模拟集成电路.ppt
合集下载
CMOS 模拟集成电路课件完整

反偏电压将使耗尽区变宽,从而降低了有效沟道深度。因此,需 要施加更大的栅极电压以弥补沟道深度的降低,VSB偏压会影响 MOSFET的有效阈值电压VTH。随着VSB反偏电压的增加导致VTH的增 加,这种效应称为“体效应”。这种效应也称为“衬底偏置效应” 或“背栅效应”。
VTHN VTHN0
2qsi Na Cox
VGS 1 0 1.0 VDS 2 0 5
.op .dc vds 0 5 .2 Vgs 1 3 0.5 .plot dc -I(vds) .probe
*model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7
.end
Systems
Ch13 开关电容电路
Ch14 DAC/ADC
complex Ch10 运算放大器 Ch7 频率响应
Ch11 稳定性和频 率补偿
Ch8 噪声
Ch12 比较器 Ch9 反馈
Ch3 电流源电流镜 simple Ch4 基准源 Circuits
Devices
Ch5 单级放大器 ch2 MOS器件
*Output Characteristics for NMOS M1 2 1 0 0 MNMOS w=5u l=1.0u
VGS 1 0 1.0 VDS 2 0 5
设计
属性/规范
系统/电路1
系统/电路2 系统/电路3
……
一般产品描述、想法 系统规范要求的定义
系统设计 电路模块规范定义
电路实现 电路仿真
否
是否满足系统规范
是 物理(版图)设计
物理(版图)验证
寄生参数提取及后仿真
否
是否满足系统规范
VTHN VTHN0
2qsi Na Cox
VGS 1 0 1.0 VDS 2 0 5
.op .dc vds 0 5 .2 Vgs 1 3 0.5 .plot dc -I(vds) .probe
*model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7
.end
Systems
Ch13 开关电容电路
Ch14 DAC/ADC
complex Ch10 运算放大器 Ch7 频率响应
Ch11 稳定性和频 率补偿
Ch8 噪声
Ch12 比较器 Ch9 反馈
Ch3 电流源电流镜 simple Ch4 基准源 Circuits
Devices
Ch5 单级放大器 ch2 MOS器件
*Output Characteristics for NMOS M1 2 1 0 0 MNMOS w=5u l=1.0u
VGS 1 0 1.0 VDS 2 0 5
设计
属性/规范
系统/电路1
系统/电路2 系统/电路3
……
一般产品描述、想法 系统规范要求的定义
系统设计 电路模块规范定义
电路实现 电路仿真
否
是否满足系统规范
是 物理(版图)设计
物理(版图)验证
寄生参数提取及后仿真
否
是否满足系统规范
《模拟集成电路基础》PPT课件

h
20
P
N
V
PN结的接触电位
(二)PN结的接触电位:
(1).内电场的建立,使PN结 中产生电位差。从而形成接 触电位V(又称为位垒)。
(2).接触电位 V决定于材 料及掺杂浓度:
硅: V=0.7 锗: V=0.2 (3).其电位差用 表示
h
21
(三)PN结的单向导电性
U
I
P
N
扩散
Q(V-U)
1.PN结加正向电压时:
第四节 二极管的应用
h
8
第一节 半导体基础知识
一1.、什半么导是体导的体特、性绝:缘体导、电半导率量导电1级0体率-2,2:为-如110:0-154s金.sc.、mc-m1-1
(1).导体:导电性能良好导量的电级物率,质为银如。1、:0-铜橡9-、胶10铝、2 s。云.c母m-、1 (2).绝缘体:几乎不导电量砷塑的级化料物,镓等质如等。。:。硅、锗、 (3).半导体:导电能力介于导体和半导体之间。
生载流子的扩散运用动下的定结向果移产动生称空
间电荷区耗尽层为(漂多移子运运动动)。
空穴 P
(2).空间电荷区产生建立了内电场 产生载流子定向运动(漂移运动)
N
•当扩散运动↑内电场↑漂移运
动↑扩散运动↓动态平衡。
(3).扩散运动产生扩散电流;漂移运动 产生漂移电流。
•动态平衡时:扩散电流=漂移电流。 PN结内总电流=0。 PN结的宽度一定 。
1.电子空穴对: 电子和空穴是成对产生的.
