 点GD. 点H6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )A. B. C. D.7.下列说法中,正确有( )①圆柱、圆锥的底面都是圆;②棱柱的底面是四边形;③棱柱的侧面一定是长方形;④长方体一定是柱体.A. 1个B. 2个C. 3个D. 4个8.从3,2,-1,-4,-5中任取两个数相乘,若所得积中最大值是a ,最小值是b ,则a b的值为( )A. 203B. 13C. 12-D. 43- 9.下列关于多项式2227m n mn --的说法中,正确的是( )A. 最高次项是2m nB. 二次项系数是2C. 常项数是7D. 次数和项数都是3 10.如图是一个长方形的铝合金窗框,其长为am ,高为bm ,①②③处装有同样大小的塑钢玻璃,当第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,用含a 与b 的式子表示这时窗户的通风面积( )A . 21718abm B. 21318abm C2518abm D. 2118abm 二、填空题(每小题3分,共15分)11.在7,32-,0,3,-2,17中,正数有__________个. 12.一个正方体的每个面都写有一个汉字,其表面展开图如图所示,则在该正方体中,若“生”在正方体的前面,则这个正方体后面的汉字是“__________”.13.在-1,0,|2|--,5,(4)-+这5个数中任意两个数相减,所得的差中最大值是__________.14.如果2|2|(6)0x y -++=,则x y -=__________. 15.在数轴上,点P 表示的数是a ,点P'表示的数是11a-,我们称点P'是点P 的“相关点”.已知数轴上点1A 的相关点为2A ,点2A 的相关点为3A ,点3A 的相关点为4A ……这样依次得到点1A ,2A ,3A ,4A ,……,n A .若点1A 在数轴上表示的数是12,则点2034A 在数轴上表示的数是__________. 三、解答题(本大题共8个小题,满分75分)16.(1)计算:13710 3.68 6.444+-+--. (2)计算:21224(2)6323⎛⎫-÷---⨯-⎪⎝⎭. 17.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.求2082a b cd m +-+的值. 18.如果3a b x y -和2425a y x -是同类项,先化简1323(3)2ab a ab b a ⎛⎫-++-+ ⎪⎝⎭,再求值. 19.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少? 20.用若干大小相同的小立方体块搭一个几何体,使得从正面和上面看到这个几何体的形状图如图所示,其中从上面看到的形状图的小正方形中的字母表示该位置小立方体的个数.请解答:(1)c 表示几?b 的最大值是多少?(2)这个几何体最少是用多少个小立方体搭成的?最多呢?21.数学课上老师出了一道计算题:1234567891333333333+++++++++,老师在教室里巡视了一圈,发现同学都做不出来,于是老师给出了下面的一种解法:解:令1234567891333333333S =+++++++++,①234567891033333333333S =+++++++++,②②-①,得10231S =-. 所以10312S -=. (1)仿照以上方法计算:1234567891913333333333+++++++++++.(写出计算过程,结果用幂表示) (2)根据以上计算方法请猜想下列各式的计算结果(结果用幂表示):①123201913333+++++=________. ②123201917777+++++=________.22.(1)如图(1),在某年某月的日历中,任意圈出一竖列相邻的三个数,设中间的一个数为a ,则用含a 的代数式表示这三个数分别是__________;(按从小到大的顺序写在横线上)(2)现将连续自然数1~2007按图(2)的方式排成一个长方形阵形然后用一个正方形框出16个数. ①图中框出的这16个数的和是__________;②在图(2)中,要使一个正方形框出的16个数的和等于2016,2168,是否可能?若不可能,请说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.23.某服装厂生产一种西装和领带,西装每套定价280元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):方案一:买一套西装送一条领带;方案二:西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x 套西装,y 条领带(y x >).(1)该客户选择两种不同方案所需费用分别是多少元?(用含x ,y 的式子表示并化简)(2)若该客户需要购买10套西装,25条领带,则他选择哪种方案更划算?(3)若该客户需要购买25套西装,35条领带,则他选择哪种方案更划算?答案与解析一、选择题(每小题3分,共30分)1.温度由3C ︒-上升6C ︒是( )A. 3C ︒B. 9C -︒C. 3C -︒D. 9C ︒【答案】A【解析】【分析】根据题意列式计算即可.【详解】解:-3+6=3,∴温度由-3℃上升6℃后是3℃.故选A .【点睛】本题主要考查了有理数的加减法,熟记运算法则是解答本题的关键.2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.如果向东走2米记为+2米,那么向西走5米记为( )A. +5米B. +2米C. -5米D. -2米 【答案】C【解析】【分析】根据题意,可以知道负数表示向西走,问题得以解决.【详解】解:∵向东走2米记为+2米,∴向西走5米记为-5米,故选:C .【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.3.若一个整数21500…0用科学记数法表示为102.1510⨯,则原数中“0”的个数为( )A. 7B. 8C. 9D. 10 【答案】B【解析】【分析】把102.1510⨯写成不用科学记数法表示的原数的形式即可得.【详解】解:∵102.1510⨯表示的原数为21500000000,∴原数中“0”的个数为8,故选B.【点睛】本题主要考查了科学记数法—原数,要熟练掌握,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.4.有一个两位数,它的十位数字是x ,个位数字是y ,则这个两位数为( )A. xyB. +x yC. 10x y +D. 10(x y +)【答案】C【解析】【分析】 根据两位数字的表示方法:十位数字×10+个位数字即可得出. 【详解】解:根据两位数的表示方法得:这个两位数表示为:10x+y .故选C .【点睛】本题主要考查了两位数的表示方法,数字的表示方法要牢记.两位数字的表示方法:十位数字×10+个位数字.5.在如图所示的数轴上,表示-1.25的点是( )A .点EB. 点FC. 点GD. 点H 【答案】B【解析】【分析】直接利用数轴得出-1.25的位置.【详解】解: 1.251-<-,由图可知:点E 表示的数小于-1.5,∴在数轴上表示 1.25-的点是:F 点.故选:B . 【点睛】本题主要考查了数轴,正确理解数轴的意义是解题关键.6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A. B. C. D.【答案】C【解析】【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C.【点睛】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.下列说法中,正确的有()①圆柱、圆锥的底面都是圆;②棱柱的底面是四边形;③棱柱的侧面一定是长方形;④长方体一定是柱体.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据柱体和锥体的性质,可判断①②③,根据长方体的性质,可判断⑤.【详解】解:①圆柱、圆锥的底面都是圆,正确;②n棱柱的底面是n边形,不一定是四边形,错误;③直棱柱的侧面一定是长方形,斜棱柱的侧面不是长方形,错误;④长方体一定是柱体,正确;故选B.【点睛】本题主要考查了常见的几何体,应注意棱柱由上下两个底面以及侧面组成.8.从3,2,-1,-4,-5中任取两个数相乘,若所得的积中最大值是a,最小值是b,则ab的值为()A. 203B. 13C. 12-D. 43- 【答案】D【解析】【分析】先确出积的最大值和最小值,然后再代入计算即可.【详解】解:最大值为-5×-4=20=a ,最小值为3×-5=-15=b , ∴a b =204=153--. 故选:D.【点睛】本题主要考查的是有理数的乘法,求得这两个数的乘积的最大值和最小值是解题的关键. 9.下列关于多项式2227m n mn --的说法中,正确的是( )A. 最高次项是2m nB. 二次项系数是2C. 常项数是7D. 次数和项数都是3【答案】D【解析】【分析】直接利用多项式的项数以及次数确定方法分析得出答案.【详解】解:多项式2227m n mn --,最高次项是22m n ,故选项错误;二次项为2mn -,二次项系数是-2,故选项错误;常数项是-7,故选项错误;次数是2+1=3,项数是3,故选项正确;故选D. 【点睛】本题主要考查了多项式,正确把握相关定义是解题关键.10.如图是一个长方形的铝合金窗框,其长为am ,高为bm ,①②③处装有同样大小的塑钢玻璃,当第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,用含a 与b 的式子表示这时窗户的通风面积( )A. 21718abm B. 21318abm C. 2518abm D.2118abm 【答案】C【解析】【分析】 第②块向右拉到与第③块重叠12,再把第①块向右拉到与第②块重叠13时,第一块和第二块玻璃之间的距离是(12-13)×3a ,窗子的通风面积为①中剩下的部分. 【详解】解:由题意可得:115=3332318a a a ab ab ⎡⎤⎛⎫---⨯-⨯ ⎪⎢⎥⎝⎭⎣⎦, 故选C.【点睛】本题考查了列代数式和整式的混合运算,有一定的难度,应根据图示找到窗子通风的部位在哪里,是哪个长方形,其长和宽式多少,都需要求出来,再进行面积计算.二、填空题(每小题3分,共15分)11.在7,32-,0,3,-2,17中,正数有__________个. 【答案】3【解析】【分析】根据正数的定义,即可解答.【详解】解:正数>0,∴正数有7,3,17共3个. 故答案为:3.【点睛】本题考查了正数和负数,解题的关键是掌握正数的概念,属于基础题,难度不大.12.一个正方体的每个面都写有一个汉字,其表面展开图如图所示,则在该正方体中,若“生”在正方体的前面,则这个正方体后面的汉字是“__________”.【答案】尚【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:∵“生”在正方体的前面,前面和后面是相对面,∵“崇”和“低”是相对面,“活”和“碳”是相对面,∴“生”和“尚”是相对面,故答案为:尚.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.在-1,0,|2|--,5,(4)-+这5个数中任意两个数相减,所得的差中最大值是__________.【答案】9【解析】【分析】先化简各数,根据有理数的减法用最大数减去最小数即可得差最大的值.【详解】解:|2|--=-2,(4)-+=-4,∴5个数为:-1,0,-2,5,-4,∴差最大为:5-(-4)=9.故答案为:9.【点睛】本题考查了有理数大小比较和有理数的减法,解决此类问题的关键是找出最大最小有理数和对减法法则的理解.14.如果2|2|(6)0x y -++=,则x y -=__________. 【答案】8【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:∵2|2|(6)0x y -++=,∴x-2=0,y+6=0,解得:x=2,y=-6,代入x y -,原式=8.【点睛】本题考查了绝对值和平方的非负性,几个非负数的和为0时,这几个非负数都为0.15.在数轴上,点P 表示的数是a ,点P'表示的数是11a-,我们称点P'是点P 的“相关点”.已知数轴上点1A 的相关点为2A ,点2A 的相关点为3A ,点3A 的相关点为4A ……这样依次得到点1A ,2A ,3A ,4A ,……,n A .若点1A 在数轴上表示的数是12,则点2034A 在数轴上表示的数是__________. 【答案】-1【解析】【分析】 先根据已知求出各个数,根据求出的数得出规律,即可得出答案.【详解】解:∵点A 1在数轴表示的数是12, ∴A 2=1112-=2,A 3=1=112--, A 4=()11=112--, A 5=1112-=2,A 6=-1,…,2034÷3=678,∴点A 2034在数轴上表示的数是-1,故答案为:-1.【点睛】本题考查了数轴和有理数的计算,能根据求出的结果得出规律是解此题的关键.三、解答题(本大题共8个小题,满分75分)16.(1)计算:13710 3.68 6.444+-+--. (2)计算:21224(2)6323⎛⎫-÷---⨯-⎪⎝⎭. 【答案】(1)-3;(2)4【解析】【分析】(1)根据加法交换律和结合律先分别计算分数部分、整数部分、小数部分,再将各部分计算结果相加即可; (2)按照有理数的混合运算法则计算即可.【详解】解:(1)原式137(108)( 3.6 6.4)44⎛⎫=++--⎝-+ ⎪⎭5210=+-3=-;(2)原式12(34)9=---12(1)9=---1219=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序,注意简便算法.17.