统计学原理 时间序列 知识点公式汇总

合集下载

时间序列计算公式

时间序列计算公式
时间数列影响因素的分解
长期趋势分析 不考虑长期趋势——季节指数法 考虑长期趋势——回归方程法消除法
环比增长速度 平均增长速度=平均发展速度-1 回归方程法计算方法 简单移动平均法
n
b n bi i1
b n yn y0
b
N • tY t • Y N • t 2 t 2
a Y b • t
N
Y YTK1 YTK2 ... YT1 YT k
平均增长量(逐期增长量的序时平均数,它表 明现象在一定时段内平均每期增加(减少)的 数量。用记号 表示)
yi y0 n 1
yi i1 / n
发展速度
报告期水平 基期水平
定基发展速度=报告期水平/某一固定时期水平 (通常是最初水平)的比值
时间序列的分析指标
发展速度
环比发展速度是报告期水平与其前一其期水平的 比值
时间序列计算公式
发展水平
客观现象在一定时期内(或时点上)发展所达到的规模、水平。在绝对数时间数列中,发展 水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数
增长量=报告期水平-基期水平
增长量分析
增长量
பைடு நூலகம்
逐期增长量=报告期水平-前一期水平
累计增长量=报告期水平-某一固定时期水平(通常是时间序列最初水平)
1、定基发展速度等于相应时期内各环比发展速度的连乘积。2、两个相 邻时期定基发展速度的比率等于相应时期的环比发展速度
增长率分析
年距发展速度
本期发展水平 上年同期发展水平
增长速度
报告期增长量 基期水平
报告期水平 基期水平 基期水平
发展速度 1
增长速度
定基增长速度
长期趋势分析 季节变动分析
平均发展速度和平均增长速度

统计学-第十章 时间序列分析

统计学-第十章  时间序列分析

1
38(a1)
2
42(a2)
3
39(a3)
4
37(a4)
5
41(a5)
解: a 38 42 39 37 41 39.(4 台/天) 11111
三、平均发展水平
3.由绝对数时间序列计算的序时平均数
(2)由时点序列计算序时平均数
②间隔不相等的连续的时点数列
a af
季度在某地区销售量的走势 250 200
图。
150
100
那么,如何预测该品牌 50
空调2018年各个季度在该地 0
区的销售量呢?
单位:销售量(百台)
3
第一节 时间序列概述
一、时间序列概述
1.定义:将表明社会经济现象在不同时间发展 变化的某同一指标数值,按时间先后顺序排列所形 成的序列。(规模和水平)
③序列中每个指标的数值,通 常通过连续不断的登记取得。
由反映某种现象在一定 时点(瞬间)上发展状况的总量 指标所构成的绝对数动态序列所 处的数量水平。其中时点序列无 时点长度;两个相邻时点间的时 间距离称为时点间隔。也可为 日、周、旬、季、年等。
①序列中各个指标的 数值不可以直接相加;
②序列中指标数值的大小与其 时间间隔长短没有直接联系;
表9.3 我国普通高校毕业生数(时期序列)
年份 1912-1948 1978 1995 2000 2004 2014 2016
毕业生数(万人) 21.08 16.5 80.5 95 239.1 669.4 756
10
第二节 时间序列分析的基本原 理 一、时间序列分析的意义
:以时间序列为依据,对影响动态序列变 动过程的主要因素及其相互关系进行分解与综合, 以认识社会经济现象发展变量的规律性,借以鉴别 过去、预测未来的分析研究工作。

(完整word版)统计学原理知识点及公式

(完整word版)统计学原理知识点及公式

统计学原理知识点及公式第一章统计总论•1.统计一词的三种含义•2.统计学的研究对象及特点•3.统计学的研究方法•4.统计学的几个基本概念:总体与总体单位、标志与标志表现、变异与变量、统计指标的概念、特点及分类。

•5.国家统计兼有的职能第二章统计调查•1.统计调查的概念和基本要求•2.统计调查的种类•3.统计调查方案的构成内容•4.统计调查方法:普查、抽样调查、重点调查、典型调查•5.调查误差的种类第三章统计整理•1.统计整理的概念和方法•2.统计分组的概念、种类•3.统计分组的关键•4.统计分组的方法:品质分组方法、变量分组的方法•5.分配数列的概念、构成及编制方法变量数列的编制基本步骤为:第一步:将原始资料按数值大小依次排列。