h
12
两种载流子——电子和空穴
外电场E 的方向
电子流
2.自由电子——载流子:
自由电子
• 在外电场作用下形成电子流(在 导带内运动),
CMOS模拟集成电路分析与设计 ppt课件

如果栅电压为负,则耗尽层变薄,栅 与衬底间电容增大。
对于大的负偏置,则电容接近于CGC。
PPT课件
24
1.2 MOS管的极间电容(1)
G
S
C1
C2 C4
C3
Cbs
反型层 耗尽层
d
L
d
p型衬底
D
Cbd
PPT课件
25
1.2 MOS管的极间电容(2)
栅与沟道之间的栅氧电容:
C2=WLCox,其中Cox为单位面积栅氧电容εox/tox;
CMOS模拟集成电路分析与设计
主讲教师:吴建辉 Tel:83795677
E-mail:wjh@
PPT课件
1
教材及参考书
教材:
吴建辉编著:“CMOS模拟集成电路分析与设 计”(第二版),电子工业出版社。
参考书:
Razavi B: Design of analog CMOS integrated circuits
11
1、有源器件
主要内容:
1.1 几何结构与工作原理 1.2 极间电容 1.3 电学特性与主要的二次效应 1.4 低频及高频小信号等效模型 1.5 有源电阻
PPT课件
12
1.1 MOS管几何结构与工作原理(1)
B p+
G
tox
S
D
G D
n+
n+
p+
n阱 p型衬底
(a)
S
B
p+
n+
W
多晶
d p+接触孔
PPT课件
3
模拟电路与模拟集成电路
分立元件音频放大电路
晶体管数 匹配性 电阻值 电容值 寄生效应影响
模拟cmos集成电路设计拉扎维MOS器件物理基础PPT课件

定义从D流 向S为正 PMOS管电流驱动能力比NMOS管差 0.8 m nwell:p=250cm2/V-s, n=550cm2/Vs 0.5 m nwell:p=100cm2/V-s, n=350cm2/V-
第23页/共61页
跨导gm
VGS对IDS的控制能力 IDS对VGS变化的灵敏度
gm ID VGS VDS cons tant
• 直流关系式-I/V特性 • 交流关系式-小信号电路中的参数
第6页/共61页
MOS管简化模型
简化模型——开关 由VG控制的一个开关
第7页/共61页
MOS管的结构
Bulk(body)
源漏在物理结构上是完全对称的,靠什么区分开?
提供载流子的端口为源,收集载流子的端口为漏
最重要的工作区域?
受VG控制的沟道区
• 小信号模型 • 信号相对于偏置工作点而言比较小、不会显著影响偏置工作点时用该模型简化计算 • 由gm、 gmb、rO等构成低频小信号模型,高频时还需加上 CGS等寄生电容、寄生电阻(接触孔电阻、 导电层电阻等)
沟道电荷的产生
当VG大到一定 程度时,表面势 使电子从源流向 沟道区 VTH定义为表面电 子浓度等于衬底 多子浓度时的VG
第12页/共61页
阈值电压
0 栅与衬底功函数差
COX
OX
TOX
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH0就固定了,设计者无法改变
第13页/共61页
I/V特性-沟道随VDS的变化
第3页/共61页
掌握器件物理知识的必要性
• 数字电路设计师一般不需要进入器件内部,只把它当开关用即可 • AIC设计师必须进入器件内部,具备器件物理知识
• MOS管是AIC的基本元件 • MOS管的电特性与器件内部的物理机制密切相关,设计时需将两者结
第23页/共61页
跨导gm
VGS对IDS的控制能力 IDS对VGS变化的灵敏度
gm ID VGS VDS cons tant
• 直流关系式-I/V特性 • 交流关系式-小信号电路中的参数
第6页/共61页
MOS管简化模型
简化模型——开关 由VG控制的一个开关
第7页/共61页
MOS管的结构
Bulk(body)
源漏在物理结构上是完全对称的,靠什么区分开?
提供载流子的端口为源,收集载流子的端口为漏
最重要的工作区域?