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.求2082a b cd m +-+的值. 【答案】-7【解析】【分析】利用相反数,倒数,以及绝对值的意义求出a+b ,cd ,及m 的值,代入所求式子计算即可得到结果.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1.∴0a b +=,1cd =,1m =±,∴201m =. ∴20808112a b cd m +-+=-⨯+ 817=-+=-.【点睛】本题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握各自的定义是解本题的关键. 18.如果3a b x y -和2425a y x -是同类项,先化简1323(3)2ab a ab b a ⎛⎫-++-+ ⎪⎝⎭,再求值. 【答案】33-ab b ,-2【解析】【分析】原式去括号合并得到最简结果,利用同类项的定义求出a 与b 的值,代入计算即可求出值.【详解】解:∵3a b x y -和2425a y x -是同类项,∴42a a =-,2b =,∴23a =,2b =, 原式363ab a ab b a =-++--33ab b =-.当23a =,2b =时, 原式232323=⨯⨯-⨯ 462=-=-.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键,同时也考察了同类项的概念.19.如图所示是一个圆柱体,它的底面半径为3cm ,高为6cm .(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?【答案】(1)()254πcm;(2)能截出截面最大的长方形,长方形面积的最大值为:()236cm 【解析】分析】(1)用圆柱上下底面积加上侧面积即可;(2)当截得的面积最大时,长方形的长为底面直径,宽为6,可得面积最大值.【详解】解:(1)圆柱体的表面积为:232236ππ⨯⨯+⨯⨯1836ππ=+;()254π=cm ;(2)能截出截面最大的长方形.该长方形面积的最大值为:()2(32)636⨯⨯=cm .【点睛】本题考查了圆柱表面积的求法和截几何体,根据截面的形状既与被截的几何体有关,还与截面的角度和方向有关,得出这个圆柱体的截面面积最大是长方形是本题的关键.20.用若干大小相同的小立方体块搭一个几何体,使得从正面和上面看到这个几何体的形状图如图所示,其中从上面看到的形状图的小正方形中的字母表示该位置小立方体的个数.请解答:(1)c 表示几?b 的最大值是多少?(2)这个几何体最少是用多少个小立方体搭成的?最多呢?【答案】(1)c 表示3,b 的最大值为2;(2)最少是用11,最多是用16【解析】【分析】(1)根据从正面、上面看到的几何体进行判断;(2)第一列小立方体的个数最多为3+3+3=9,最少为3+1+1=5,那么加上其他两列小立方体的个数即可;【详解】解:(1)由从正面和上面看到的这个几何体的形状图可知,c 表示3,b 的最大值为2; (2)这个几何体最少是用53311++=个小立方体搭成的,最多是用94316++=个小立方体搭成的.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.21.数学课上老师出了一道计算题:1234567891333333333+++++++++,老师在教室里巡视了一圈,发现同学都做不出来,于是老师给出了下面的一种解法:解:令1234567891333333333S =+++++++++,①234567891033333333333S =+++++++++,②②-①,得10231S =-. 所以10312S -=. (1)仿照以上方法计算:1234567891913333333333+++++++++++.(写出计算过程,结果用幂表示) (2)根据以上计算方法请猜想下列各式的计算结果(结果用幂表示):①123201913333+++++=________. ②123201917777+++++=________.【答案】(1)20312-=S ;(2)①2020312-;②2020716- 【解析】【分析】(1)参照老师的做法对所求式子变形,从而可以解答本题;(2)参照示例和(1)解题过程得出1123111b b a a a a a a +-+++++=-,从而可得①和②的结果. 【详解】解:(1)令1231913333S =+++++,①23420333333S =+++++,②②-①,得20231S =-.∴20312-=S ; (2)根据老师的做法和(1)中的解题过程可知:1123111b b a a a a a a +-+++++=-,根据规律得: ①123201913333+++++=2020312-;②123201917777+++++=2020716-. 【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.(1)如图(1),在某年某月的日历中,任意圈出一竖列相邻的三个数,设中间的一个数为a ,则用含a 的代数式表示这三个数分别是__________;(按从小到大的顺序写在横线上)(2)现将连续自然数1~2007按图(2)的方式排成一个长方形阵形然后用一个正方形框出16个数. ①图中框出的这16个数的和是__________;②在图(2)中,要使一个正方形框出的16个数的和等于2016,2168,是否可能?若不可能,请说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.【答案】(1)7a -,a ,7a +;(2)①352;②框出的16个数它们的和可以等于2016,且最小数为114,最大数为138;它们的和不可能等于2168,见解析【解析】【分析】(1)经过观察可知,如果中间的数是a ,则上面的数是a-7,下面的数是a+7;(2)①可以把这16个数直接加起来即可, ②可以设最小的数是m ,那么第一行的四个数的和就是4m+6,第二行的四个数的和就是4m+6+7×4=4m+34,第三行的四个数的和是4m+34+7×4=4m+62,第四行的四个数的和是4m+62+7×4=4m+90,(其中最大数是m+24),然后这16个数相加也就是四行数相加,令其结果等于2016或2168,看计算出的m 的值是不是整数,若是整数说明存在,若不是就说明不存在.【详解】解:(1)若中间的数是a ,那么上面的数是a-7,下面的数是a+7,故这三个数从小到大排列分别是a-7,a ,a+7;(2)①16个数中,第一行的四个数之和是:10+11+12+13=46,第二行的四个数之和是:46+4×7=74,第三行的四个数之和是:74+4×7=102, 第四行的四个数之和是:102+4×7=130. 于是16个数之和=46+74+102+130=352.故图中框出的这16个数之和是352;②设这16个数中最小的数为m ,则这16个数分别为m ,1m +,2m +,3m +,7m +,8m +,9m +,10m +,14m +,15m +,16m +,17m +,21m +,22m +,23m +,24m +,它们的和为16192m +(m 为正整数),所以它们的和可以等于2016,理由:161922016m +=,解得114m =,所以24138m +=,因此框出的16个数它们的和可以等于2016,且最小数为114,最大数为138,它们的和不可能等于2168,理由:161922168m +=,解得123.5m =,而m 应为整数,所以16个数的和不可能等于2168.【点睛】本题考查了一元一次方程的应用,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.23.某服装厂生产一种西装和领带,西装每套定价280元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):方案一:买一套西装送一条领带;方案二:西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x 套西装,y 条领带(y x >).(1)该客户选择两种不同的方案所需费用分别是多少元?(用含x ,y 的式子表示并化简)(2)若该客户需要购买10套西装,25条领带,则他选择哪种方案更划算?(3)若该客户需要购买25套西装,35条领带,则他选择哪种方案更划算?【答案】(1)(24040)x y +元和(25232)x y +元;(2)他选择方案二购买更划算;(3)他选择方案一购买更划算【解析】【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)把x 、y 的值代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)把x 、y 的值代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;【详解】解:(1)该客户选择方案一购买,需付款28040()(24040)x y x x y +-=+(元),该客户选择方案二购买,需付款28090%4080%(25232)x y x y ⨯+⨯=+(元).该客户选择方案一和方案二两种不同的购买方式所需费用分别是(24040)x y +元和(25232)x y +元;(2)当10x =,25y =时,按方案一购买,需付款:240104025240010003400⨯+⨯=+=(元)按方案二购买,需付款:25210322525208003320⨯+⨯=+=(元)∵34003320>,∴他选择方案二购买更划算.(3)当25x =,35y =时,按方案一购买,需付款:240254035600014007400⨯+⨯=+=(元), 按方案二购买,需付款:252253235630011207420⨯+⨯=+=(元)∵74007420<,∴他选择方案一购买更划算.【点睛】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.。
【人教版】七年级上学期数学《期中考试题》及答案解析
2020-2021学年度第一学期期中测试人教版七年级数学试题一.选择题(共12小题)1.以下是四位同学画的数轴,其中正确的是 ( ) A.B.C.D.2.下列各式:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2,其中单项式有( ) A. 5个B. 4个C. 3个D. 2个3.地球与太阳之间的距离约为149600000千米,用科学计数法表示是()千米 A. 1496×105 B. 149.6×106 C. 14.96×107 D. 1.496×108 4.邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ). A . 19℃B. -19 ℃C. 15℃D. -15℃5.下列计算正确的是( ) A 2a +3b =5abB. 3a ﹣2a =1C. 3a 2b ﹣2ab 2=a 2bD. 2a 2+a 2=3a 2 6.下列各组数中,相等的是( ) A. ﹣1与(﹣2)+(﹣3) B. |﹣5|与﹣(﹣5) C.243与916D. (﹣2)2与﹣47.当m =-1时,代数式2m+3的值是( ) A. -1B. 0C. 1D. 28.下列多项式是五次多项式的是( ) A. x 3+y 2 B. x 2y 3+xy +4C. x 5y ﹣lD. x 5﹣y 6+19.若a 与b 互相反数,则2a b +-等于( ).A. -2B. 2C. -1D. 110.数轴上点A、B表示的数分别是a、3,它们之间的距离可以表示为()A. a+3B. a﹣3C. |a+3|D. |a﹣3|11.已知3x﹣y=5,则代数式6x﹣2y的值为()A. ﹣10B. ﹣4C. 4D. 1012.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A. 甲比乙多B. 乙比甲多C. 甲、乙一样多D. 无法确定二.填空题(共6小题)13.如果收入1000元表示为+1000元,则-700元表示__________.14.单项式233x y的系数为______.15.把5×5×5写成乘方的形式__________16.5.14567精确到0.001位得到的近似数是_____.17.如果单项式6x m y和3x3y n是同类项,则n=_____.18.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h,3h后甲船比乙船多航行_____km.三.解答题(共8小题)19.把下列各数填入相应集合的括号内.+8.5,﹣312,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.(1)正数集合:{_____…};(2)整数集合:{_____…};(3)非正整数集合:{_____…};(4)负分数集合:{_____…}.20.计算:(1)(﹣0.1)﹣(﹣4.6)﹣(+8.9)+(+5.4)(2)(﹣2)2×3﹣|﹣16|÷421.在数轴上表示下列各数,并用“<”把它们连接起来.3,﹣|﹣5|,0,﹣72,﹣(﹣2).22.先化简,再求值:(x2y﹣xy2)﹣(xy2+x2y),其中x=12,y=﹣123.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km):+9 -3 -5 +4 -8 +6 -3 -6 -4 +7(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元?24.为绿化校园,安排七年级三个班植树,其中,一班植树x棵,二班植树的棵数是一班的2倍少20棵,三班植树的棵数是二班的一半多15棵.