第二步:确定变量的类型和分组方法(单项式分组或组距分组)。

第三步:确定组数和组距。

当组数确定后,组距可计算得到:组距= 全距÷组数全距= 最大变量值-最小变量值。

第四步:确定组限。

(第一组的下限要小于或等于最小变量值,最后一组的上限要大于最大变量值。

)第五步:汇总出各组的单位数(注意:不同方法确定的组限在汇总单位数时的区别),计算频率,并编制统计表。

间断式确定组限:汇总各组单位数时,按照“上下限均包括在本组内”的原则汇总。

重叠式确定组限:汇总各组单位数时,按照“上组限不在内”的原则汇总。

因为有了“上组限不在内”的原则,实际工作中,对于离散型变量也经常采用重叠式确定组限的方法。

•6.统计表的结构和种类第四章综合指标•1.总量指标的概念、种类和计量单位•2.相对指标的概念、指标数值的表现形式、相对指标的种类。

相对指标包括:结构相对指标、比例相对指标比较相对指标、强度相对指标动态相对指标、计划完成程度相对指标●3.平均指标的概念、作用和种类。

算术平均数、调和平均数、众数、中位数●4.变异指标的概念、作用和种类。

●全距、平均差、标准差、变异系数第五章 抽样估计•1.抽样推断的概念、特点、和内容。

初级统计师《统计基础知识》讲义:时间数列

初级统计师《统计基础知识》讲义:时间数列

初级统计师《统计基础知识》讲义:时间数列初级统计师《统计基础知识》讲义:时间数列导语:将反映某一现象的各个时期(或时点)的指标数值,按照时间顺序排列形成的数列。

亦称动态数列。

我们一起来看看相关的考试内容吧。

第一部分本章主要内容一、时间数列的概念和种类(一)时间数列的概念将同一统计指标的数值按其发生的时间先后11.roi,序排列而成的数列称为时间数列。

时间数列一般由两个基本要素构成:1.现象所属的时间;2.反映该现象不同时间的统计指标数值。

(二)时间数列的作用1.时间数列可以描述社会经济现象的发展状态和结果;2.通过时间数列资料可以研究社会经济现象的发展趋势和发展速度;3.通过对时间数列进行分析可以探索社会经济现象发展变化的规律性;4.通过时间数列对某些社会经济现象进行预测,是统计预测方法的一个重要内容;5.把不同的时间数列进行对比,是对社会经济现象进行统计分析的重要方法之一。

(三)时间数列的种类时间数列按其排列的统计指标不同,可分为:总量指标时间数列、相对指标时间数列和平均指标时间数列三种。

其中:总量指标时间数列是基本数列,其余两种是派生数列。

1.将同一总量指标的数值按其发生的'时间先后顺序排列而成的数列叫做总量指标时间数列。

时期数列:当时间数列中所包含的总量指标都是反映社会经济现象在某一段时期内发展过程的总量时,这种总量指标时间数列就称为时期数列。

时点数列:当时间数列中所包含的总量指标都是反映社会经济现象在某一瞬间上所达到的水平时,这种总量指标时间数列就称为时点数列。

2.将同一相对指标的数值按其发生的时间先后顺序排列而成的数列叫做相对指标时间数列。

3.将同一平均指标的数值按其发生的时间先后顺序排列而成的数列叫做平均指标时间数列。

(四)时间数列的特征时间数列一般表现出四种特征:长期趋势、季节变动、循环变动、不规则变动。

(五)时间数列的编制原则1.指标数值所属的时期长短或时间间隔应该一致;2.指标数值所属的总体范围应该一致。

时间数列知识点总结

时间数列知识点总结

时间数列知识点总结一、基本概念1.1 数列的概念数列是按照一定顺序排列的一组数。

数列中的每一个数称为数列的项,用a1、a2、a3…an 表示。

数列的第一个数称为首项,用a1表示;数列的最后一个数称为末项,用an表示。

1.2 时间数列的概念时间数列是一种按时间顺序排列的数值序列,它描述了某一事件或现象随时间变化的规律。

时间数列中的项可以表示在不同时刻的值,例如在不同时间点的温度变化、股票价格的波动等。

时间数列在经济学、物理学、生物学、工程等领域中有着广泛的应用。

1.3 数列的通项公式通项公式是数列中项与项的位置之间的函数关系式,通常用a_n = f(n)表示,其中n表示项的位置,f(n)表示与项的位置n有关的函数。

通项公式可以描述数列中任意一项与其位置的关系,也可以用来表示数列的一般项。

1.4 等差数列、等比数列、递推数列等差数列是指数列中相邻两项的差是一个常数的数列;等比数列是指数列中相邻两项的比是一个常数的数列;递推数列是指数列中每一项都与它前面的一项之间有一定的递推关系。

