材料力学第6章梁的应力

合集下载

材料力学第6章3-讲义-斜弯曲

材料力学第6章3-讲义-斜弯曲

料 弯曲时,中性轴与载荷平面不垂直,也即“斜弯曲”的含义。


(2) 横截面上的中性轴
B 把横截面划分为拉应力区 第 和压应力区。从这两个区
最大拉应力 的危险点
受拉区
6 的截面周边上分别作平行 章 于中性轴的切线(或与截
D1 F
中性轴
面只有一个交点的直线),
组 所得两个切点(或交点)
合 变 形
距中性轴的距离最远,这 两点的正应力为最大弯曲
F
My

截面形心的一根直线
(y0 , z0)

z
形 设中性轴与 z 轴正向的夹角为,
讲 义
tan y0 Iz tan (6.27) 中性轴
z0 I y
C z
y A
Mz
y
5
斜弯曲中性轴的位置的相关结论:
BRY
(6.27)
tan
y0
Iz
tan
z0 I y

(1) 当 I y I z 时, ,说明这种横截面形式的梁斜
wz
Fzl 3 3EI y
Fl3 sin
3EI y
(2) 两个方向的挠度叠加:

总挠度为
F
中性轴

变 形
w wy2 wz2 (6.31)
z
C wz
总挠度 w 与 y 轴的夹角为
讲 义


梁的正应力强度条件为
[ ] max
(6.28)
B
(3) 某些形状的截面,如
第 圆形、正方形及其他正多边形,
6 章
由于 Iy = Iz ,由式 (6.27) 可
得 ,即中性轴与载荷平

梁的应力计算公式全部解释

梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。

在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。

梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。

梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。

在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。

下面将分别对这三种类型的应力计算公式进行详细解释。

1. 弯曲应力计算公式。

梁在受到外部力的作用时,会产生弯曲应力。

弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。

其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。

弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。

2. 剪切应力计算公式。

梁在受到外部力的作用时,会产生剪切应力。

剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。

其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。

剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。

3. 轴向应力计算公式。

梁在受到外部力的作用时,会产生轴向应力。

轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。

第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)

第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)

2 z
W
M
2 x
W2
[ ]
7-17 图示直角曲拐,C端受铅垂集中力F作用。已知a=160mm,AB杆直径D=40mm,
l=200mm ,E=200GPa, μ=0.3,实验测得D点沿45º方向的线应变 ε45º=0.265 × 10-3。试求:
(1)力F的大小;(2)若AB杆的[σ]=140MPa,试按最大切应力理论校核其强度。
T Wp
16 M 0
D3
16 125 .6
0.023
79.96MPa
单元体可画成平面单元体如图(从上往下观察)
A
6-5 试用求下列各单元体中ab面上的应力(单位MPa) 。
解:(a)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70 1 2
35
(MPa)
x y sin(2 30 ) 70
2
3 60.62 (MPa) 2
(b)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70
(MPa)
x
y
2
sin(2 30 )
0
6-6 各单元体的受力如图所示,试求:(1)主应力大小及方向并在原单元体图上绘出主 单元体;(2)最大切应力(单位MPa) 。
解: (3) My 、Mz、Mx 和F 同时作用,拉弯扭组合,任一截 面D1点是危险点
应力状态:
D1
FN M F
M
2 y
M
2 z
y
AW A

