反胶团萃取

合集下载

生化工程下游技术知识课件第八章反胶团萃取

生化工程下游技术知识课件第八章反胶团萃取

反胶团萃取技术与其他分离技术的结合使用可以进一步提高分离效果和降低成本。
对生化工程的贡献
反胶团萃取技术的出现为生化工 程领域提供了一种新的分离纯化 手段,有助于提高产品的质量和
产量。
反胶团萃取技术可以应用于生物 医药、食品加工、环境保护等领 域,有助于推动相关产业的发展。
反胶团萃取技术还有助于促进生 化工程与其他学科的交叉融合,
反胶团萃取技术可用于细胞分离,根据细胞的不同性质实现细胞的分离和纯化。
细胞破碎
反胶团萃取也可用于细胞破碎,通过破坏细胞膜释放细胞内的内容物,用于下游 提取和纯化过程。
04 反胶团萃取的挑战与前景
反胶团萃取技术的局限性
适用范围有限
目前反胶团萃取技术主要适用于生物大分子物质的分离,对于小 分子物质的分离效果不佳。
促进相关领域发展
反胶团萃取技术的广泛应用将促进相关领域的发展,如生物制品的 分离纯化、药物制备等。
推动科技进步
反胶团萃取技术的发展将推动科技进步,为其他领域的技术创新提供 借鉴和启示。
05 结论
总结
反胶团萃取是一种有效的生化分离技术,具有高选择性、高回收率和低能耗等优点。
反胶团萃取在蛋白质、酶和其他生物分子的分离纯化方面具有广泛的应用前景。
推动学科发展。
对未来的影响
随着反胶团萃取技术的不断发展和完 善,其应用范围和应用领域将进一步 扩大。
反胶团萃取技术的深入研究将有助于 推动生化工程领域的技术创新和产业 升级,为人类社会的可持续发展做出 贡献。
反胶团萃取技术与其他技术的结合使 用将有助于解决一些传统分离方法难 以解决的问题,提高分离效果和降低 成本。
优化操作条件
通过实验研究,优化反胶 团萃取的操作条件,降低 对设备的要求,提高技术 的可操作性。

反胶团萃取技术

反胶团萃取技术

反胶团萃取法,亦称“逆胶束萃取法”。

利用反相微胶团在油相中形成的亲水空穴能选择性地溶解某些蛋白质分子的特性,来分离萃取蛋白质分子的一种方法。

反相微胶团是指油相中表面活性剂浓度超过临界胶团浓度后,在非极性油溶液中形成的聚集体,其内腔由表面活性剂分子的亲水头构成,外面被伸向连续油相的憎水尾部所包围,这种结构使其在连续油相中形成了许多亲水空穴,水相中的极性分子有可能溶解在油相中。

如水相中含有几种蛋白质,可调节系统的条件,使某些蛋白质溶于胶团中,而其他蛋白质则不能,以此达到分离的目的。

该法已成功地通过控制pH和氯化钾浓度,实现了α-核糖核酸酶、细胞色素C和溶菌酶的分离以及α-淀粉酶的连续萃取和反萃取操作。

反胶团萃取

反胶团萃取

静电相互作用: 反胶团萃取一般采用离子型表面活性剂制备反胶团相,其中 应用最多的是阴离子型表面活性剂AOT,阳离子型表面活性剂主 要有氯化三辛基甲铵和溴化十六烃基三甲胺等季铵盐。这些表面 活性剂所形成的反胶团内表面带有负电荷或正电荷。因此,当水 相pH值偏离蛋白质等两性电解质的等电点时,由于溶质带正电荷 (pH<pI)或负电荷(pH>pI),与表面活性别发性强烈的静电相互作 用,影响溶质在反胶团相的溶解率,即在两相间的分配系数。理 论上,当溶质所带电荷与表面活性剂相反时,由于静电引力的作 用,溶质易溶于反胶团,溶解率或分配系数较大,反之,则不能 溶解到反胶团相中。
(2)反胶团内酶反应动力学行为与在正常的水相中相似, 活性与pH的关系同样表现为钟状曲线。
3、反胶团溶解作用的推动力
生物分子溶解于AOT等离子型表面活性剂反胶团相的
主物分子间的空间相互作用;
3、疏水性相互作用。 这些因素对生物分子的溶解率(萃取率)都有重要影 响,其中静电相互作用是最主要的。
经验式推算:
式中右侧第一项为反胶团的水核直径,第二项 (2.4nm)为AOT分子长度的二倍。一般反胶团的W0不超过 40。因此,根据上式,利用AOT形成的反胶团水核直径 一般不超过12nm,可大致容纳一个直径为5—10nm的蛋 白质。当蛋白质分子与反胶团直径相比大得多时,则难 溶解于反胶团中。
2、反胶团的溶解作用
4、萃取及反萃取动力学
水相中的溶质加入反胶团相需经历三步传质过程: 通过表面液膜扩散从水相到达相界面; 在界面处溶质进入反胶团中; 含有溶质的反胶团扩散进入有机相。
反萃取操作中溶质亦经历相似的过程,只是方 向相反,在界面处溶质从反胶团内释放出来。
F:\临时\反胶团萃取.pdf

第六章 萃取-反胶团萃取

第六章 萃取-反胶团萃取

34
1.


