三年级数学抽屉原则
三年级奥数之抽屉原理

抽屉原理是在集合中对元素分配的原则和方法之一,它在数学中有着重要的应用。
下面将从什么是抽屉原理、抽屉原理的应用以及抽屉原理的实例等方面进行介绍。
一、什么是抽屉原理抽屉原理(也称为鸽巢原理)是指当把若干个物品放入若干个抽屉中时,无论如何放,总有一个抽屉中要放至少两个物品。
这是因为如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉里面放了两个物品。
抽屉原理的数学概念是一种常用的思考方法,它的核心是基于“物品数大于抽屉数”。
二、抽屉原理的应用抽屉原理在数学中有广泛的应用,特别是在组合数学、概率论和数论等领域。
它常常用来解决组合问题、分配问题以及概率问题等。
1.解决组合问题:例如,若有n+1个元素放入n个抽屉中,那么必然存在至少一个抽屉中有至少两个元素,这对于解决组合问题非常有用。
2.解决分配问题:例如,如果有n+1个待分配的任务和n个人来分配任务,那么必然存在至少一个人分配到了两个任务。
这对于资源的合理分配具有指导意义。
3.解决概率问题:例如,当从一个有限的集合中随机选择元素时,当元素的数目大于选择次数时,抽屉原理可以帮助我们理解为什么在多次实验中,一些结果出现的概率较高。
三、抽屉原理的实例以下是一些经典的抽屉原理的实例,以帮助大家更好地理解抽屉原理的应用。
1.生日原理:假设一个教室里有365个学生,那么他们中间有至少两个人的生日相同的概率是多少?根据抽屉原理,我们可以知道只要有366个学生,那么必然存在至少两个人的生日是相同的。
2.快乐数:快乐数是指一个正整数,将该数的每个数位上的数字的平方相加,再对得到的结果重复进行相同的操作,最终结果为1、根据抽屉原理,如果不是快乐数,那么一定存在循环的结果。
3.鸽巢原理:在一群鸽子和若干个鸽巢之间进行配对,如果鸽子的个数大于鸽巢的个数,那么至少有一个鸽巢中有两只以上的鸽子。
这个例子非常形象地展示了抽屉原理。
总之,抽屉原理作为一种思考方法和解决问题的原则,可以在数学问题中发挥重要的作用。
小升初数学奥数知识点 抽屉原理素材

本文由一线教师精心整理,word可编辑抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是
说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
1 / 1。
小学经典应用题抽屉原理题型解析

【例5】据说人的头发不超过20万根,据统计上海市常驻人口2350万人,根据这些数据,你 知道上海市常驻人口至少有多少人头发根数同样多吗?
解法: 人的头发不超过20万根,可看作20万个“抽屉”,2350万人可看作2350万个 “元素”, 把2350万个“元素”放到20万个“抽屉”中,得到2350÷20= 117......10 根据抽屉原则的推广规律,可知k+1=118 答:上海市常驻人口至少有118人的头发根数同样多。
【例1】幼儿园大班有41个小朋友,老师至少拿几件玩具随便分给大家,才能保证至少有一个 小朋友能得两件玩具?
解法:至少拿42个
抽屉原理(二):
基本的抽屉原则是:,如果把n+ 1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个 或更多的物体(元素)
【抽屉原则可以推广为:】 如果有m个抽屉,有k×m+r (0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。通俗 地说:如果元素的个数是抽屉个数的k倍多一些, 那么至少有一个抽屉要放(k+1)个或更多的元素
抽屉原理(一):
基本的抽屉原则是:,如果把n+ 1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个 或更多的物体(元素) 【抽屉原则可以推广为:】 如果有m个抽屉,有k×m+r (0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。通俗 地说:如果元素的个数是抽屉个数的k倍多一些, 那么至少有一个抽屉要放(k+1)个或更多的元素
【例3】幼儿园里有120个小朋友,各种玩具有364件,把这些玩具分给小朋友,是否有人得 到4件或4件以上的玩具?