这三种常见的数列类型在时间数列中都有着重要的应用。

二、常见数列类型2.1 等差数列等差数列是一种具有相同公差的数列,相邻两项的差是一个常数。

它的通项公式为an =a1 + (n-1)d,其中a1表示首项,d表示公差,n表示项的位置。

2.2 等比数列等比数列是一种具有相同公比的数列,相邻两项的比是一个常数。

它的通项公式为an =a1 * q^(n-1),其中a1表示首项,q表示公比,n表示项的位置。

2.3 递推数列递推数列是指数列中每一项都与它前面的一项之间有一定的递推关系。

递推数列的通项公式通常难以直接写出,需要通过递推关系进行计算。

2.4 斐波那契数列斐波那契数列是一种特殊的递推数列,其前两项都是1,从第三项开始,每一项都是前两项之和。

斐波那契数列的通项公式难以直接写出,但是可以通过递推关系进行求解。

2.5 等差-等比混合数列等差-等比混合数列是一种既是等差数列又是等比数列的数列,即相邻两项的差是一个常数,相邻两项的比也是一个常数。

统计学基础第五章时间数列

统计学基础第五章时间数列

statistics
统计学——第五章时间数列
解:根据上面计算资料再计算第三季度的月平均库存额为:
an-1 an a1 a2 a2 a3 … 2 2 a 2 n 1 an a1 a2 an-1 2 2 n 1
700 900 900 1000 2 2 4 1
均衡的期末登记排列。通常将前者称为间隔相等的间断 时点数列,后者称为间断不等的间断时点数列。
statistics
统计学——第五章时间数列
间隔相等的间断时点数列的平均发展水平的计算公式:
an1 an a1 a2 a2 a3 2 2 a 2 n 1 an a1 a2 an-1 2 2 n 1
statistics
统计学——第五章时间数列
(3)分子、分母由一个时期数列和一个时点数列对比组成 相对数时间数列。
a a 1 a 2 a n 1 a n c b0 bn b1 b n 1 b 2 2
(分子为时期数列,分母为时点数列) a0 an a 1 a 2 a n 1 a 2 或 2 c b1 b n 1 b n
可见,该商场2006年的第三、第四季度的月平均销售 额大于第一、第三季度的月平均销售额。 statistics
统计学——第五章时间数列
2.依据时点数列计算序时平均数
连续时点数列 时点数列 间断时点数列 间隔不等的间断时点数列 间隔相等的间断时点数列
statistics
统计学——第五章时间数列
(1)连续时点数列的序时平均数。
5-4所示,试求第一季度的平均完成率。 表5-4 某厂某年第一季度各月商品销售额 计划完成情况统计表 目 1月 200 210 105 2月 240 260 105 3月 250 280 112 statistics

统计学原理——时间序列

统计学原理——时间序列

时间 职工人数
1月1日 500
4月1日 560
7 月 31 日 12 月 31 日
580
600
[分析] 属于时间间隔不等的间断时点数列,采用加权 算术平均法计算。
500 560 3 560 580 4 580 600 5
a 2
2
2
345
568(人)
[计算公式]
时期数列
间隔相等 连续
特点: (1)时点数列中各指标值不能相加。 (2)时点数列中各指标值大小与时间间隔无关。 (3)时点数列通过间断登记获取数据。
二、时间序列的种类
(二)相对数时间序列:由相对指标排列形成。
特点: 1.由两个绝对数数列相比形成。 2.不同时期的相对指标数值不可直接相加。
(三)平均数时间序列:由平均指标排列形成。
季度的平均职工人数的计算方法为( )
A. B.
C.
D.
练习: 1、根据下表资料计算某企业月平均职工人数。
时间
职工人数 /人
1月1日 230
4月1日 5月1日 242 250
8月1日 12月1日 12月31日
244
238
236
2、某管理局所属两个企业元月份产值及每日在册
a
a1
a2
a3
a4
a5
a 21617.8 26638.1 34634.4 46644.3 58260.5 11111
1887773.1 37554.62亿元 / 年 5
(2) 时点数列的序时平均数
①连续时点数列:逐日登记。
未分组资料:逐日登记,每日都有数据(简单算术平 均法)。
a a1 a2 an
间隔不等 时点数列