什么是反胶团?反胶团的微小界面和微小水 相具有哪两个特异性的功能? 反胶团(Reversed Micelles):是两性表面 活性剂在有机溶剂中亲水性基团自发地向内 聚集而成的,内含微小水滴的,空间尺寸仅 为纳米级的集合型胶体。 反胶团的微小界面和微小水相具有两个特异 性的功能: (1)具有分子识别并允许选择性透过的半透 膜的功能; (2)在疏水性环境中具有使亲水性大分子如 蛋白质等保持活性的功能。 35
10
(3)反胶团含水率W:有机相中水与表面 活性剂的摩尔比。
W越大,反胶团的半径越大。W=C水/C表 注意:反胶团“水池”中的水与普通的水在性质 上是有差异的。当含水率W0较低时,反胶团水池 内的理化性质与正常水相差悬殊。
11


例如,用AOT为表面活性剂时,当W0<6-8时,反胶团内 微水相的水分子受表面活性剂亲水基团的强烈束缚,表观 粘度上升50倍,水合化一分子AOT需6-8个水分子,其它 水分子不受束缚; 当W0>16时,微水相的水与正常的水接近,反胶团内形成 双电层。
25
四、反胶团萃取蛋白质的应用
1、分离蛋白质混合物
如利用反胶团分离核糖核酸酶、细胞色素C和溶菌 酶三种蛋白。如下图。此工艺过程称为多步混合/ 澄清萃取。
26
2、浓缩α -淀粉酶
用TOMAC/异辛烷反胶团溶液对α -淀粉酶水溶解进行 两级(混合-澄清槽)连续萃取和反萃取操作。
27
结果: α-淀粉酶浓缩8倍,酶活力约为45%, 如果在反胶团相中添加非离子型表面活性 剂以提高分配系数,并增大搅拌转速提高 其传质速率,则反萃取水相中的α-淀粉酶 活力得率达到85%,浓缩17倍,且反胶团 每次循环的表面活性剂损失可减少到2.5%。

反胶团萃取的原理

反胶团萃取的原理

反胶团萃取的原理
反胶团萃取是一种从溶液中去除胶体颗粒的方法。

它利用与胶体颗粒相反的电荷特性,通过添加电荷相反的染料或胶体颗粒,使胶体颗粒与添加剂发生吸附作用,形成重叠反胶团结构。

这些重叠的反胶团结构会相互吸引,从而形成更大的聚集体,使胶体颗粒变得更易沉淀。

该方法的原理是通过添加电荷相反的剂量,改变胶体颗粒表面的电荷性质。

胶体颗粒通常具有带负电或带正电的表面电荷分布,造成它们在溶液中的稳定分散。

当添加具有相反电荷的反胶团剂,如阳离子染料或阳离子胶体颗粒时,这些反胶团剂会吸附到胶体颗粒表面,改变胶体颗粒电荷的分布。

反胶团剂与胶体颗粒的吸附作用导致胶体颗粒之间的吸引力增强,形成更大的组块。

这些组块比起单个胶体颗粒更重,因此在重力或离心力的作用下更容易沉淀。

此外,重叠的反胶团结构还可以通过减少胶体颗粒与溶剂之间的接触面积,进一步促进沉淀。

反胶团萃取方法简单易行,并且可以有效地去除溶液中的胶体颗粒。

通过调整反胶团剂的剂量和溶液的pH值等条件,可以
控制胶体颗粒的去除效果。

然而,需要注意的是,该方法可能对一些溶液中的其他成分产生影响,因此在具体操作中需要仔细考虑和控制实验条件。

反胶团萃取

反胶团萃取
27
pUK21CMV1.2
pPhyt148
28
实验方法
培养基、溶液及分析试剂的配制
质粒DNA的粗提
-SDS碱裂解法大量制备质粒DNA
大肠杆菌RNA的提取
-RNA out 法
反胶团萃取溶液的制备
反胶团萃取溶液的制备
核酸水溶液的制备
核酸测定
凝胶电泳
29
反胶团萃取溶液的制备
称取一定质量的表面活性剂 TOMAC( 三 辛 基 甲 基 氯 化 铵 ) 或 2C16QA( 双 十 六 烷 基 二 甲 基 溴 化 铵 ) , 溶于一定体积比例的异辛烷/正戊醇 混合有机溶剂中,配成一定浓度的 透明澄清的反胶团溶液:TOMAC溶 于 1 % ( v/v ) 正 戊 醇 / 异 辛 烷 ; 2C16QA溶于5%(v/v)正戊醇/异辛 烷。
反萃取率E’
核酸的反萃取率E’定义为反萃入另一 水相的核酸浓度和正向萃取平衡时的有 机相核酸浓度的比值:
E’ = [C’aq]eq / [Corg]eq = [C’aq]eq /([Caq]init-[Caq]eq)
35
对反胶团萃取的考察因素
pH值
表面活性 剂浓度
萃取时间
反胶束萃取
离子强度
初始浓度
蛋白质溶解模型:
a、水壳模型:蛋白质位于水池的中 心,周围存在的水层将其与反胶团壁 隔开;
b、半岛模型:pro表面存在强烈疏水 区,该区直接与有机相接触;
c、pro吸附于反胶团内壁;
d、pro疏水区与几个反胶团的S疏水
尾发生相互作用,被几个小反胶团所
“溶解”。
5
溶解推动力
A 静电作用:
当溶质所带电荷与表面活性剂相反时,由于静电引力的作用,溶质易 溶于反胶团,溶解率或分配系数较大,反之,则不能溶解到反胶团相 中.