(1)三个班共植树多少棵?(用含x的式子表示)(2)当x=30时,三个班中哪个班植树最多?25.对于有理数a、b,定义运算:a⊕b=a×b+|a|﹣b,符合有理数的运算法则和运算律.(1)计算(﹣2)⊕(﹣2)的值;(2)填空:3⊕(﹣2)(﹣2)⊕3(填“>”或“=”或“<”);(3)计算[(﹣5)⊕4]⊕(﹣2)的值;26.福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价的90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示). 若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?答案与解析一.选择题(共12小题)1.以下是四位同学画的数轴,其中正确的是 ( ) A. B. C.D.【答案】B 【解析】 【分析】根据数轴的概念:规定了原点、正方向和单位长度的直线叫数轴,进行判断. 【详解】解:A 、没有原点,错误; B 、正确;C 、原点左边的数反了,错误;D 、单位长度不统一,错误. 故选B .【点睛】考查了数轴的概念,注意数轴的三要素缺一不可. 2.下列各式:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2,其中单项式有( ) A. 5个 B. 4个C. 3个D. 2个【答案】B 【解析】 【分析】直接利用单项式的定义分析得出答案. 详解】解:ab ,3x y-,3x,﹣xy 2,0.1,3π,x 2+2xy +y 2, 单项式有ab ,﹣xy 2,0.1,3π共4个. 故选:B .【点睛】本题考查单项式的定义,熟记定义是本题的解题关键,注意单独的一个数字或字母也是单项式. 3.地球与太阳之间的距离约为149600000千米,用科学计数法表示是()千米 A. 1496×105B. 149.6×106C. 14.96×107D. 1.496×108【答案】D 【解析】由科学记数法的定义可知,把一个数记为:10n a ⨯(其中110a ≤<,n 为整数且n 比原数的整数位数小1)的形式叫科学记数法,所以149600000化成科学记数法表示应为:81.49610⨯,所以A 、B 、C 均错,D 正确, 故选D.点睛:在把一个绝对值较大的数用科学记数法表示时,我们要注意两点:①a 必须满足:110a ≤<;②n比原来的数的整数位数少1(也可以通过小数点移位来确定n ).4.邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ). A. 19℃ B. -19 ℃C. 15℃D. -15℃【答案】A 【解析】 【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】解:17-(-2) =17+2 =19℃. 故选A .【点睛】本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键. 5.下列计算正确的是( ) A. 2a +3b =5ab B. 3a ﹣2a =1 C. 3a 2b ﹣2ab 2=a 2b D. 2a 2+a 2=3a 2【答案】D 【解析】 【分析】根据合并同类项法则即可求出答案.【详解】解:A 原式无法合并,故选项A 错误; B 原式=a ,故选项B 错误;C 原式无法合并计算,故选项C 错误;D 原式=3a 2,故选项D 正确; 故选:D .【点睛】本题考查合并同类项的计算,掌握合并同类项的法则是本题的解题关键. 6.下列各组数中,相等的是( ) A. ﹣1与(﹣2)+(﹣3) B. |﹣5|与﹣(﹣5) C.243与916D. (﹣2)2与﹣4【答案】B 【解析】 【分析】根据有理数的减法法则,绝对值的性质,相反数的定义,有理数的乘方的定义对各选项进行计算,然后利用排除法求解.【详解】解:A 、(﹣2)+(﹣3)=﹣5,﹣1≠﹣5,故本选项错误; B 、|﹣5|=5,﹣(﹣5)=5,5=5,故本选项正确;C 、234=94,94≠916,故本选项错误;D 、(﹣2)2=4,4≠﹣4,故本选项错误. 故选:B .【点睛】本题考查有理数的运算,掌握运算法则是本题的解题关键. 7.当m =-1时,代数式2m+3的值是( ) A. -1 B. 0C. 1D. 2【答案】C 【解析】 【分析】将=1m -代入代数式即可求值;【详解】解:将=1m -代入232(1)31m +=⨯-+=; 故选C .【点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.8.下列多项式是五次多项式的是( ) A. x 3+y 2 B. x 2y 3+xy +4C. x 5y ﹣lD. x 5﹣y 6+1【答案】B 【解析】 【分析】五次多项式,即其次数最高次项的次数为五次.也就是说,每一项都可以是五次,也可以低于五次,但不可以超过五次.【详解】解:A 、该多项式是三次二项式,故本选项错误. B 、该多项式是五次三项式,故本选项正确. C 、该多项式是六次二项式,故本选项错误. D 、该多项式是六次三项式,故本选项错误. 故选:B .【点睛】本题考查多项式的项与次数,熟记定义是本题的解题关键. 9.若a 与b 互为相反数,则2a b +-等于( ). A. -2 B. 2C. -1D. 1【答案】A 【解析】 【分析】利用相反数的定义求出a+b 的值,代入计算,即可求出值. 【详解】∵a 与b 互为相反数, ∴a+b=0, ∴2a b +-=0-2=-2. 故选A.【点睛】此题考查相反数,解题关键在于掌握其定义.10.数轴上点A 、B 表示的数分别是a 、3,它们之间的距离可以表示为( ) A. a +3 B. a ﹣3C. |a +3|D. |a ﹣3|【答案】D 【解析】 【分析】由距离的定义和绝对值的关系容易得出结果.【详解】∵点A.B表示的数分别是a、3,∴它们之间的距离=|a-3|故选:D.【点睛】此题考查绝对值,数轴,难度不大11.已知3x﹣y=5,则代数式6x﹣2y的值为()A. ﹣10B. ﹣4C. 4D. 10【答案】D【解析】【分析】原式变形后,将已知等式代入计算即可求出值.【详解】∵3x﹣y=5,∴原式=2(3x﹣y)=10,故选D.【点睛】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.12.甲、乙两个商家对标价相同的同一件商品进行价格调整,甲的方案是:先提价8%,再降价8%;乙的方案是:先降价8%,再提价8%;则甲、乙两个商家对这件商品的最终定价()A. 甲比乙多B. 乙比甲多C. 甲、乙一样多D. 无法确定【答案】C【解析】【分析】根据题意,把商品原价看作单位“1”,则甲的方案有关系式:现价=原价×(1+8%)×(1﹣8%),则现价是原价的99.36%;乙的方案有关系式:1×(1+8%)×(1﹣8%),则现价是原价的99.36%,从而求解.【详解】解:甲:把原来的价格看作单位“1”,1×(1+8%)×(1﹣8%)=1.08×92%=99.36%;乙:把原来的价格看作单位“1”,1×(1﹣8%)×(1+8%)=92%×1.08=99.36%;则甲、乙两个商家对这件商品的最终定价一样多.故选:C.【点睛】本题考查了列代数式,完成本题要注意前后提价与打折分率的单位“1”是不同的.二.填空题(共6小题)13.如果收入1000元表示为+1000元,则-700元表示__________.【答案】支出700元【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,所以如果收入1000元表示为+1000元,则-700元表示支出700元.故答案是:支出700元.【点睛】考查了正负数的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.单项式233x y的系数为______.【答案】1 3【解析】【分析】单项式的系数是指单项式中的数字因数.【详解】23231=33x yx y,所以单项式233x y的系数为13.故答案为1 3【点睛】此题考查的是单项式的系数的概念.15.把5×5×5写成乘方的形式__________【答案】35【解析】【分析】根据有理数乘方的定义解答.【详解】5×5×5=35. 故答案是:35. 【点睛】考查了有理数的乘方的定义,注意指数是底数的个数.16.5.14567精确到0.001位得到的近似数是_____.【答案】5.146.【解析】【分析】把万分位上的数字6进行四舍五入即可.【详解】解:5.14567≈5.146(精确到0.001).故答案为5.146.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.17.如果单项式6x m y和3x3y n是同类项,则n=_____.【答案】1.【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值.【详解】解:∵单项式6x m y和3x3y n是同类项,∴m=3,n=1.故答案为:1【点睛】本题考查同类项的定义,熟记定义是本题的解题关键.18.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50km/h,水流速度是akm/h,3h后甲船比乙船多航行_____km.【答案】6a.【解析】【分析】顺水速度=船速+水速,逆水速度=船速﹣水速.根据路程公式求出甲、乙航行的路程,从而得出答案.【详解】解:3h后甲船航行的路程为3×(50+a)=150+3a(km),3h后乙船航行的路程为3(50﹣a)=150﹣3a(km),则3h后甲船比乙船多航行150+3a﹣(150﹣3a)=6a(km),故答案为:6a.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.三.解答题(共8小题)19.把下列各数填入相应集合的括号内.+8.5,﹣312,0.3,0,﹣3.4,12,﹣9,﹣1.2,20%,﹣2.(1)正数集合:{_____…};(2)整数集合:{_____…};(3)非正整数集合:{_____…};(4)负分数集合:{_____…}.【答案】(1)正数集合:{+8.5,0.3,12,20% …};(2)整数集合:{0,12,﹣9,﹣2…};(3)非正整数集合:{0,﹣9,﹣2…};(4)负分数集合:{﹣312,﹣3.4,﹣1.2…},【解析】【分析】根据有理数的分类,可得答案.【详解】解:(1)正数集合:{+8.5,0.3,12,20% …};(2)整数集合:{0,12,﹣9,﹣2…};(3)非正整数集合:{0,﹣9,﹣2…};(4)负分数集合:{﹣312,﹣3.4,﹣1.2…},【点睛】本题考查有理数的分类,熟记有理数的定义及其分类是本题的解题关键.20.计算:(1)(﹣0.1)﹣(﹣4.6)﹣(+8.9)+(+5.4)(2)(﹣2)2×3﹣|﹣16|÷4【答案】(1)1;(2)8.【解析】【分析】(1)根据加法交换律和结合律简便计算;(2)先算乘方,再算乘除,最后算加减;如果有绝对值,要先做绝对值内的运算.【详解】解:(1)原式=﹣0.1+4.6﹣8.9+5.4=﹣(0.1+8.9)+(4.6﹣5.4)=﹣9+10=1;(2)原式=4×3﹣16÷4=12﹣4=8.【点睛】本题考查有理数的混合运算,掌握运算法则正确计算是本题的解题关键. 21.在数轴上表示下列各数,并用“<”把它们连接起来.3,﹣|﹣5|,0,﹣72,﹣(﹣2).【答案】见详解;﹣|﹣5|<﹣72<0<﹣(﹣2)<3.【解析】【分析】首先分别在数轴上表示,再根据数轴上的数右边的总比左边的大可得答案.【详解】解:如图:根据数轴可得﹣|﹣5|<﹣72<0<﹣(﹣2)<3.【点睛】本题考查用数轴上的点表示有理数及数的大小比较,利用数轴数形结合思想解题是本题的解题关键.22.先化简,再求值:(x2y﹣xy2)﹣(xy2+x2y),其中x=12,y=﹣1【答案】﹣2xy2;﹣1.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:原式=x2y﹣xy2﹣xy2﹣x2y=﹣2xy2,当x =12,y =﹣1时, 原式=212(1)12-⨯⨯-=- . 【点睛】本题考查整式的化简求值,掌握去括号法则,正确计算是本题的解题关键.23.某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km ):(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元? 【答案】(1)出租车离鼓楼出发点3千米,在鼓楼西方;(2)55;(3)132.【解析】【分析】(1)根据有理数的加法运算,可得出租车离鼓楼出发点多远,在鼓楼什么方向;(2)将所有的行驶路程相加即可.(3)根据乘车收费:单价×里程,可得司机一下午的营业额.【详解】(1)9−3−5+4−8+6−3−6−4+7=−3,答:将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西方;(2) 9+|−3|+|−5|+4+|−8|+6+|−3|+|−6|+|−4|+7=55(千米).故租车一共行驶55千米(3) (9+|−3|+|−5|+4+|−8|+6+|−3|+|−6|+|−4|+7)×2.4=132(元),答:每千米的价格为2.4元,司机一下午的营业额是132元. 【点睛】此题考查正数和负数,解题关键在于掌握其性质和运算法则. 24.为绿化校园,安排七年级三个班植树,其中,一班植树x 棵,二班植树的棵数是一班的2倍少20棵,三班植树的棵数是二班的一半多15棵. (1)三个班共植树多少棵?(用含x 的式子表示) (2)当x =30时,三个班中哪个班植树最多? 