受VG控制的沟道区
• 小信号模型 • 信号相对于偏置工作点而言比较小、不会显著影响偏置工作点时用该模型简化计算 • 由gm、 gmb、rO等构成低频小信号模型,高频时还需加上 CGS等寄生电容、寄生电阻(接触孔电阻、 导电层电阻等)
沟道电荷的产生
当VG大到一定 程度时,表面势 使电子从源流向 沟道区 VTH定义为表面电 子浓度等于衬底 多子浓度时的VG
第12页/共61页
阈值电压
0 栅与衬底功函数差
COX
OX
TOX
常通过沟道注入把VTH0调节到合适值 工艺确定后,VTH0就固定了,设计者无法改变
第13页/共61页
I/V特性-沟道随VDS的变化
第3页/共61页
掌握器件物理知识的必要性
• 数字电路设计师一般不需要进入器件内部,只把它当开关用即可 • AIC设计师必须进入器件内部,具备器件物理知识
• MOS管是AIC的基本元件 • MOS管的电特性与器件内部的物理机制密切相关,设计时需将两者结
集成电路EDA与验证技术课件:模拟集成电路设计与仿真

模拟集成电路设计与仿真
常用命令格式: (1) DEFINE 格式:DEFINE <库名> <库路径> 例: DEFINE sample /export/cadence/IC615USER5/tools.lnx86/dfII/samples/cdslib/sa mple (2) INCLUDE 格式:INCLUDE <另外一个cds.lib 的全路径>
模拟集成电路设计与仿真
图3.2 Spectre中包含的各种仿真器
模拟集成电路设计与仿真
2.精确的晶体管模型 Spectre为所有的仿真器提供一致的器件模型,这有利于 消除不同模型间的相关性,从而得到快速收敛的仿真结果。 模型的一致性也保证了器件模型在升级时可以同时应用于所 有的仿真器。 3.高效的程序语言和网表支持 Spectre仿真平台支持多种设计提取方法,并兼容绝大多 数SPICE输入平台。Spectre可以读取Spectre、SPICE以及 Verilog-A格式的器件模型,并支持标准的Verilog-AMS、 VHDL-AMS、Verilog-A、Verilog以及VHDL格式的文本输 入。
模拟集成电路设计与仿真
5.有力衔接了版图设计平台 对于完整的版图设计平台而言,Spectre是不可或缺的重 要环节,它能方便地利用提取的寄生元件参数来快速完成后 仿真(post-layout simulation)的模拟,并与前仿真(pre-layout simulation)的模拟结果作比较,紧密的连接了电路 (Schematic)和版图(layout)的设计。 6.交互的仿真模式 设计者可以在仿真过程中快速改变参数,并在不断调整 参数和模拟之中找到最佳的电路设计结果,减少电路设计者 模拟所花费的时间。
模拟集成电路设计.ppt

1.物理图
§3-3: 其他MOS管大信号模型的参数
17
二、MOS电容
2. 耗尽结电容:CBD, CBS
P65 上式S→D 则 CBS→ CBD
18
§3-3: 其他MOS管大信号模型的参数
3.电荷存储电容: CGD, DGS ,CGB
交叠电容: C1、C3 、C5 珊-源/漏 C1 C3 LD Weff Cox CGXO Weff
25
§3-4: MOS管的小信号模型
1. gm,gmbs , gds 在饱和区:
gm (2K'W / L) ID (1 VDS ) (2K'W / L) ID
gmbs
iD vBS
iD vSB
( iD VT
)( VT ) vSB
iD iD VT vGS
gmbs gm 2(2 F
VSB )1/ 2
(a) (b)
多个器件的表示, 从匹配角度看更好。
37
§3-7: MOS电路的SPICE模拟
三、MOS模型描述
.MODEL < 模型名> <模型类型> <模型参数>
例如: .MODEL NCH NMOS LEVEL=1 VT0=1 KP=50U GAMMA=0.5 +LAMBDA=0.01
四、分析实例
vGS
VT
n
kT q
(简化模型,适合手工计算)
第3章第7节
35
3.7 MOS电路的SPICE模拟
36
§3-7: MOS电路的SPICE模拟
一、SPICE 模拟文件的一般格式
● 标题 ● 电路描述 (器件描述和模型描述) ● 分析类型描述 ● 输出描述
§3-3: 其他MOS管大信号模型的参数
17
二、MOS电容
2. 耗尽结电容:CBD, CBS
P65 上式S→D 则 CBS→ CBD
18
§3-3: 其他MOS管大信号模型的参数
3.电荷存储电容: CGD, DGS ,CGB