解法: 364÷120=3····4 至少 如果有m个抽屉,有k×m+r (0<r≤m)个元素那么至少有一个抽屉中要放(k+1)个或更多的元素。通俗 地说:如果元素的个数是抽屉个数的k倍多一些, 那么至少有一个抽屉要放(k+1)个或更多的元素
抽屉原则

抽屉原则(一)抽屉原则的数学意义:抽屉原则的数学意义可归纳为三种类型:(1)把n+1个元素以任意确定的方式放入n个集合中,则至少有一个集合中含有二个或二个以上的元素。
(2)把mn+1个元素以任意确定的方式放入n个集合中,则至少有一个集合中至少含有m+1个或多于m+1个元素。
(3)把无限多个元素以任意确定的方式放入有限个集合中,则至少有一个集合中仍含有含有无限多个元素。
(二)抽屉原则的解题思想:运用抽屉原则解题,一般可按下列步骤:(1)较多情况中判定所论问题属于存在性、分类性题类;(存在性问题多用反证法) (2)分清题设条件,设计“抽屉”与“东西”,有时需要“制造”抽屉;有时需要灵活地将“东西”放入“抽屉”,或从“抽屉”中拿出;(3)运用抽屉原则,结合数学技巧予以证明。
常见类型(1)分割图形制造抽屉;(2)按剩余类造抽屉;(3)利用染色造抽屉。
(三)抽屉原则的应用技巧:抽屉原则虽然方法简单,当实际应用时,往往技巧性强,讲究策略,不仅要学会判定与识别适合用抽屉原则求证的题类特征,而且要熟悉掌握根据不同题意要求构造恰当的“抽屉”和物色放入抽屉的“东西”的基本方法,有时还须反复多次运用抽屉原则,或者结合运用其他数学方法灵活求解,唯有多做多看,方能熟能生巧,灵活运用。
(构造是要点)练习1:一学校有366位1981年出生的学生,那么其中至少有两位学生的生日时同一天;2:任给5个自然数,必能从中选取3个,它们的和能被3整除。
3:证明:任意n+1个小于1的非负实数中,至少有两个数的差的绝对值小于1/n。
4:如果正方形内有任意5点,那么必有两点,它们的距离不超过正方形对角线长度的一半。
5:在边长为1的正方形内有任意9个点,证明:其中至少存在三个点,它们组成的三角形的面积不大于1/8。
6:从起点起,每隔1米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎么挂,至少有两棵挂牌的树,它们之间的距离是偶数(以米为单位)。
抽屉原理的三个公式小学

抽屉原理的三个公式小学
抽屉原理是数学中的基本原理之一,也是解决数学问题时常用的方法。
它可以应用于很多领域,包括组合数学、概率论等等。
在这篇文档中,我们将介绍抽屉原理的三个公式在小学数学中的应用。
公式一:抽屉原理
在一组物体中,如果物体的数量多于抽屉的数量,那么必然会有至少一个抽屉放了多于一个物体。
例子:
小明有10个橙子,他想把这些橙子放到5个抽屉中去。
根据抽屉原理的公式一,我们可以得出结论:至少有一个抽屉中放了多于两个橙子。
公式二:补集公式
给定一个集合A,设全集为U。
那么A的补集A’中的元素个数等于U中的元素个数减去A中的元素个数。
例子:
小明有一个装满了糖果的盒子,里面有20颗不同的糖果。
他把其中10颗糖果拿出来放到另一个盒子中。
根据补集公式,我们可以得出结论:另一个盒子中糖果的数量为20减去10,即10颗糖果。
公式三:计数公式
如果一个问题可以分解为若干个独立的步骤,并且每个步骤都有相同的选择数目,那么解决这个问题的总方案数等于每个步骤的选择数目的连乘积。
例子:
小明有3件上衣和2条裤子,他想知道他可以有多少种不同的组合方式。
根据计数公式,我们可以得出结论:有3种选择上衣的方式和2种选择裤子的方式,所以总的组合方式为3乘以2,即6种组合方式。
结论
抽屉原理的这三个公式在小学数学中的应用非常广泛。
它们可以帮助我们解决很多有关组合、概率等问题。
通过这篇文档的学习,我们可以更加深入地理解和应用抽屉原理,提高我们解决问题的能力。
希望这篇文档能够对你理解和应用抽屉原理提供帮助!。
抽屉原理

练习题
1、假设空间中有六个点,其中任意三点不共线,任意四点不共面,在每两点之间连结直线段后,将每一条线段或者染上红色,或者染上蓝色。求证:不论怎样染色,一定存在一个三角形,它的三边有相同的颜色。
例6、求证:对于任给的1987个自然数,从中总可以找到若干个数,使它们的和能被1987整除。
证明:构造如下1987个和: ,若其中有一个和能被1987整除,则结论成立。否则上述1987个和除以1987的余数只能为,则其中必有两个和的余数相同,设为, ,
则能被1987整除。
例7、在任意一次集会中,其中必有两个人,他们认识的人一样多,试证明之。
例11、在100个连续自然数中,任取51个数,试证明在这51个数中,一定有两个数,其中一个是另一个的倍数。