【答案】(1) 4x ﹣15(棵);(2) 二班植树最多,理由见解析(1)根据一班植树x棵,二班植树的棵数比一班的2倍少20棵得出二班植树(2x﹣20)棵,三班植树的棵数比二班的一半多15棵,得出三班植树=12(2x﹣20)+15=(x+5)棵;(2)将x=30代入求出各班植树棵树即可.【详解】(1)一班植树x棵,二班植树的棵数为(2x﹣20)棵,三班植树的棵数为(x+5)棵;三个班共植树x+2x﹣20+x+5=4x﹣15(棵);(2)把x=30代入2x﹣20=40(棵);把x=30代入x+5=35(棵),∵30<35<40,∴二班植树最多.【点睛】考查了用字母列式表示数量关系及整式的化简和求值,分别表示出各班植树棵数是解题关键.25.对于有理数a、b,定义运算:a⊕b=a×b+|a|﹣b,符合有理数的运算法则和运算律.(1)计算(﹣2)⊕(﹣2)的值;(2)填空:3⊕(﹣2)(﹣2)⊕3(填“>”或“=”或“<”);(3)计算[(﹣5)⊕4]⊕(﹣2)的值;【答案】(1)8;(2)>(3)59.【解析】【分析】(1)根据题意,可得(﹣2)⊕(﹣2)=(﹣2)×(﹣2)+|﹣2|﹣(﹣2),再先算乘法,后算加减法,如果有绝对值,要先做绝对值内的运算;(2)先分别求出3⊕(﹣2)和(﹣2)⊕3,再比较大小即可解答本题;(3)先求出(﹣5)⊕4=﹣19,再求出(﹣19)⊕(﹣2)的值即可解答本题.【详解】解:(1)(﹣2)⊕(﹣2)=(﹣2)×(﹣2)+|﹣2|﹣(﹣2)=4+2+2=8;(2)∵3⊕(﹣2)=3×(﹣2)+|3|﹣(﹣2)=﹣6+3+2=(﹣2)×3+|﹣2|﹣3=﹣6+2﹣3=﹣7,﹣1>﹣7,∴3⊕(﹣2)>(﹣2)⊕3;(3)∵(﹣5)⊕4=(﹣5)×4+|﹣5|﹣4=﹣20+5﹣4=﹣19,∴[(﹣5)⊕4]⊕(﹣2)=(﹣19)⊕(﹣2)=(﹣19)×(﹣2)+|﹣19|﹣(﹣2)=38+19+2=59.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.26.福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分.某校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.A网店:买一个足球送一条跳绳;B网店:足球和跳绳都按定价90%付款.已知要购买足球40个,跳绳x条(x>40)(1)若在A网店购买,需付款元(用含x的代数式表示).若在B网店购买,需付款元(用含x的代数式表示).(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?【答案】(1)(4800+30x),(5400+27x);(2)见解析;(3) 在A网店购买40个足球配送40个跳绳,再在B网店购买60个跳绳,付款7620元.【解析】【分析】(1)先根据题意列出算式,再化简即可;(2)把x=100代入(1)中的代数式,求出结果,再比较即可;(3)比较划算的方方案是:在A 网店买40个足球和40个跳绳,在B 网店买60个跳绳,求出即可.【详解】解:(1)()540027x +. 若在A 网店购买,需付款150×40+30(x-40)=(30x+4800)元, 若在B 网店购买,需付款150×90%×40+30×90x=(27x+5400)元, 故答案为27x+5400,27x+5400;(2)当x=100时在A 网店购买需付款:4800304800301007800x +=+⨯=元;在B 网店购买需付款:5400275400271008100x +=+⨯=元. ∵348120030++⨯⨯ ∴当100x =时应选择在A 网店购买合算.(3)当100x =时在A 网店购买需付款:4800304800301007800x +=+⨯=元;在B 网店购买需付款:5400275400271008100x +=+⨯=元.在A 网店购买40个足球配送40个跳绳,再在B 网店购买60个跳绳合计需付款:150********%7620⨯+⨯⨯=元.∵762078008100<<∴省钱的购买方案是:在A 网店购买40个足球配送40个跳绳,再在B 网店购买60个跳绳,付款7620元.【点睛】本题考查列代数式和求代数式的值,能正确根据题意列出代数式是解题关键.。
人教版七年级上册数学《期中考试卷》(带答案)
人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和23.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1055.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<09.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a =﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m +n )C. 4nD. 4(m ﹣n )二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.12.已知13(3)m m x y +- 是关于x ,y 的七次单项式,则222m m -+的值为________13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).15.若2210m m +-=,则2425m m ++的值为__________16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______. 17.一条数轴由点A 处对折,表示﹣30数的点恰好与表示4的数的点重合,则点A 表示的数是_____. 18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭ (3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×99717220.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +值. 22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.23.邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A ,B ,C 三个村庄的位置;(2)C 村离 A 村有多远?(3)邮递员一共骑行了多少千米?24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星 一 二 三 四 五 六 日增 +6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?25.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a=5,b=3时,求S 值;②当a=7,b=3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步【答案】B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和2【答案】C【解析】试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx【答案】A【解析】【分析】根据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一判断即可.【详解】A. 相同字母指数不同,不是同类项;B. C.D都是同类项,故选:A.【点睛】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关.4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】先对每个数进行化简,然后再确定负数的个数.【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选B.【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键.7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d【答案】B【解析】【分析】根据去括号法则即可求解.【详解】A. a-(b-c)=a-b+c,故错误;B. x2-[-(-x+y)]= x2-[x-y]=x2-x+y,正确;C. m-2(p-q)=m-2p+2q,故错误;D. a+(b-c-2d)=a+b-c-2d,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<0【答案】D【解析】试题解析:A、由ab异号得,ab<0,故A正确,不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B正确,不符合题意;C、由b>0,a<0,|得a-b<0,故C正确,不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D错误;故选D.点睛:根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.9.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)【答案】A【解析】【分析】设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【详解】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选A.【点睛】本题考查整式的运算,解题的关键是设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y ,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.【答案】10【解析】【分析】根据“某天的温差=当天的最高温度-当天的最低温度”计算即可得出答案.【详解】根据题意可得,温差=6℃-(-4℃)=10℃,故答案为10.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解决本题的关键.12.已知13(3)m m x y+- 是关于x ,y 的七次单项式,则222m m -+的值为________ 【答案】17【解析】分析】根据单项式次数的定义即可求出m 的值,再将m 代入后面的式子即可得出答案. 【详解】∵13(3)m m x y +- 是关于x ,y 的七次单项式 ∴3014m m -≠⎧⎨+=⎩解得33m m ≠⎧⎨=±⎩ 综上所述:m=-3将m=-3代入2222=(-3)-2(-3)+2=17m m -+⨯故答案为17.【点睛】本题主要考查的是单项式次数的定义,单项式的次数指单项式中所有字母的指数和.13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.【答案】3x 2-10x +9【解析】【分析】将3x 2-5x +9加上-5x 即可得出答案.【详解】由题意可得:3x 2-5x +9+(-5x )=3x 2-10x +9故答案为3x 2-10x +9.【点睛】本题考查的是整式的加减,熟练掌握整式加减的运算法则是解决本题的关键,14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).【答案】0【解析】【分析】 根据“规定图形表示运算a b c -+,图形表示运算x z y w +--.”得出新的运算方法,再根据新的运算方法,解答即可.【详解】原式=1-2+3+(4+6-7-5)=2-2=0,故答案为:0.【点睛】解答此题的关键是,根据所给的式子,找出新的计算方法,再运用新的计算方法,解答即可. 15.若2210m m +-=,则2425m m ++的值为__________【答案】7【解析】【分析】根据2210m m +-=得出22=1-m m ,将22=1-m m 代入2425m m ++中即可得出答案.【详解】∵2210m m +-=∴22=1-m m将22=1-m m 代入2425m m ++中得原式=2(1-m )+2m+5=7故答案为7.【点睛】本题考查的是求代数式的值,整体代入法是解决本题的关键.16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______.【答案】81 77【解析】【分析】由题中数据可知第n个数的分子为(n+2)2,分母为(n+2)2-4=n2+4n.故可求得第7个数.【详解】第一个数的分子为(1+2)2=9,分母为1×1+4×1=5;第二个数的分子为(2+2)2=16,分母为2×2+4×2=12;第三个数的分子为(3+2)2=25,分母为3×3+4×3=21;第四个数的分子为(4+2)2=36,分母为4×4+4×4=32;第n个数的分子为(n+2)2,分母为n2+4n.第7个数是=()22727487771=++⨯.故答案为:81 77.【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____.【答案】-13【解析】【分析】根据对称的知识,若﹣30表示的点与4表示的点重合,则对称点是两个点的表示的数的和的平均数,由此求得点A表示的数.【详解】解:点A表示的数是(-30+4)÷2=﹣13.故答案为﹣13.【点睛】此题考查数轴,掌握点和数之间的对应关系以及中心对称的性质是解决问题的关键.18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.【答案】 (1). 白子24个 (2). 黑子25个【解析】【分析】本题以正方形的周长计算公式为基础,分析图形规律,即可得出答案.