交叠电容: C1、C3 、C5 珊-源/漏 C1 C3 LD Weff Cox CGXO Weff
25
§3-4: MOS管的小信号模型
1. gm,gmbs , gds 在饱和区:
gm (2K'W / L) ID (1 VDS ) (2K'W / L) ID
gmbs
iD vBS
iD vSB
( iD VT
)( VT ) vSB
iD iD VT vGS
gmbs gm 2(2 F
VSB )1/ 2
(a) (b)
多个器件的表示, 从匹配角度看更好。
37
§3-7: MOS电路的SPICE模拟
三、MOS模型描述
.MODEL < 模型名> <模型类型> <模型参数>
例如: .MODEL NCH NMOS LEVEL=1 VT0=1 KP=50U GAMMA=0.5 +LAMBDA=0.01
四、分析实例
vGS
VT
n
kT q
(简化模型,适合手工计算)
第3章第7节
35
3.7 MOS电路的SPICE模拟
36
§3-7: MOS电路的SPICE模拟
一、SPICE 模拟文件的一般格式
● 标题 ● 电路描述 (器件描述和模型描述) ● 分析类型描述 ● 输出描述
第3章模拟集成电路基础
模电拟 电子子 技技术 术
集成运放的电路结构特点
(1)因为硅片上不能制作大电容,所以集成运放均采用直 接耦合方式。 (2)因为相邻元件具有良好的对称性,而且受环境温度和 干扰等影响后的变化也相同,所以集成运放中大量采用各种 差分放大电路(作输入级)和恒流源电路(作偏置电路或有 源负载)。
(3)因为制作不同形式的集成电路,只是所用掩模不同, 增加元器件并不增加制造工序,所以集成运放允许采用 复杂的电路形式,以达到提高各方面性能的目的。
由场效应管同样可以组成镜像电流源、比例电流源等。T0~T3均为N沟道增强型 MOS管,它们的开启电压UGS(th)等参数相等。在栅-源电压相等时,MOS管的漏极 电流正比于沟道的宽长比。设宽长比W/L=S,且T0~T3的宽长比分别为S0、S1、 S2、S3。这样就可以通过改变场效应管的几何尺寸来获得各种数值的电流。
模电拟 电子子 技技术 术
比例电流源
基准电流 输出电流
分析
模电拟 电子子 技技术 术 比例电流源分析
微电流
输出电流可以大于或小于基准电流,与基准电流成比例关系。
模电拟 电子子 技技术 术
微电流源
基准电流 输出电流
分析
模电拟 电子子 技技术 术
微电流源分析
在已知Re的情况下,上式对输 出电流IC1而言是超越方程,可 以通过图解法或累试法解出IC1。
模电拟 电子子 技技术 术
长尾式差分放大电路
电路参数理想对称,Rb1=Rb2=Rb,Rc1=Rc2=Rc;T1管与 T2管的特性相同,β1= β 2= β ,rbe1=rbe2=rbe;Re为 公共的发射极电阻。
静态分 析 共模信 号作用
差模信 号作用
模电拟 电子子 技技术 术
拉扎维《模拟集成电路设计》第二版课件 Ch5
Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
14
Generate Vb
• Consider the branch shown in Fig(b) as a candidate and write Vb = VGS5 + R6I6. • VGS5 = VGS3 • However, the condition I is hard to meet.
Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
6
Example
• Calculate the small-signal voltage gain of the circuit shown in Figure.
• Gain=
7
Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
14
Generate Vb
• Consider the branch shown in Fig(b) as a candidate and write Vb = VGS5 + R6I6. • VGS5 = VGS3 • However, the condition I is hard to meet.
Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
6
Example
• Calculate the small-signal voltage gain of the circuit shown in Figure.