材料力学梁的应力知识点总结

材料力学梁的应力知识点总结

材料力学梁的应力知识点总结梁是一种常见的结构元件,在工程中广泛应用。

了解梁的应力知识点对于工程设计和分析非常重要,本文将对材料力学梁的应力知识点进行总结。

1. 弯曲应力在弯曲载荷下,梁会发生弯曲变形,产生弯曲应力。

弯曲应力分为正应力和剪应力两部分。

梁的顶端受拉产生正应力,底端受压产生正应力。

横截面上由于剪力的存在,产生剪应力。

弯曲应力与梁的几何形状、材料性质和载荷有关。

2. 矩形截面的弯曲应力分布对于矩形截面的梁,弯曲应力的分布是不均匀的。

顶部和底部的纤维受到最大应力,处于拉伸或压缩状态。

靠近中性轴的纤维受到较小的应力。

弯曲应力的分布可用弯矩与惯性矩的比值来表示。

3. 剪应力和剪力流在梁的截面上,由于剪力的存在,产生剪应力。

剪应力的分布是沿纵横两个方向呈对称分布的。

剪应力在截面上的变化呈线性分布,最大值出现在截面的边缘。

剪力流是指单位深度上的剪力大小,剪应力和剪力流之间存在直接的线性关系。

4. 应力分量的变换在梁的应力分析中,常常需要对应力分量进行变换。

常用的应力分量变换公式有平面应力变换公式和平面应变变换公式。

5. 横截面形状的影响梁的横截面形状对其应力分布和强度有显著影响。

常见的梁截面形状有矩形、圆形和I型等。

圆形截面具有均匀的应力分布特点,适用于承受压力的情况。

I型截面具有较高的抗弯强度,适用于悬挑梁和跨大距离的情况。

6. 梁的断裂当梁受力达到其强度极限时,可能会发生断裂。

断裂形式可以是横断面的剪断、疲劳断裂或脆性断裂等。

设计中需要考虑梁的强度和刚度,以避免出现断裂。

总结:材料力学梁的应力知识点对于工程领域非常重要。

弯曲应力、剪应力和剪力流是梁应力分析的关键内容;矩形截面的弯曲应力分布是不均匀的,可以用弯矩与惯性矩的比值表示;横截面形状对梁的应力分布和强度有重要影响。

通过深入理解和应用这些知识点,可以对梁的行为和性能进行合理评估和设计。

梁的内力与应力(图片版)

梁的内力与应力(图片版)

σ=FbA,其中F为作用在梁上的力,b 为梁的宽度,A为梁的横截面积。
描述
正应力表示梁在承受拉伸或压缩时, 截面上产生的应力。
剪应力
剪应力
与截面相切的应力,主要由于剪 切而产生。
描述
剪应力表示梁在承受剪切时,截面 上产生的应力。
公式
τ=FsA,其中Fs为作用在梁上的剪 力,A为梁的横截面积。
弯曲应力
致梁发生断裂或严重变形。
强度失效的原因可能包括材料缺 陷、设计不当或制造工艺问题等。
弯曲失稳
弯曲失稳是指梁在受到垂直于 轴线的横向力作用时,发生弯 曲变形并最终失去稳定性。
弯曲失稳通常发生在梁的长度、 跨度较大或支撑不足时,导致 梁发生过大弯曲和扭曲。
弯曲失稳的原因可能包括梁的 刚度不足、支撑条件不当或外 力过大等。

混凝土
适用于桥梁、房屋和基础设施 等需要承受较大荷载且稳定性
要求较高的场合。
木料
适用于临时建筑、小型建筑和 家庭装修等需要较低承载能力
的场合。
其他材料
如铝合金、玻璃钢等,适用于 特殊场合和特定需求。
优化设计
截面优化
根据梁的跨度、承载能力和稳定性要求,选择合适的截面尺寸和 形状,以减小材料用量和提高承载能力。
梁的内力与应力(图片 版)
目录 CONTENT
• 梁的简介 • 梁的内力 • 梁的应力 • 梁的强度与稳定性 • 梁的设计与优化 • 梁的案例分析
01
梁的简介
梁的种类
01
02
03
简支梁
简支梁是两端支撑在支座 上的单跨梁,其载荷作用 在跨中位置。
连续梁
连续梁是多跨梁,载荷可 以作用在任意位置。
悬臂梁

材料力学(金忠谋)第六版答案第06章

材料力学(金忠谋)第六版答案第06章

弯曲应力6-1 求图示各梁在m -m 截面上A 点的正应力和危险截面上最大正应力。

题 6-1图解:(a )m KN M m m ⋅=-5.2 m KN M ⋅=75.3max48844108.49064101064m d J x --⨯=⨯⨯==ππMPa A 37.20108.490104105.2823=⨯⨯⨯⨯=--σ (压)MPa 2.38108.4901051075.3823max =⨯⨯⨯⨯=--σ (b )m KN M m m ⋅=-60 m KN M ⋅=5.67max488331058321210181212m bh J x --⨯=⨯⨯== MPa A 73.611058321061060823=⨯⨯⨯⨯=--σ (压) MPa 2.104105832109105.67823max =⨯⨯⨯⨯=--σ (c )m KN M m m ⋅=-1 m KN M ⋅=1max48106.25m J x -⨯=36108.7m W x -⨯=cm y A 99.053.052.1=-=MPa A 67.38106.251099.0101823=⨯⨯⨯⨯=--σ (压) MPa 2.128106.2510183max =⨯⨯=-σ 6-2 图示为直径D =6 cm 的圆轴,其外伸段为空心,内径d =4cm ,求轴内最大正应力。