【详解】第一个图形:棋子共有23个,其中黑子有1个,白子有231-个;第二个图形:棋子共有个,其中黑子有个,白子有2242-个;第三个图形:棋子共有25个,其中黑子有23个,白子有2253-个;……由此可以推出,第n 个图形:棋子共有()22n +个,其中黑子有2n 个,白子有()222n n +-个;故第五个图形:棋子共有2749=个,其中黑子有2525=个,白子有2275492524-=-=个; 故答案为24,25.【点睛】本题是图形类找规律类题型,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×997172【答案】(1)-143;(2)12;(3)5;(4)﹣359912. 【解析】根据有理数的混合运算的法则计算即可.【详解】解:(1)原式=10+19﹣5﹣167=29﹣172=﹣143;(2)原式=﹣1×(13 ﹣12 )×6÷2 =﹣6×(13﹣12)÷2 =(﹣6×13+6×12 )÷2 =(﹣2+3)÷2 =12; (3)原式=278 ×(253 ﹣258)÷2524 ×827 =278 ×(253 ﹣258)×2425 ×827 =(253 ﹣258 )×2425 =253 ×2425 ﹣258×2425 =8﹣3=5;(4)(﹣36)×997172=﹣36×(100﹣172) =﹣3600+12=﹣359912 . 故答案为(1)-143;(2)12 ;(3)5;(4)﹣359912. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律. 20.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.【答案】化简结果为:229-7a b ab ,值为:-22.【分析】根据整式的加减法则先化简22225(3)2(3)a b ab ab a b --+,再将a =-2,b =-1代入化简后的式子即可得出答案.【详解】解:222222225(3)2(3)=15-5-2-6a b ab ab a b a b ab ab a b --+22=9-7a b ab将a =-2,b =-1代入得原式22=9(2)(1)-7(2)(1)22⨯-⨯-⨯-⨯-=-【点睛】本题考查的是整式的化简求值,注意先化简再求值.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +的值.【答案】-22【解析】【分析】根据多项式不含有的项的系数为零,求出a,b 的值代入2a+3b 即可.【详解】解:原式4332223(5)(37)62x ax x x x bx x =+++--+-=432(5)(4)62x a x b x x +++--+-由题意,得50a +=,40b --=,解得5a =-,4b =-,所以232(5)3(4)22a b +=⨯-+⨯-=-.【点睛】本题考查了合并同类项,利用多项式不含有的项的系数为零得出a ,b 是解题关键.22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.【答案】(1)a <-1<-b <0<b <1<-a ;(2)a【解析】【分析】(1)根据数轴得出a<-1<0<b<1,再比较,即可得出答案;(2)先根据第(1)问的结果判断出每个绝对值的正负并去掉绝对值,再进行计算即可得出答案.【详解】解:(1)根据题意可得:a<-1<-b<0<b<1<-a(2)∵a<0,a+b-1<0,b-a-1>0∴原式=-a-[-(a+b-1)]-(b-a-1)=-a+(a+b-1)-(b-a-1)=-a+a+b-1-b+a+1=a【点睛】本题考查了数轴、绝对值、合并同类项以及有理数的大小比较等知识点,能正确去掉绝对值符号是解决本题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.邮递员骑车从邮局出发,先向西骑行2 km 到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km 画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?【答案】(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星一二三四五六日增+6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产个;(2)产量最多的一天比产量最少的一天多生产个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【答案】(1)298;(2)23;(3)该厂工人这一周的工资是35390元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【详解】解:(1)前三天生产的辆数是100×3+(6﹣3﹣5)=298(个).答案是:298;(2)14﹣(﹣9)=23(个),故答案是23;(3)这一周多生产的总辆数是6﹣3﹣5+11﹣8+14﹣9=6(个).50×700+65×6=35390(元).答:该厂工人这一周的工资是35390元.【点睛】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.25.如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.(1)①当a=5,b=3时,求S值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.【答案】(1)①4.5;②4.5;(2)S =12b 2,证明见解析 【解析】【分析】(1)①根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG ,即可得出答案;②方法同①;(2)结论S =12b 2,根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG 即可证明. 【详解】(1)①∵四边形ABCD 与四边形CEFG 是两个正方形,AB =5,EC =3,∴DG =CD -CG =5-3=2.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=25+9-12×8×5-12×5×2-12×3×3=4.5. ②∵四边形ABCD 与四边形CEFG 是两个正方形,AB =7,EC =3,∴DG =CD -CG =7-3=4.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=49+9-12×10×7-12×7×4-12×3×3=4.5 (2)结论S =12b 2. 证明:∵S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=a 2+b 2-12(a +b )•a -12•a (a -b )-12b 2 =a 2+b 2-12a 2-12ab -12a 2+12ab -12b 2 =12b 2, ∴S =12b 2. 【点睛】本题主要考查的是整式的加减,需要熟练掌握整式的加减规律.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应的数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.【答案】(1)-4,2;(2)0或8;(3)MN=8.【解析】【分析】(1)由“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C 在A 、B 之间;点C 在B 的右侧.列出方程进行解答;(3)设运动时间为t 秒,根据PQ=16,列出t 的方程求得t ,再求得运动后的M 、N 点表示的数即可.【详解】:(1)由题意得,a+4=0,b-2=0,解得,a=-4,b=2,故答案为:-4,2;(2)设C 点表示的数为x ,根据题意得,①当点C 在A 、B 之间时,有x+4=2(2-x ),解得,x=0;②当点C 在B 的右侧时,有x+4=2(x-2),解得,x=8.故点C 表示的数为0或8;(3)设运动的时间为t 秒,根据题意得, 2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P :-4-2×2=-8,Q :2+3×2=8,M :0-4×2=-8,N :2808-+=, ∴MN=0-(-8)=8.【点睛】本题主要考查了一元一次方程的应用,用数轴上的点表示数,数轴上的动点问题,两点间的距离,非负数的性质,解题的关键是正确列出一元一次方程.。
人教版七年级上册数学《期中测试题》附答案解析
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小有理数是( ) A. -112B. 0C. 1D. -22.下列关于单项式 235xy -的说法中,正确的是( ) A. 系数是25-,次数是2 B. 系数是35,次数是2 C. 系数是一3,次数是3 D. 系数是35,次数是33.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5B. 1.5C. 2.5D. 3.54.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( ) A. 847.2410⨯ B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3B. 6C. 8D. 47.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7B. 5C. 1D.9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 810.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C 为( )A. 2225x y z --B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( ) A. 比进货价便宜了0.52a 元 B. 比进货价高了0.2a 元 C. 比进货价高了08a 元 D. 与进货价相同13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为( )A.B. 12-C.12D. 114.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则a b c abc++的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是(). A. 200-60xB. 160-15xC. 200-15xD. 140-15x16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值. (1)()41-=______; (2)()()32--=______.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.计算下列各小题. (1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?22.已知a,b,c在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c+a______0,c-b______0,;---+-.(2)化简a c a b b c23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:与标准质量的−3.5−2−1.50 1 2.5差值(单位:千克)筐数 2 4 2 1 3 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.答案与解析一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在12,0,1,-2,-112这五个有理数中,最小的有理数是( )A. -112B. 0C. 1D. -2【答案】D【解析】【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【详解】-2<-112<0<12<1,所以最小的有理数是-2.故选D.【点睛】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.已知a =|2﹣b|,b 的倒数等于23-,则a 的值为( ) A. 0.5 B. 1.5C. 2.5D. 3.5【答案】D 【解析】 【分析】直接利用倒数的定义结合绝对值的性质得出答案. 【详解】解:∵b 的倒数等于-23, ∴b =﹣32, ∵a =|2﹣b|, ∴a =|2+32|=72=3.5. 故选D .【点睛】此题主要考查了倒数和绝对值,正确得出b 的值是解题关键.4.已知非零有理数a ,b 满足a a =,b b =-,a b >,用数轴上的点来表示a ,b ,正确的是( ) A. B.C.D.【答案】C 【解析】 【分析】根据绝对值的性质可得a≤0,b≥0,再根据|a|>|b|可得a 距离原点比b 距离原点远,进而可得答案. 【详解】∵|a |=a ,|b |=-b , ∴a 0,b 0, ∵|a |>|b |,∴表示数a 的点到原点的距离比b 到原点的距离大, 故选:C.【点睛】本题考查了绝对值的应用及数轴的有关知识,熟练掌握利用数轴上的位置判断正负是解题的关键. 5.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿.47.24亿用科学计数法表示为( )A. 847.2410⨯B. 94.72410⨯C. 84.72410⨯D. 8472.410⨯【答案】B 【解析】 【分析】根据科学记数法的表示方法即可得出答案. 