反胶团萃取

反胶团萃取
在吸附过程,气体或液体中的分子、原子或离 子传递到吸附剂固体的内外表面,依靠键或微弱的 分子间力吸着于固体上。解吸是吸附的逆过程。
吸附操作是一种古老的技术。人们发现早在两千多 年前西汉古墓中就用木炭吸湿防潮,这说明当时已了解 到木炭有很强的吸湿作用。20世纪50年代前,因吸附剂 种类少,常用的只有酸性白土、硅藻土和活性炭等几种, 选择吸附的能力低,只限于脱色、脱臭、吸湿、干燥等 小型的操作过程。20世纪60年代以来,随着性能优良的 吸附剂的不断开发(如合成沸石、活性氧化铝、分子筛等) 以及各行各业分离要求的不断提高,使吸附分离技术得 到了迅速发展,成为完整的单元操作过程。目前,吸附 分离技术已经在轻工、炼油、化工、食品、环保等许多 领域得到了广泛的应用。
1、吸附原理和吸附剂
(1)、吸附原理
吸附剂固体之所以能够吸附流体分子,是因为固体表 面上的质点处于力场不平衡状态, 固体表面具有过剩的能 即表面能,当固体与流体分子接触时,被吸附物质与固体之 间由于某种吸附力的作用使固体与流体混合物中的某些 组分产生吸附,从而降低了表面能。吸附过程所放出的热 量,称为该物质在固体表面的吸附热。
(3)、在生物转化、化学渗透释放和电泳等中引入双 水相分配,给已有的技术赋予了新的内涵,为新分离过程的 诞生提供了新的思路。
二、吸附
吸附操作是指流体与某种固体相接触时,固体 能够有选择地将流体中的某些组分凝聚在其表面 上,从而达到分离的目的。这些有吸附作用的固体 称为吸附剂,在固体表面上被吸附的物质称为吸附 质或吸附物。
(1)、与温度诱导相分离、磁场作用、超声波作用、 气溶胶技术等实现集成化,改善了双水相分配技术中诸如 成相聚合物回收困难、相分离时间较长、易乳化等问题, 为双水相分配技术的进一步成熟、完善并走向工业化奠 定了基础。

第八章反胶团萃取

第八章反胶团萃取


在AOT反胶团中,水合化一分子AOT需要 6~8个水分子,而其他水分子则不受束缚, 可与普通水一样自由流动,所以当W>16 时,“水池”中的水逐渐接近主体水相粘度, 胶团内也形成双电层。
胶团变化示意图
反胶团的制备
1.液液接触法
即将含蛋白质的水相与含表面活性剂的
有机相接触。
2.注入法
将含有蛋白质的水溶液直接注入到含有
影响液膜萃取的操作参数
pH:对弱电解质,pH将影响其荷电形式
及不同电荷形式溶质的分率,从而影响 萃取率。
速度:对于支撑液膜,料液流速引起流
体力学的特性改变直接影响萃取率;对 于乳状液膜,搅拌速度影响乳化液的分 散和液膜的稳定性。
共存杂质
流动载体为离子交换萃取剂时,料液中 如果存在与目标分子带相同电荷的杂质时,由 于杂质的竞争会减小用于目标分子和供能离子 输送的载体量,引起目标分子通透性的下降。
反胶束萃取的原理: 疏
静电引力:主要是蛋白质的表面电荷
与反胶束内表面电荷(离子型表面活 性剂)之间的静电引力作用。 空间位阻作用:增大反胶束极性核的 尺寸,以减小大分子蛋白进入胶核的 传质阻力。
反胶束萃取的原理:
凡是能够引起静电引力,能够促使反
胶束尺寸增大的因素均有利于提高分 配系数。 这些因素主要是pH、离子强度、表面 活性剂种类和浓度等,通过因素优化, 实现选择性地萃取和反萃取。
液膜 料液 (W/O)/W型乳液液膜
②支撑液膜
支撑液膜是将固体膜浸在膜
溶剂(如有机溶剂中)使膜溶剂 液膜 充满膜的孔隙形成液膜。 支撑液膜分隔料液相和反萃 反 料 相,实现渗透溶质的选择性萃取。 萃 液 相 当液膜为油相时,常用的多 孔膜为聚四氟乙烯、聚乙烯和 聚丙烯等高疏水性膜。 与乳状液膜相比,支撑液膜 支撑液膜 结构简单,放大容易。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档