解:)1(32431απ-=D W x⎪⎭⎫ ⎝⎛-⨯⨯⨯=-463)64(110326π 361002.17m -⨯=3463321021.213210632m D W x --⨯=⨯⨯==ππMPa 88.521002.17109.0631=⨯⨯=-σ MPa 26.551021.2110172.1631=⨯⨯=-σ MPa 26.55max =σ6-3 T 字形截面铸铁梁的尺寸与所受载荷如图示。

试求梁内最大拉应力与最大压应力。

已知I z =10170cm 4,h 1=,h 2=。

材料力学第六章

材料力学第六章

§6-1 一、多跨静定梁 3.求解变形:
其它平面弯曲构件的内力与变形
1)宜采用叠加法;
2)先求主梁的变形: 在自身载荷及中间铰处次梁作用力的共同作用 下变形。
3)再求次梁的变形: 主梁变形引起次梁的刚性转动;
简化成简支梁或外伸梁的次梁在自身载荷作用 下的变形;
§6-1
其它平面弯曲构件的内力与变形
a
Fz
B
a
Fy y
10
解:外力沿形心主轴分解: F F y F cosa A点最大拉应力(B点最大压应力) F F sina z F y l | y A | Fz l | z A | sA 60.7 MPa Iz Iy
§6-4
开口薄壁杆的弯曲切应力与弯曲中心
一、产生平面弯曲的条件
)
F
§6-1
a A
F B
其它平面弯曲构件的内力与变形
y
x Fa A B
b
C
F
C
例6-3 作图示刚架内力图,并求A截面的 转角、水平和铅垂位移(抗弯刚度为EI)。 2)求A点转角、水平和铅垂位移: 再将AB刚化,BC解除刚化,F由 A点简化到B点 Fab q B " ( ) EI 2 在B点产生qB"、 Fab xB"为 x B " ( ) 2 EI BC变形引 q A " q B " Fab ( ) EI 2 起A点刚性 Fab ( ) 转动产生的 x A " x B " 2 EI2 qA"、xA"、 Fa b y A " q B "a ( ) yA " EI
y、z为形心主轴,F平行y轴,通过弯心A; Fx 0 :FN 2 FN1 t 'tdx 0 * * * * F S M z dMM ( M d M ) S M S d M S z z z z zz z z z z Qy FN 2 y d A s d A y d A t t ' 1 A AA I z I z dx I z t I zII t zz