时间序列分析知识点总结(1)

时间序列分析知识点总结(1)

一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。

♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。

♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。

二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。

正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。

平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。

即是统计特性不随时间的平移而变化的过程。

♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。

♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。

即序列均值或协方差与时间有关时,就可以认为是非平稳的。

♦♦自相关:指时间序列观察资料互相之间的依存关系。

动态性(记忆性):指系统现在的行为与其历史行为的相关性。

如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。

二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
累计增长量=报告期水平-某一固定时期(基期)水平
累计增长量=∑逐期增长量
年距增长量=报告期发展水平-上年同期发展水平
平均增长量
平均增长量=∑逐期增长量/逐期增长量个数
=累计增长量/(动态数列项数-1)
时间序列速度指标分析
发展速度
发展速度=报告期水平/基期水平
定基发展速度(总速度)=报告期水平/基期水平
定基增长速度=定基发展速度-1
=ห้องสมุดไป่ตู้计增长量/固定基期水平
环比增长速度=环比发展速度-1
=逐期增长量/前一期水平
同比增长速度=同比增长量/上年同期发展水平=同比发展速度-1
平均发展速度
几何平均法
方程法
平均增长速度
平均增长速度=平均发展速度-1
>1某种现象在一个较长的时期内逐期平均递增
平均递增速度平均递增率
<1某种现象在一个较长的时期内逐期平均递减
平均递减速度平均递减率
长期趋势分析
时距扩大法
同一数列前后时距长短应当一致,根据具体的性质和特点而定。但会使新序列的项数大大减少,丢失原时间序列所包含的大量信息,不利于进一步的深入分析。
移动平均法
修饰项数越多,趋势线越平滑;当移动平均的时期长度等于周期长度或其整倍数时,能把周期波动完全抹掉
项数值=原数列项数-移动平均项数+1
最小平方法
季节变动分析
折线图
散点图
3年↑资料
同期平均法
1、列表横:月/季,纵:年
2、∑各年同月/季及各年同月/季平均数
3、∑同年各月/季及同年各月/季平均数
4、求季节比率(季节指数)
S.I.=同月(季)平均数/全期各月平均数*100%
月资料,∑季节比例=1200%
时间序列的种类
绝对数
总量指标
时期:可加性、连续不断的登记而成、时期越长其指标数值越大
时点:不可加性、一定时点登记一次
相对数
比例关系、速度、结构不可加
平均数
反应一般水平
时间序列的编制原则
时期长短一致、总体范围一致、指标的经济内容一致、计算口径一致
时间序列的水平指标分析
发展水平和平均发展水平
绝对数
时期
用增量算简单算术平均法
环比发展水平=报告期水平/前一期水平
定基发展速度(总速度)=∏环比发展速度
两个相邻时期的定基发展水平之比=它们的环比发展速度
>1社会经济现象增长了
<1社会经济现象降低了
同比发展速度=报告期发展水平/上年同期发展水平
增长速度
增长速度=增长量/基期发展水平
=发展速度-1
=报告期水平/基期水平-1
=(报告期水平-基期水平)/基期水平
时点
连续时点
连续变动时点
(日日登记)
简单算术平均
非连续变动时点
(有变动才登记)
加权算术平均
间断时点
间隔相等
首末折半法
本期平均数=
(期初+期末)/2
间隔不等
先两两平均
后加权平均
相对数

平均数
分别计算分子、分母的序时平均数,后加以对比得
增长量
增长量=报告期水平-基期水平
逐期增长量=报告期水平-前一期水平
季资料,∑季节比例=400%
校正系数=1200/∑12个月季节比率
=400/∑4季度季节比率
移动平均趋势剔除法
1、计算移动平均值
2、剔除长期趋势:实际量/纠正后的量
3、(用纠正量)求季节比率同期平均法
周期变动分析
剩余/分解法
相关文档
最新文档