证明:任意一个自然数都能表示成为(为自然数,为非负整数)的形式。将前100个自然数分为如下50个集合:
、
、
…、,其中前100个自然数中的每个自然数都属于其中一个集合,而且只属于一个集合。据抽屉原理:从中选51个数,必有两个数是取自同一个集合,在同一个集合中,较大的数必是较小数的倍数。
例12、设是由1985个不同的自然数组成的集合,中的元素的素因子均不超26,求证:存在,使得是某个自然数的四次方。
证明:不超过26的质数共9个:,所以这1985个正整数可表示为:的形式,,考虑的奇偶性类型,共有种类型。在1985全正整数中可找出一对、有相同奇偶性,即与奇偶性相同,。然后在剩下的个数中又可以找出两个,他们的指数、也有相同的奇偶性。如此下去,由于,故可得513对、,且有,最后,在上述的513个中,又必有两个、奇偶性相同,所以,,设,,,则
小升初数学抽屉原理知识

小升初数学抽屉原理知识
小升初数学抽屉原理知识
抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的`方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中nm,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[X]表示不超过X的最大整数。
例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
(抽屉原理)三年级奥数辅导教材(十九)

大拇指辅导空间三年级奥数辅导教材(十九)姓名家长签名抽屉原理一、抽屉原理就是:有10个苹果分别放进9个抽屉中,至少有一个抽屉中放有两个苹果。
这就是抽屉原理。
二、第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。
第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
三、例题分析:例1、敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证必有两位或两位以上老人所选的水果相同?试一试:学校图书馆买来许多故事书、科技书和连环画,每个同学任意选两本,那么,至少应有几个同学才能保证有两个或两个以上同学所选的书相同?例2、盒子里混装着5个白色球和4个红色球,想保证一次能拿出两个同颜色的球,至少要拿出多少个球?试一试:箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?例3、一个布袋里装有红、黄、蓝袜子各有5只,问一次至少取出多少只才能保证每种颜色至少有一只?试一试:抽屉里放着红、绿、黄三种颜色的球各3只,问一次至少摸出多少只才能保证每种颜色至少有一只?例4、三(2)班有50只同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件,问是否有人单独做了4件或4件以上的好事?试一试:幼儿园小班共有30个小朋友,他们每人自己都有一些玩具,他们共有玩具92件,问是否有人单独有4件或4件以上玩具?例5、在一次春游活动中,三(3)班有31人带了面包,有38人带了饮料,有36人带了水果,还有34人带了巧克力,全班共45人,可以肯定至少有多少人这四样都带了?试一试:某活动中心共有三年级学生52人,其中有35人学钢琴,有37人学电脑,有38人学美术,还有50人学外语,那么至少有多少人这四项内容全都学了?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十六、抽屉原则训练A卷班级______姓名______得分______1.画图说明,把4支铅笔放入3个笔盒内,共有______种不同的放法,各种放法中总有______个笔盒内铅笔的支数不少于2支。
那么把n+1件物品放入n个抽屉内,总有一个抽屉内的物品不少于______件。
2.把 5个棋子放入下图中四个每条边长为“1”的小三角形内,那么一定有一个小三角形内至少有______个棋子,两棋子的距离一定小于______。
3.在一条1米长的线段上的任意六个点,试证明这六个点中至少有两个点的距离不大于20厘米。
4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗,试证明不管怎样插至少有两面彩旗之间的距离不大于10米。
5.跳绳练习中,一分钟至少跳多少次才能保证某一秒钟内至少跳了两次?6.一只鱼缸有很多条鱼共有五个品种,问至少捞出多少条鱼,才能保证有五条相同品种的鱼?7.有甲、乙两种不同的书各若干本,每个同学至少借一本,至多借二本,(同样的书最多借一本)只要有几个同学借书,就可保证有两人借的书完全相同。