【详解】解:47.24亿=94.72410⨯, 故答案为:B .【点睛】本题考查了科学记数法的表示方法,解题的关键是熟知科学记数法的表示方法. 6.若单项式m 42a b +与2n1a b 2的和是单项式,则n m 的值是( ) A. 3 B. 6C. 8D. 4【答案】D 【解析】 【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得a 的指数要相等,b 的指数也要相等,即可得到m ,n 的值,代入计算可得. 【详解】解:单项式m 42a b +与2n1a b 2的和是单项式, 单项式m 42a b +与2n1a b 2是同类项, 则m 42+=,n 2=, 解得m 2=-,n 2=,n 2m (2)4∴=-=,故选D .【点睛】本题考查了同类项定义,关键是把握两点:一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.7.下列各式计算正确的是( ) A. 72545--⨯=- B. 543345÷⨯= C. ()331331---=D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭【分析】根据有理数的混合运算的运算法则一一判断即可.【详解】A. 72571017--⨯=--=-,故本选项错误; B. 54444833455525÷⨯=⨯⨯=,故本选项错误; C. ()331312726---=-+=,故本选项错误; D. ()125502⎛⎫⨯--÷-= ⎪⎝⎭,故本选项正确. 故选D.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 8.已知3a b -=,2c d +=.则()()()23a d b c b d ---++的值为( ) A. 7 B. 5C. 1D.【答案】A 【解析】 【分析】原式去括号整理后,将已知等式代入计算即可求出值. 【详解】3a b -=,2c d += 原式=223a d b c b d --+++ =22a b c d -++ =2()a b c d -++ =3+22 =7 故选A.【点睛】本题考查了代数式求值,将原式整理为与-a b 和+c d 有关的式子是解题的关键. 9.某公交车上原有10个人.经过三个站点时乘客上下车情况如下(上车为正,下车为负):()2,3+-,()8,5+-,()1,6+-,则此时车上的人数还有( )人A. 5B. 6C. 7D. 8【分析】根据有理数的加法,原有人数,上车为正,下车为负,即可得答案. 【详解】10+2+(-3)+8+(-5)+1-6=7 故选C.【点睛】本题考查了正数和负数,有理数的加法运算是解题的关键. 10.为有理数,下列说法中正确的是( )A. 213a ⎛⎫+ ⎪⎝⎭是正数 B. 213a -+是负数 C. 213a ⎛⎫-- ⎪⎝⎭是负数 D. 213a +是正数 【答案】D 【解析】 【分析】正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.02=0. 【详解】A 、(a+13)2是非负数,错误; B 、-a 2+13不一定是负数,可能是0,也可能是正数,错误; C 、-(a-13)2是非正数,错误;D 、a 2+13是正数,正确;故选D .【点睛】此题考查非负数的性质,关键要注意全面考虑a 的取值.11.己知多项式A=222x 2y z +-,B=2224x 3y 2z -++ 且A+B+C=O ,则C ( )A. 2225x y z -- B. 2223x 5y z -- C. 2223x y 3z -- D. 2223x 5y z -+ 【答案】B 【解析】由于A+B+C=0,则C=-A-B,代入A 和B 的多项式即可求得C .解:由于多项式A=x 2+2y 2-z 2,B=-4x 2+3y 2+2z 2且A+B+C=0,则C=-A-B=-(x 2+2y 2-z 2)-(-4x 2+3y 2+2z 2)=-x 2-2y 2+z 2+4x 2-3y 2-2z 2=3x 2-5y 2-z 2.故答案选B .12.小明经销一种服装,进货价为每件a 元.经测算先将进货价提高200%进行标价,元旦前夕又按标价的4折销售,这件服装的实际价格( )A. 比进货价便宜了0.52a 元B. 比进货价高了0.2a 元C. 比进货价高了0.8a 元D. 与进货价相同【答案】B【解析】【分析】直接利用标价以及打折之间的关系得出服装的实际价格,再和进货价相减即可.【详解】由题意得,这件服装的实际价格是:(1200%)40%a +⨯=1.2a又因为进货价为a这件服装的实际价格比进货价高了0.2a 元故选B.【点睛】本题考查了列代数式,根据题意得出关系式是解题的关键.13.已知x ,y 满足21202x y ⎛⎫-++= ⎪⎝⎭,则()()222233143x y xy x y xy +----化简后的结果为() A. B. 12- C. 12 D. 1【答案】B【解析】【分析】根据非负性即可解得x ,y 的值,根据整式的混合运算法则化简,代入即可. 【详解】21202x y ⎛⎫-++= ⎪⎝⎭且20-≥x ,2102y ⎛⎫+≥ ⎪⎝⎭.20x -=,102y += 12,2x y ==-. ()()222233143x y xy x y xy +----=2222333343x y xy x y xy +-+--=2xy - =2122⎛⎫-⨯- ⎪⎝⎭=12- 故选B.【点睛】本题考查了绝对值的非负性及整式的化简求值,熟练掌握运算法则是解题的关键.14.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则abca b c ++ 的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有( )A. 4个B. 3个C. 2个D. 1个 【答案】D【解析】【分析】利用相反数,绝对值,以及倒数的性质判断即可.【详解】①只有符号相反的数互为相反数,不符合题意;②两个四次多项式的和不一定是四次多项式,不符合题意;③若abc>0,则abca b c ++的值为3或一1,符合题意;④如果a 大于b ,那么a 的倒数不一定小于b 的倒数,不符合题意,故选D .【点睛】此题考查了整式的加减,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键. 15.某校师生到外地进行社会实践活动.若学校租用45座的客车x 辆,则余下20人无座位;若租用60座的客车则可少租用2辆,但只有一辆还没坐满,则乘坐最后一辆60座客车的人数是().A. 200-60xB. 160-15xC. 200-15xD. 140-15x【答案】C【解析】【分析】 先由“学校租用45座的客车x 辆,则余下20人无座位”表示出师生的总人数,再根据“租用60座的客车则可少租用2辆,但只有一辆还没坐满”这个条件求出最后一辆60座客车的人数.【详解】∵学校租用45座的客车x 辆,则余下20人无座位,∴师生总人数为:4520x +,又∵租用60座的客车则可少租用2辆,但只有一辆还没坐满,∴最后一辆60座客车的人数为:()452060320015x x x +--=-.所以答案为C 选项.【点睛】本题主要考查根据实际情况列出代数式,仔细读题,读懂题中各个量之间的联系是解题关键. 16.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第10次剪完后剩下绳子的长度是( ) A. (13)9m B. (23)9m C. (13)10m D. (23)10m 【答案】C【解析】【分析】根据有理数的乘方的定义解答即可. 【详解】∵第一次剪去绳子的23,还剩13; 第二次剪去剩下绳子的23,还剩13-23×13=13×(1-23)=(13)2, …… ∴第十次剪去剩下绳子的23后,剩下绳子的长度为(13)10, 故选C .【点睛】本题考查了有理数的乘方,理解乘方的意义是解题的关键. 二、填空题.(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.把答案写在题中横线上)17.将8.20382用四舍五入法精确到0.01为______.【答案】8.20【解析】【分析】把千分位上的数字3进行四舍五入即可.【详解】8.203828.20故答案为8.20.【点睛】本题考查了近似数和有效数字,熟练掌握四舍五入是解题的关键.18.规定符号“”的意义是()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或比如231318=-=,2232311=+=.求下列各式的值.(1)()41-=______;(2)()()32--=______. 【答案】 (1). 17 (2). 1【解析】【分析】(1)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值; (2)根据()()22,a b a b a b a b a b a b ⎧->=⎪=⎨+<⎪⎩或即可求得所求式子的值. 【详解】(1)()41-=24(1)17--=. (2)()()32--=23(2)1-+-=.故答案为:17,1.【点睛】本题考查了新定义下的实数运算,根据所给式子分情况代入是解题的关键.19.图1是一组有规律的图案,第①个图集中有4个三角形,第②个图案中有7个三角形,第③个图案中有10个三角形,……依此规律,第⑦个图案中有______个三角形,第n 个图案中有______个三角形.【答案】 (1). 22 (2). (3n +1)【解析】【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…依此规律,第n 个图案有(3n+1)个三角形.【详解】∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形, 第(3)个图案有3×3+1=10个三角形, …∴第n 个图案有(3n +1)个三角形.当n =7时,3n +1=3×7+1=22,故答案为:22,(3n +1).【点睛】本题考查了图形的规律,根据数据找到规律是解题的关键.三、解答题.(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.计算下列各小题.(1)()2213602210--÷⨯+-; (2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭. 【答案】(1)192;(2)169. 【解析】【分析】 (1)先计算乘方,再算乘除,最后计算加减.(2)先计算乘方,再算乘除,最后计算加减.【详解】(1)()2213602210--÷⨯+-; 119602410=-⨯⨯+ 3922=-+ 192=(2)()()222123455⎛⎫-+⨯---÷- ⎪⎝⎭ 4316525=-+⨯+⨯448125=-++169=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.21.嘉淇准备完成题目:化简:22(68)(652)x x x x ++-++,发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案结果是常数.”通过计算说明原题中“”是几?【答案】(1)–2x 2+6;(2)5.【解析】【分析】(1)原式去括号、合并同类项即可得;(2)设“”是a,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【详解】(1)(3x 2+6x+8)﹣(6x+5x 2+2)=3x 2+6x+8﹣6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“”是a,则原式=(ax 2+6x+8)﹣(6x+5x 2+2)=ax 2+6x+8﹣6x ﹣5x 2﹣2=(a ﹣5)x 2+6,∵标准答案的结果是常数,∴a ﹣5=0,解得:a=5.【点睛】本题主要考查整式的加减,解题的关键是掌握去括号、合并同类项法则.22.已知a ,b ,c 在款轴上的位置如图2所示,(1)请用“<”或“>”填空:abc______0,c +a______0,c -b______0,;(2)化简a c a b b c ---+-.【答案】(1) >,<,<;(2) 2b−2c.【解析】【分析】先根据a、b、c三点在数轴上的位置判断出abc的符号及其绝对值的大小,再比较大小和化简即可.【详解】(1) ∵c<b<0<a,∴abc>0,c+a<0,c−b<0(2) ∵c<b<0<aa-c>0,a-b>0,b-c>0|a−c|−|a−b|+|b−c|=a−c−a+b+b−c=2b−2c.故答案为:>,<,<;2b−2c.【点睛】本题考查了绝对值的化简,根据数轴判断式子的符号是解题的关键.23.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a-2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并将整式化简.【答案】(1)5a+3b;2a+3b;(2)9a+11b.【解析】【分析】(1)根据题意表示出第二边与第三边即可;(2)三边之和表示出周长,化简即可;【详解】(1)则第二边的边长为5a+3b,第三边的边长为2a+3b;故答案为5a+3b;2a+3b;(2)周长为:2a+5b+5a+3b+2a+3b=9a+11b.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.如图3,小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题.