• Gain=
7
Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
集成运算放大器电路 模拟电子电路-PPT
IE2
1 R2
(U BE1
UBE2 )
UT R2
ln
I E1 IE2
当β1>>时,IE1≈Ir,IE2≈IC2,由此可得
R2
UT IC2
ln
Ir IC2
(4―10)
UCC
Ir
Rr
V1
第4章 集成运算放大器电路
IC2 V2
R2
图4―7微电流电流源
第4章 集成运算放大器电路
此式表明,当Ir和所需要的小电流一定时,可计算
UCC
Rr
Ir
IC1 IC2
IC3
第4章 集成运算放大器电路
V1
V2
Rr Ir
UCC V3
IC2
IC3
(a)
(b)
图4―5 (a)三集电极横向PNP管电路;(b)等价电路
第4章 集成运算放大器电路
三、比例电流源
如果希望电流源的电流与参考电流成某一比例关 系,可采用图4―6所示的比例电流源电路。由图可知
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为
Ro 2 rce
(4―13)
可见,威尔逊电流源不仅有较大的动态内阻,而且 输出电流受β的影响也大大减小。
图4―9给出了另一种反馈型电流源电路。它由两 个镜像电流源串接在一起组成,故称串接电流源。关 于它的稳流原理留给读者自行分析。
UCC
Ir
Rr
集成运放是一种多级放大电路, 性能理想的运放 应该具有电压增益高、 输入电阻大、 输出电阻小、 工 作点漂移小等特点。 与此同时, 在电路的选择及构成 形式上又要受到集成工艺条件的严格制约。 因此, 集 成运放在电路设计上具有许多特点, 主要有:
模拟集成电路的设计223z-PPT课件
7
五、pn结方程
其中,
n Pn 0 i ND
2
ห้องสมุดไป่ตู้
n p0
n i NA
2
模拟集成电路设计
2009.5
§2-2:pn节
8
六、小结
突变pn结反偏特点: 1. pn结存在内建电场(势垒) 2. 耗尽区宽度与 成正比
3. pn结耗尽区具有电容效应,并受外加电压影响。
pn结反向偏置应用: 1. 隔离作用 2. 可变电容
E ( x x ) q v ( E ( x ) dx ( N x N x )) 2 2
0 D 2 D n 2 A p 0n p si
6. 耗尽区宽度:
2 s i( v )N 0 D A x n (N N ) D A D qN
x d x n x p
模拟集成电路设计
2009.5
§2-2:pn节
3
二、突变结的数学描述
假设pn结开路,理想pn结截面如图:
内建电场产生的电位差,即势垒:
0 V t ln(
式中: V kT t
NAND ) 2 ni
,
q
ni
2
是硅的本征载流子浓度。
模拟集成电路设计
2009.5
§2-2:pn节
§2-2:pn节
5
7. 耗尽层电容(势垒电容)
C A qN N 1 j 0 si si A D C A j 1 / 2 m d 2 ( N N ) v ) ( v ) A D 0 D 0 D (
1 / 2
0.33 < m <0.5
(平板电容)
第2章-第2节
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VBE1 VBE2 Re2
VBE Re2
优由点于:12VBE内受很阻电小ro源,一波般动在影几响百千小欧;以上 所以IC234也. 很具IC小有2 u温A级度;补偿特性。
6.1.1.3多路电流源:
T1、T2、T3的基极并联。
电路用一个基准电流IREF获得了多个电流输出。
I C1
I E1
概述
一、集成电路(integrated circuit): 在半导体制造工艺基础上,把整个电
路中的器件(电阻、电容、三极管等)制 造在一块Si 基片上,并引出相应的引线, 构成特定功能的电子电路。 如:运放、各种芯片等。
二、按功能分类:
模拟集成电路
数字集成电路
三、集成度:
小规模集成电路(SSI)<102
1 vic = 2 (vi1 vi2 )