8.篮子里有苹果、梨、桃子和桔子,如果每个小朋友都从中任意拿两个水果,问至少有多少个小朋友才能保证至少有两个小朋友拿的水果完全一样?9.六个小朋友每人至少有一本书,一共有20本书,试证明至少有两个小朋友有相同数量的书。
10.用红、黄两种颜色将2×5的矩形的小方格随意涂色,每个小方格涂一种颜色,证明必有两列它们的小方格中涂的颜色完全相同。
11.10双不同尺码的鞋子堆在一起,若随意地取出鞋来,并使其至少有两只鞋可以配成一双,试问需取出多少双鞋就能保证成功?12.某次会议有10位代表参加,每位代表至少认识其余9位中的一位,试说明这10位代表中,至少有2位认识人的个数相同?13.布袋中装有塑料数字1、2、3各若干个,每次任选6个数字相加,至少选多少次才能保证有两个相加的和相等。
训练B卷班级______姓名______得分______1.将7支铅笔放入2个笔盒内,共有______种放法,各种放法中总有一个笔盒内铅笔支数不少于______支,因为7=______×2+1。
一般来说,把k×n+1件物品放入n个抽屉内,一定有一个抽屉内物品不少于______+1件。
2.把9个点放入边长为1的2×2的小方格内,那么至少有一个小方格内有______个点,并且这一格内的点组成图形的面积一定小于______。
3.夏令营有400个小朋友参加,问在这些小朋友中:(1)至少有多少人在同一天过生日?(2)至少有多少人单独过生日?(3)至少有多少人不单独过生日?4.在一副扑克牌中,最少要拿多少张,才能保证四种花色都有。
5.证明在任意的37人中,至少有4人的属相相同。
6.一个正方体有六个面,给每个面都涂上红色或白色,证明至少有三个面是同色。
7.学校开办了语文、数学、美术和音乐四个课外学习班,每个学生最多可以参加两个(可以不参加)。
至少在多少个学生中,才能保证有两个或两个以上的同学参加学习班的情况完全相同。
8.在边长为1的三角形中,任意放入5个点,证明其中至少有两个点之间的距离小于1/2。
9.证明:任意取12个自然数,至少有两个自然数被11除的余数相同。
10.至少要给出多少个自然数(这些数可以随便写),就能保证其中必有两个数,它们的差是7的倍数。
11.有甲、乙两种不同的书若干本,每个同学至少借1本,至多借2本(同样的书不能借2本),需要多少个同学借书,就可保证其中有10个借的书完全相同?12.用红、蓝两种颜色将一个 3 × 9的矩形小方格随意涂色,证明:必有两列,它们的小方格中涂的颜色完全相同。
13.从1、2、3、4、5、6、7、8、9、10这10个数中,任意取出6个数,证明,从中至少能找出两个数,其中一个数是另一个数的整数倍。
14.任取10个整数,证明其中至少有两个数的差能被9整除。
15.任意给定的五个整数中,必有三个数的和是3的倍数。
训练C卷班级______姓名______得分______1.口袋中有三种颜色的筷子各10根,问:(1)至少取多少根才能保证三种颜色的筷子都取到?(2)至少取多少根才能保证有两双不同颜色的筷子?(3)至少取多少根才能保证有两双颜色相同的筷子?2.为了丰富暑假生活,学校组织甲、乙两班进行了一次军棋对抗赛,每班各出五人,同时对奕。
比赛时天气很热,学校给选手们准备了两种饮料,有可乐,有汽水,每个选手都选用了一种饮料,证明至少有两对选手,不但甲班选手用的饮料相同,而且乙班选手用的饮料也相同。
3.100名少先队员选大队长,候选人是甲、乙、丙三人,选举时每人只能投票选举一人,得票最多的人当选,开票中途累计,前61张选票中,甲得35票,乙得10票,丙得16票。
问在尚未统计的选票中,甲至少再得多少票就一定当选?4.证明:在从1开始的前10个奇数中任取6个,一定有两个数的和为20。
5.任意写一个由数字1、2、3组成的三十位数,从这三十位数中任意截取相邻三位,可得一个三位数,证明从所有不同位置中任意截取的三位数中至少有两个相同。
6.在一个半径为1的圆内,随意放置7个点,证明必有两个点之间距离不超过1。
7.证明:从1、2、3……、19、20这二十个数中,任选12个不同的数,证明其中一定包括两个数,它们的差是10,也一定包括两个数,其差是11。
8.把1到10,这10个自然数摆成一个圆圈,证明一定存在相邻的三个数,它们的和大于 17。
9.从自然数1,2,3,4,……,99,100中,任意取出51个数,求证其中一定有两个数,它们中的某一个数是另一个数的倍数。
10.任意给定的七个不同的自然数,求证其中必有两个数,其和或差是10的倍数。
11.把1到100这100个自然数中,任意取出51个,证明其中必定能找出2个数,它们的差等于50。