(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,最大值是多少?写出最大值的运算式;(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小,最小值是多少?写出最小值的运算式;(3)从中抽取除0以外的4张卡片,将这4个数字进行加、减、乘、除、乘方混合运算,每个数字只能用一次,使结果为24.写出两种运算式子.【答案】(1)最大是20,运算式是(-5) (-4);(2)最小是-2.5,运算式是(-5) 2;(3)()()456224-⨯-+-=,()()425624----⨯=⎡⎤⎣⎦(答案不唯一)【解析】【分析】(1)根据题意和给出的五张卡片可以解答本题;(2)根据题意和给出的五张卡片可以解答本题;(3)根据题意可以写出相应的算式,本题答案不唯一.【详解】(1)由题意得,抽取2张卡片,乘积最大是20,运算式是(-5) (-4)(2)由题意得,抽取2张卡片,卡片上数字相除的商最小是-2.5,运算式是(-5) 2(3)由题意得,()()456224-⨯-+-=()()425624----⨯=⎡⎤⎣⎦【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.25.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下: 与标准质量的差值(单位:千克)−3.5 −2 −1.5 0 1 2.5筐数2 4 2 13 8(1)20筐白菜中,最重的一筐比最轻的一筐重___千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?【答案】(1)6;(2)与标准重量比较,20筐白菜总计超过5千克;(3)出售这20筐白菜可卖549元.【解析】【分析】(1)求出最重的一筐的重量和最轻的一筐的重量,相减即可得出答案;(2)将20筐白菜的重量相加即可得出答案;(3)将总重量乘以价格即可得出答案.详解】解:(1)根据题意可得最重的一筐重:15+2.5=17.5(千克)最轻的一筐重:15-3.5=11.5(千克)∴最重的一筐比最轻的一筐重:17.5-11.5=6(千克);(2)2×(-3.5)+4×(-2)+2×(-1.5)+1×0+3×1+8×2.5=5答:与标准重量比较,20筐白菜总计超过5千克;(3)1.8×(15×20+5)=549(元)答:出售这20筐白菜可卖549元.【点睛】本题主要考查了正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性.26.如图4,点A,B,C在数轴上表示的数分别是1, , ,点E到点B,C的距离相等,点P从点A出发,向左运动,速度是每秒0.3个单位长度.设运动的时间是t秒.(1)点E表示的数是________;(2)在t=3,t=4这两个时刻,使点P更接近原点O的时间是哪一个?(3)若点P分别t=8,t=p两个不同的时刻,到点E的距离相等,求p的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子________的值可以体现点M和点N之间的距离,这个式子的值越小,两个点的距离越近.【答案】(1) −32;(2) t=3;(3)283;(4) |m−n|.【解析】分析】(1)根据实数在数轴上的排列特点和绝对值的意义,先根据E点到原点的距离是确定该数的绝对值是32,在根据该点在原点的左侧还是右侧判断其符号.(2)分别求出两个时间点上点P 的位置,即可判断;(3)根据t=8时,求出点P到E点的距离,确定t=p时P点的位置,即可求n的值;(4)根据数轴上两点间的距离公式即可.【详解】(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是32,符号是“−”,故答案是:−3 2 .(2)当t=3,t=4时0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t=3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=4时,点P的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t=3(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是−1.6.此时点P到点A距离是2.6个单位长度,所以p=2.6÷0.3=2 83.故答案是2 83.(4)根据数轴上两点间的距离公式点M和N的距离等于|m−n|,故答案是|m−n|.【点睛】本题考查了数轴与两点间的距离的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.。
人教版数学七年级上学期《期中考试试卷》(含答案解析)
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格
元
元
元
家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年人教版数学七年级上册期中测试学校________ 班级________ 姓名________ 成绩________一、选择题)1.下列四个几何体中,从正面看与从左面看相同的几何体有(A. 1个B. 2个C. 3个D. 4个2.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( )A. 庆B. 力C. 大D. 魅3.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为( )A.2.3×108B. 0.23×109C. 23×107D. 2.3×1094.若x2-3y-5=0,则6y-2x2-6的值为( ) A. 4 B. -4 C. 16 D. -16 5.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:b a>0;其中正确的是( ) A. 甲乙 B. 丙丁 C. 甲丙 D. 乙丁6.当1<a<2时,代数式|a -2|+|1-a|的值是( )A. -1B. 1C. 3D. -37.下列各组数中,值相等的是( )A. 23和32B. ()3--和3--C. 32-和()32-D. ()8--和8- 8.下列计算中不正确的是( )A. (﹣1)4×(﹣1)3=﹣1B. ﹣(﹣3)3=27C. 13÷(﹣13)3=9 D. ﹣3÷(﹣13)=9 9.下列各组中是同类项的是( )A. 234a b -与34ab - B. 3512m n -与53666n m - C. 232x y -与323x yD. a 与c 10.计算:2443292⎛⎫-÷⨯- ⎪⎝⎭,结果应是( ) A . 16- B. 81-C. 16D. 81 11.化简()()b c a c --++++的结果是( )A. -a bB. b a -C. a b c -+D. b c a +-12.如图,下列各式能够表示图中阴影部分的面积的是( )①()at b t t +-;②2at bt t --;③()()ab a t b t ---;④()()2a t tb t t t -+-+ A. 只有① B. ①② C. ①③ D. ①②③④二、填空题:只要求填最后结果.13.如图为洪涛同学的小测卷(每小题25分,共100分),他的得分应是______分. 姓名 洪涛 得分?填空 ①2的相反数是 -2 ;②倒数等于它本身的数是1和-1;③-1的绝对值是 1 ;④2的立方是 6 .14.已知22n mx y -是关于x 、y 的5次单项式,且系数是4,则m n -=______. 15.定义一种新的运算:2x y x y x +*=,如:32153133+⨯*==,则(23)2**=________. 16.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为_____.17.已知非零有理数a 、b 满足0a b a b +=.则ab ab 的值为______. 18.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a +b=_____.三.解答题:解答要写出必要的文字说明或演算步骤.19.计算(1)()()()5423811---⨯-÷- (2)()()222172363⎛⎫-+⨯-+-÷- ⎪⎝⎭(3)()()()()3215325⎡⎤-⨯-÷-+⨯-⎣⎦(4)()()24213352402235⎡⎤⎛⎫-⨯--⨯-+÷-- ⎪⎢⎥⎝⎭⎣⎦20.如图是由若干个完全相同的小正方体组成的几何体.(1)请画出这个几何体从不同方向看到的图形 (2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面看和从上面看形状不变,那么最多可以再添加多少个小正方体.21.化简(1)()()222233x xy y xy ---(2)221113322mn m m mn ⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭22.化简求值,()()22225343a b ab ab a b ---+,其中12a =,4b =-. 23.一辆出租车司机某天在东西方向的公路上营运,往东行驶的路程记作正数,往西行驶的路程记作负数.全天行程的记录如下:30,-28,-13,15,27,-30,45,-27;(单位:千米)(1)当小张将最后一位乘客送到目的地时,距出发地点的距离为多少千米?(2)若每千米的营业额为7元,则小张这天的总营业额为多少元?(3)在(2)的情况下,如果营运成本为每千米2元,那么这天盈利多少元?24.某厂销售一种茶壶和茶杯,茶壶每只定价40元,茶怀每只定价5元.厂方在开展促销活动期间,向客户提供两种优惠方案:①茶壶和茶杯都按定价的90%付款;②买一个茶壶送一个茶杯.现某客户要到该厂购买x 个茶壶(1x ≥),茶杯个数是茶壶数的4倍少5.(1)若该客户按方案①购买,需付款______元(用含x代数式表示);若该客户按方案②购买.需付款______元;(用含x 的代数式表示)(2)若40x =,通过计算说明此时按哪种方案购买较为合算?答案与解析一、选择题1.下列四个几何体中,从正面看与从左面看相同的几何体有()A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】主视图、左视图是分别从物体正面、左面看所得到的图形.根据主视图与左视图相同,可得答案.【详解】①正方体的主视图与左视图都是边长相等的正方形,符合题意;②球的主视图与左视图都是半径相等的圆,符合题意;③圆锥的主视图与左视图都是等腰三角形,且腰与底边分别相等,符合题意;④圆柱的主视图与左视图都是长方形,且长与宽分别相等,符合题意;故选:D.【点睛】本题考查了简单几何体的三视图,考核了学生的空间想象力和抽象思维能力.2.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是( )A. 庆B. 力C. 大D. 魅【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“力”是相对面,“创”与“庆”是相对面,“魅”与“大”是相对面,故选A.【点睛】本题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.3.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为( )A. 2.3×108B. 0.23×109C. 23×107D. 2.3×109【答案】A【解析】解:将2.3亿用科学记数法表示为:2.3×108.故选A.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若x2-3y-5=0,则6y-2x2-6的值为( )A. 4B. -4C. 16D. -16【答案】D【解析】试题分析:由x2﹣3y﹣5=0可得x2﹣3y=5,所以6y﹣2x2﹣6=﹣2(x2﹣3y)﹣6=﹣2×5﹣6=﹣16,故答案选D.考点:整体思想.5.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( )A. 甲乙B. 丙丁C. 甲丙D. 乙丁【答案】C【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【详解】甲:由数轴有,0<a<3,b<−3,∴b−a<0,甲的说法正确,乙:∵0<a<3,b<−3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<−3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<−3,∴ba<0,丁的说法错误;故选C.【点睛】此题考查绝对值,数轴,解题关键在于结合数轴进行解答.6.当1<a<2时,代数式|a-2|+|1-a|的值是( )A. -1B. 1C. 3D. -3 【答案】B【解析】【分析】知识点是代数式求值及绝对值,根据a的取值范围,先去绝对值符号,再计算求值.【详解】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选B.【点睛】考核知识点:绝对值化简.7.下列各组数中,值相等的是()A. 23和32B. ()3--和3--C. 32-和()32-D. ()8--和8-【答案】C【解析】【分析】 分别利用乘方的意义、绝对值的定义以及相反数的定义分析求出即可.【详解】A 、239=,328=,故此选项错误;B 、 ()33--=,33---,故此选项错误;C 、328-=-,()328-=-,故此选项正确;D 、 ()88--=,8-,故此选项错误;故选:C . 