共模信号
两个输入信号的算术平均值
根据以上两式可以得到
vi1 = vic
vi2 = vic
AVD AVC
= =
v od vviodc v ic
vid
差模信号输出
v2id 2
+ vi1
共+-v模+id 信号输差出放
差模电压增益 -
vi2 -
+
-vod +
(2)集成电路的芯片面积小,集成度高,所以功耗很小, 在毫瓦以下。 (3)不易制造大电阻。需要大电阻时,往往使用有源负载
(4)只能制作几十pF以下的小电容。因此,集成放大器 都采用直接耦合方式。如需大电容,只有外接。
(5)不能制造电感,如需电感,也只能外接。
§6.1集成电路运放中的电流源
要求:提供恒定电流IO,且有大的交流电阻 其两端电压变化时, IO保持恒定。
抑制零点漂移原理
主要指标计算
几种方式指标比较
6.2.2 FET差分式放大电路
6.2.3 差分式放大电路的传输特性
6.2.0 概述
1. 直接耦合放大电路
可以放大直流信号
# 为什么一般的集成运 算放大器都要采用直接 耦合方式?
2.直接耦合放大电路 的零点漂移
零漂:输入短路时,输出仍有缓慢 变化的电压产生。
+ vo1
vo2 -
-
共模电压增益 差分式放大电路输入输出结构示意图
6.2.0 概述
总输出电压
vo = vod voc AVD vid AVC vic
+
+
-vid
vi1 +
-
vi2 -
差放
+
-vod
+
+ vo1
vo2 -
-
差分式放大电路输入输出结构示意图
KCMR =
AVD AVC
共模抑制比 反映抑制零漂能力的指标
主要原因:主要由温度变化引起,也称温漂。
温漂指标:温度每升高1度时,输出漂移电压按电压增益折算 到输入端的等效输入漂移电压值。
6.2.0 概述
假设 AV1 = 100, AV2 = 100, AV3 = 1 。 若第一级漂了100 uV, 则输出漂移 1 V。
漂移 10 mV+100 uV
漂移 1 V+ 10 mV
6.1.2 FET电流源(P260)
(与BJT电流源比较,自学,了解)
一、 MOSFET镜像电流源: 二、 MOSFET多路电流源: 三、 JFET电流源:
6.2 差分式放大电路
6.2.0 概述
直接耦合放大电路
零点漂移
差分式放大电路中的一般概念
6.2.1 基本差分式放大电路
电路组成及工作原理
6 集成电路运算放大器
基本要求
1. 掌握差放的结构、原理及Q点、动态指标的计算。 2.了解差动放大器抑制零点漂移的原理。 3.了解镜像电流源、微电流源的组成及工作原理。 4.了解集成运算放大器的组成及工作原理。 5.了解集成运算放大器的主要参数。
6 集成电路运算放大器
6.0 概述 6.1 电流源 6.2 差分式放大电路 6.3 集成电路运算放大器 6.4 集成电路运算放大器的主要参数
6.2.1 基本差分式放大电路
1. 电路组成
两个BJT特性一致,参数相等。
1=2=
rbe1= rbe2= rbe VBE1=VBE2= VBE
C1
C2
差放一般有两个输入端:
双端输入—两输入端同时加信号
单端输入—一输入端对地加信号 差放可以有两个输出端:
双端输出—从C1 和C2输出。 单端输出—从C1或C2 对地输出。
当较小时,可用 带缓冲级的镜像电流源
增加T0,使IC更加接近IREF 三、镜像电流源特点 1 内阻ro一般在几百千欧以上
2. 电流受电源波动影响大; 3. 电流最低至mA级。 4. 具有温度补偿特性。
6.1.1.2微电流源(P259)
一、电路特点 (Re2 K级)
二、工作原理
IC2 IE2
中规模集成电路(MSI)<103 大规模集成电路(LSI)<105、
Intel 奔腾4
超大规模集成电路(VLSI)>105、 (如:CPU 310万---330万)
6 集成电路运算放大器
6.0 概述 集成电路的工艺特点:
(1)元器件具有良好的一致性和同向偏差,因而特别有 利于实现需要对称结构的电路。
+
ro Io
-
+
ro v
_
6.1.1.1 镜像电流源(P258)
一、电路组成
三极管T1、T2对称
二、恒流特性
当较大(>>2)时:
VBE2 = VBE1 IE2 = IE1
IC2
=
I
C1
IREF
2
IREF
= VCC VBE VCC
R
R
结论:
无论Rc值如何, IC2电流值保持不变(前提:电源要稳定)
IREF Re Re1
I C2
I E2
IREF Re Re2
I C3
I E3
I REF Re Re3
6.1.1.4 电流源作用
镜像电流源
提供直流偏置 作为有源负载 例电流源作为有源负载:
例P315 6.6.1
放大管
举例:P282 集成运放
微电流源直流偏置 镜像电流源有源负载 电流源直流偏置
若第二级也漂了100 uV,
则输出漂移 10 mV。 漂了 100 uV
3. 减小零漂的措施
用非线性元件进行温度补偿
调制解调方式。如“斩波稳零放大器”
漂移 1 V+ 10 mV
采用差分式放大电路
6.2.0 概述
4. 差分式放大电路中的一般概念
vid = vi1 vi2
差模信号 两个输入信号的差值
6.2.1 基本差分式放大电路
1. 电路组成
根据输入、输出方式不同,
可分为四种工作方式:
双端输入、双端输出;
C1
C2
双端输入、单端输出;
单端输入、单端输出;
单端输入、双端输出;