12.设x1、x2、……x30是任意给定的30个整数,证明其中一定存在8个整数,把这8个整数用适当的运算符号连接起来,结果正好是1155的倍数。
DAANA卷1.3,1,22.2,13.将一米长的线段等分成五段,每段20厘米长,作为五个抽屉,按照抽屉原理,一定有一段里有两个点,它们间距离小于20厘米。
4.将跑道分成10米一段,共40段5.616. 21 因为考虑到最坏的情况即捞了20条出现每种4条,捞了第21条一定出现一种鱼有5条。
7.4 因为借一本有两种情况,借二本只有一种情况,将三种情况作为三个抽屉8.11 四种水果我们用甲、乙、丙、丁表示,拿二个水果情况有如下10种情况:(甲、甲),(乙,乙),(丙,丙),(丁,丁),(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)9.因为每人不同的话,那就要有1+2+3+4+5+6=21本,现在只有20本,说明某一人缺一本,此人一定出现出2,3,4,5,6里,所以一定有两个小朋友的数量是相等的。
10.因为用两种颜色涂2×1小方格出现如下四种情况(红红),(黄黄),(红黄),(黄红)11.1112.因为认识人数分:1人,2人,……9人,9种情况,这九种情况作为9个抽屉13.14次提示数字1,2,3任选六个组成和是从6,7……18共13种情况B卷1.4,4,7=3×2+1,12.2,13.2,0,354.42,因为有2张花牌5.因为属相有12种,而37=3×12+1所以有4人属相相同。
6.以红,白二色为抽屉,而6=3×2,所以至少有三面同色7.12人本题同学参加情况共11种,(不参加)(语),(数),(美),(音乐),(语,数),(语,美),(语,音),(数,美),(数,音),(美,音)角形为抽屉9.因为11为除数,余数有0、1、2……10,共11种情况,所以12个自然数被11除至少有两个数的余数相同。
10.8,方法同第9题,因为余数相同的两数之差一定能被除数整除。
11.28人,因为借书情况分三类,(甲),(乙),(甲,乙)所以k×3+1中要k+1=10,k=9,所以总人数为9×3+1=2812.因为涂色出现八种情况(红红红),(蓝,蓝,蓝),(红,红,蓝),(红,蓝,红),(蓝,红,红),(蓝,蓝,红),(蓝,红,蓝),(红,蓝,蓝),所以九列中一定有两列是相同的。
13.本题设计如下五个抽屈:(1,7),(6,2),(9,3),(8,4),(10,5)14.仿题915.按照被3除所得的余数,即构成三个抽屉,如果5个数中有三个在同一抽屉内,余数的三倍能被3整除,如果每一个抽屉最多只有二个数,那么此时各抽屉里都有,就各抽屉里取一个,它们的余数和为0+1+2=3能被3整除。
C卷1.(1)21(2)13(3)102.因为每对选手用饮料有四种情况:(可,可),(汽,汽),(可,汽),(汽,可),用这四种情况作为四个抽屉来解决3.114.构造如下五个抽屉解决:(1,19),(3,17),(5,15),(7,13),(9,11)5.因为可以截成28节,而用1,2,3组成的三位数有27种(数字可重复)6.将圆分成如图所示的6份,至少有一份中有2点逐一加以讨论。
7.构造如下的抽屉:8.将相邻三个数为一个抽屉,这10个抽屉里的数的总和为:1+2+3+2+3+4+3+4+5+……+10+1+2=3×(1+2+3+4+5+6+7+8+9+10)=165=16×10+5用抽屉原理二解决16+1=179.本题构造如下50个抽屉:1, 1×2,1×22, 1×23, 1×24,1×25,1×263,3×2,3×22,3×23,3×24,3×255,5×2,5×22,5×23,5×247,7×2,7×22,7×239,9×2,9×22,9×2311,11×2,11×22,11×2313,13×2,13×2215,15×2,15×2217,17×2,17×2219,19×2,19×2221,21×2,21×2223,23×2,23×2225,25×2,25×2227,27×229,29×249,49×251,53…9910.构造如下6个抽屉,(放个位数为0),(放个位数为13×9)(放个位数为2或8),(放个位数为3或7),(放个位数为4或6)(放个位数为5),显然每个抽屉中的任意两个数和或差是10的倍数11.构造如下50个抽屉:(1,51),(2,52),(3,53)……(50,100)12.∵1155=3×5×7×11将30个数分成四组第一组4个数能找出二数之差是3的倍数第二组6个数,能找出二数之差是5的倍数第三组8个数,能找出二数之差是7的倍数第四组12个数,能找出二数之差是11的倍数然后这四个差连乘起来。