【点睛】本题主要考查了有理数的乘方、相反数以及绝对值等知识,正确把握有理数乘方的意义是解题关键.8.下列计算中不正确的是( )A. (﹣1)4×(﹣1)3=﹣1B. ﹣(﹣3)3=27 C . 13÷(﹣13)3=9 D. ﹣3÷(﹣13)=9 【答案】C【解析】∵(﹣1)4×(﹣1)3=1×(−1)=−1, ∴选项A 正确;∵﹣(﹣3)3=−(−27)=27,∴选项B 正确; ∵13÷(﹣13)3=13÷(−127)=−9, ∴选项C 不正确; ∵−3÷(−13)=9, ∴选项D 正确.故选C.9.下列各组中是同类项的是( )A . 234a b -与34ab - B. 3512m n -与53666n m - C. 232x y -与323x yD. a 与c 【答案】B【解析】【分析】根据同类项的定义进行选择即可.【详解】A 、234a b -与34ab -相同字母的指数不同,故该选项错误; B 、3512m n -与53666n m -是同类项,故该选项正确; C 、232x y -与323x y 相同字母的指数不同,故该选项错误;D 、 a 与c 所含字母不相同,故该选项错误;故选:B .【点睛】本题考查了同类项,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点.10.计算:2443292⎛⎫-÷⨯- ⎪⎝⎭,结果应是( ) A. 16-B. 81-C. 16D. 81【答案】B【解析】【分析】 先乘方,把除法运算转化成乘法运算,再从左至右的顺序计算即可. 【详解】2443292⎛⎫-÷⨯- ⎪⎝⎭ 991644=-⨯⨯ 81=-.故选:B .【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算顺序和运算法则是解题的关键.11.化简()()b c a c--++++的结果是( ) A. -a bB. b a -C. a b c -+D. b c a +- 【答案】A【解析】【分析】 先去括号,再合并同类项就可以得出答案.【详解】()()b c a c --++++b c a c =--++a b =-.故选:A .【点睛】本题考查了整式的加减,属于基础题,解决此类题目的关键是熟记去括号法则. 12.如图,下列各式能够表示图中阴影部分的面积的是( ) ①()at b t t +-;②2at bt t --;③()()ab a t b t ---;④()()2a t t b t t t -+-+A. 只有①B. ①②C. ①③D. ①②③④【答案】D【解析】【分析】根据题意可以画出相应的图形,从而求出阴影部分的面积,从而判断题目中的结论正确与否.【详解】根据题目可以分以下几种情况:(1)如下图所示:则阴影部分的面积为:()at b t t +-,故①正确.(2)如下图所示:则阴影部分的面积为;2at bt t +-,故②正确.(3)如下图所示:则阴影部分的面积为:()()ab a t b t ---,故③正确.(4)如下图所示:则阴影部分的面积为:()()2a t tb t t t -+-+,故④正确. 由上可得,①②③④都正确.故选:D.【点睛】本题考查了列代数式,关键是可以画出求阴影部分的面积的不同情况下的图形.二、填空题:只要求填最后结果.13.如图为洪涛同学的小测卷(每小题25分,共100分),他的得分应是______分.【答案】75【解析】【分析】根据相反数的定义、倒数、绝对值性质及立方的定义逐一判断即可得.【详解】①2的相反数是-2,此题正确;②倒数等于它本身的数是1和-1,此题正确;③-1的绝对值是1,此题正确;④2的立方是8,此题错误;则洪涛同学的得分是3×25=75(分),故答案为:75.【点睛】本题主要考查了有理数的乘方、绝对值、相反数及倒数,解题的关键是掌握相反数的定义、倒数、绝对值性质及立方的定义.-=______.14.已知2-是关于x、y的5次单项式,且系数是4,则m nmx y2n-【答案】5【解析】【分析】直接利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,分析求出即可.【详解】∵22n mx y -是关于x y 、的5次单项式,且系数是4,∴24m -=,25n +=,解得:23m n =-=,,则235m n -=--=-.故答案为:5-.【点睛】本题主要考查了单项式,正确利用单项式的次数与系数的确定方法得出是解题关键.15.定义一种新的运算:2x y x y x +*=,如:32153133+⨯*==,则(23)2**=________. 【答案】2【解析】根据题中的新定义得:(2*3)*2=(2232+⨯)*2=4*2=444+=2. 点睛:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长为2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为_____.【答案】3a +2b【解析】观察图形可知,这块矩形较长的边长=边长为3a 的正方形的边长+边长2b 的小长方形的边长,计算即可求. 详解:依题意有:这块矩形较长的边长为:3a+2b .故答案为3a+2b .点睛:考查了列代数式,关键是将阴影如何拼接成一个矩形,利用数形结合思想解决问题.17.已知非零有理数a 、b 满足0a b a b +=.则ab ab的值为______. 【答案】1-【解析】【分析】先确定a b ,的正负,再根据有理数的除法,即可解答.【详解】∵非零有理数a b 、满足0a b a b +=, ∴00a b ,或00a b ><,,∴0ab <, ∴1ab ab ab ab==--, 故答案为:1-.【点睛】本题考查了绝对值的意义、有理数的除法,解决本题的关键是确定ab 的符号.18.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a +b=_____.【答案】109【解析】【分析】观察不难发现,一个整数加上以这个整数为分子,整数的平方减1作为分母的分数,等于这个整数的平方乘以这个分数,然后求出a 、b ,再相加即可得解.【详解】∵2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…, 10+b a =102×b a, ∴a=10,b=102-1=99,∴a+b=10+99=109,故答案为109.【点睛】本题考查了规律型——数字的变化类,观察出整数与分数的分子分母的关系是解题的关键.三.解答题:解答要写出必要的文字说明或演算步骤.19.计算(1)()()()5423811---⨯-÷- (2)()()222172363⎛⎫-+⨯-+-÷- ⎪⎝⎭ (3)()()()()3215325⎡⎤-⨯-÷-+⨯-⎣⎦(4)()()24213352402235⎡⎤⎛⎫-⨯--⨯-+÷-- ⎪⎢⎥⎝⎭⎣⎦【答案】(1)17- ;(2)85-; (3)5-; (4)1-【解析】【分析】(1)先乘方再乘除,最后计算加减,注意符号的处理;(2)先乘方,把除法运算转化成乘法运算,再计算乘除,最后计算加减;(3)先乘方,再计算括号内的,最后从左往右的顺序计算即可;(4)先乘方,再计算括号内的,最后计算加减即可.【详解】(1)()()()5423811---⨯-÷- 9811=--⨯÷17=-;(2)()()222172363⎛⎫-+⨯-+-÷- ⎪⎝⎭ 1492969=-+⨯-÷ 491869=-+-⨯85=-;(3)()()()()3215325⎡⎤-⨯-÷-+⨯-⎣⎦15(910)=⨯÷-15(1)=⨯÷-5=-;(4)()()24213352402235⎡⎤⎛⎫-⨯--⨯-+÷-- ⎪⎢⎥⎝⎭⎣⎦ 139(25240162)35=-⨯--⨯+÷- 3(15152)=---+-32=-+1=-.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算顺序和运算法则是解题的关键.20.如图是由若干个完全相同的小正方体组成的几何体.(1)请画出这个几何体从不同方向看到的图形(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面看和从上面看形状不变,那么最多可以再添加多少个小正方体.【答案】(1)见解析;(2)最多可以再添加2个小正方体【解析】【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方数形数目分别为2,1,1;据此可画出图形.(2)可在第1列第二层第一行加一个,第1列第三层第一行加一个,共2个.【详解】(1) 主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,第一列2个小正方数形,第二、三列的第二行的小正方形数目分别为1,1;如图所示:(2)可在第1列第二层、第三层第一行各加一个,共2个∴最多可以再添加2个小正方体.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.21.化简(1)()()222233x xy y xy ---(2)221113322mn m m mn ⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭【答案】(1)22253x xy y +-;(2)375263mn m -- 【解析】【分析】(1)去括号,合并同类项即可;(2)去括号,合并同类项即可. 【详解】(1)()()222233x xy y xy --- 222439x xy y xy =--+22253x xy y =+-;(2)221113322mn m m mn ⎛⎫⎛⎫----+ ⎪ ⎪⎝⎭⎝⎭ 221113322mn m m mn =---+- 375263mn m =--. 【点睛】本题考查了整式的加减,熟练掌握去括号的法则是解题的关键.22.化简求值,()()22225343a b ab ab a b ---+,其中12a =,4b =-. 【答案】223a b ab -,11-【解析】【分析】原式去括号合并同类项化成最简式,再把数值代入计算即可.【详解】()()22225343a b ab ab a b ---+2222155412a b ab ab a b =-+-223a b ab =-, 当12a =,4b =-时, 原式()()221134422⎛⎫=⨯⨯--⨯- ⎪⎝⎭38=--11=-.【点睛】本题考查了整式的化简求值,熟练掌握去括号的法则是解题的关键.23.一辆出租车司机某天在东西方向的公路上营运,往东行驶的路程记作正数,往西行驶的路程记作负数.全天行程的记录如下:30,-28,-13,15,27,-30,45,-27;(单位:千米)(1)当小张将最后一位乘客送到目的地时,距出发地点的距离为多少千米?(2)若每千米的营业额为7元,则小张这天的总营业额为多少元?(3)在(2)的情况下,如果营运成本为每千米2元,那么这天盈利多少元?【答案】(1) 当小张将最后一位乘客送到目的地时,距出发地点的距离为19千米; (2) 若每千米的营业额为7元,则小张这天的总营业额为1505元;(3) 在(2)的情况下,如果营运成本为每千米2元,那么这天盈利1075元【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据单价乘以路程,可得营业额;(3)根据路程乘以每千米的盈利,可得答案.【详解】(1)()()()()3028131527304527+-+-+++-++-()()()()()3015274528133027=++++-+-+-+-()11798=+-19=千米,答:当小张将最后一位乘客送到目的地时,距出发地点的距离为19千米; (2)30281315273045277⎡⎤+-+-+++-++-⨯⎣⎦()()30152745281330277⎡⎤=++++-+-+-+-⨯⎣⎦ ()117987=+⨯1505=(元),答:若每千米的营业额为7元,则小张这天的总营业额为1505元; (3)()302813152730452772⎡⎤+-+-+++-++-⨯-⎣⎦2155=⨯1075=(元),答:在(2)的情况下,如果营运成本为每千米2元,那么这天盈利1075元.【点睛】本题考查了正数和负数、有理数的加法乘法在实际生活中的应用,路程乘以每千米的盈利等于总盈利,注意路程是每次行驶的绝对值的和.24.某厂销售一种茶壶和茶杯,茶壶每只定价40元,茶怀每只定价5元.厂方在开展促销活动期间,向客户提供两种优惠方案:①茶壶和茶杯都按定价的90%付款;②买一个茶壶送一个茶杯.现某客户要到该厂购买x 个茶壶(1x ≥),茶杯个数是茶壶数的4倍少5.(1)若该客户按方案①购买,需付款______元(用含x 的代数式表示);若该客户按方案②购买.需付款______元;(用含x 的代数式表示)(2)若40x =,通过计算说明此时按哪种方案购买较为合算?【答案】(1) 5422.5x -,5525x -;(2) 按照方案①购买较为合算【解析】【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=40代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算.【详解】(1)按方案①购买,需付款:()4054590%5422.5x x x ⎡⎤+-⨯=-⎣⎦(元);按方案②购买,需付款:()405455525x x x x +--=-(元);(2)当40x =时,方案①购买,需付款:5422.52137.5x -=(元);方案②购买.需付款:55252175x -=(元);2137.5<2175,所以按照方案①购买较为合算.【点睛】本题考查了列代数式和求代数式求值,解题的关键是认真分析题目,读懂题意,理解两种优惠方案蕴含的数量关系.。