材料力学第6章弯曲应力

材料力学第6章弯曲应力

图6.5
页 退出
材料力学
出版社 理工分社
例6.1如图6.6所示,矩形截面悬臂梁受集中力和集中力偶作用。试求Ⅰ—Ⅰ 截面和固定端Ⅱ—Ⅱ截面上A,B,C,D 4点处的正应力。
图6.6
页 退出
材料力学
出版社 理工分社
解矩形截面对中性轴的惯性矩为 对于Ⅰ—Ⅰ截面,弯矩MⅠ=20 kN·m,根据式(6.2),各点正应力分别为
页 退出
材料力学
出版社 理工分社
(1)变形几何关系 弯曲变形前和变形后的梁段分别表示于图6.4(a)和(b)。以梁横截面的对称 轴为y轴且向下为正(见图6.4(c))。以中性轴为z轴,但中性轴的位置尚待确 定。在中性轴尚未确定之前,x轴只能暂时认为是通过原点的横截面的法 线。根据弯曲平面假设,变形前相距为dx的两个横截面,变形后各自绕中性 轴相对旋转了一个角度dθ ,且仍然保持为平面。这就使得距中性层为y的纵 向纤维bb的长度变为
式中积分
是横截面对y轴和z轴的惯性积。由于y轴是横截面的对
称轴,必然有Iyz=0(见附录)。所以式(g)是自然满足的。 将式(b)代入式(e),得
式中积分∫Ay2dA=Iz是横截面对z轴(中性轴)的惯性矩。于是式(h)改写为 式中 ——梁轴线变形后的曲率。
页 退出
材料力学
出版社 理工分社
式(6.1)表明,EIz越大,则曲率 越小,故EIz称为梁的抗弯刚度。从式 (6.1)和式(b)中消去 ,得
而对于变截面梁,虽然是等截面梁但中性轴不是横截面对称轴的梁,在计算 最大弯曲正应力时不能只注意弯矩数值最大的截面,应综合考虑My/Iz的值 (参看例6.5和例6.8)。
页 退出
材料力学
出版社 理工分社
引用记号
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y1 0.072 m, y 2 0.038 m, I Z 0.573 10 m
5
4
§6-2 梁的正应力强度条件及其应用
因材料的抗拉与抗压性能不同,截面对中性轴又不对称, 所以需对最大拉应力与最大压应力分别进行校核。 (1)校核最大拉应力
由于截面对中性轴不对称。而正负弯矩都存在,因此,最 大拉应力不一定发生在弯矩绝对值最大的截面上。应该对 最大正弯矩和最大负弯矩两个截面上的拉应力进行分析比 较。
截面对中性轴(水平对称轴)的惯性矩为:
bh3 0.12 m 0.183 m3 IZ 0.583 10 4 m 4 12 12
§6-1 梁的正应力
例6-1 长为l的矩形截面梁,在自由端作用一集中力F, 已知,h=0.18m,b=0.12上K点的正应力。
max
M max ymax M max IZ WZ
§6-1 梁的正应力
例6-1 长为l的矩形截面梁,在自由端作用一集中力F, 已知,h=0.18m,b=0.12m,y=0.06m,a=2m, F=1.5kN。试求C截面上K点的正应力。
解:先算出C截面上的弯矩
M C F a 1.5 10 3 N 2m 3 10 3 N m
§6-1 (纯弯曲)梁的正应力
横力弯曲
弹性力学精确分析表明, 当跨度 l 与横截面高度 h 之 比 l / h > 5 (细长梁)时, 纯弯曲正应力公式对于横力 弯曲近似成立。
§6-1 梁的正应力
横力弯曲正应力公式
My IZ
公式适用范围
•细长梁的纯弯曲或横力弯曲 •横截面惯性积 IYZ =0 •弹性变形阶段 横力弯曲最大正应力
§6-1 (纯弯曲)梁的正应力
设想梁是由无数 层纵向纤维组成 凹入一侧纤维缩短 突出一侧纤维伸长
中间一层纤维长度不变- -中性层
中性层与横截面的交线- -中性轴
目录
§6-1 (纯弯曲)梁的正应力
建立坐标
m a o b m
n a o by
dx
n
离中性层越远,线应变越大,曲率1/ρ(弯曲程度) 越大,同一位置线应变越大。 y 胡克定理 E E 二、物理方面
§6-3 变截面梁形状及变截面梁
换个角度思考: WZ值与截面高度和面积分布有关,截面高度越大、面 积分布离中性轴越远的话,WZ值就越大,这也是工字 型形梁更合理的主要原因之一。 从应力角度分析:
M
§6-3 变截面梁形状及变截面梁
二、变截面梁
A
q=2kN/m
B C
变截面梁——横截面沿梁轴 线变化的梁 Mx max WZ x
M max 38 10 3 N m WZ 0.223 10 3 m 3 223cm3 170 10 6 Pa
§6-2 梁的正应力强度条件及其应用
例题6-4 根据算得的WZ值,在 附录型钢表上查出与 该值相近的型号,就 是我们所需的型号。 附录A,附表4,P232页。 查出20a钢相近WZ值237cm3,故选择20a号工字钢。 注意:选择的工字钢型号WZ值一般要求≥计算值,才能满 足强度要求。 如选取的工字钢WZ值略小于计算值,则应再校核下强度, 当σmax不超过[σ]的5%时,还是满足工程需要的。
( // Fs )
§6-4 矩形截面梁的切应力
一、矩形截面梁
FSSZ (6-11) 切应力计算公式: IZb 式中,FS-横截面上的剪力;IZ-截面对中性轴的惯性矩; b-截面的宽度;SZ-为面积A*对中性轴的静矩。
A*是过欲求应力点的水平线到截面边缘间的面积。 FS、SZ均代绝对 值,切应力方向 依剪力方向确定。
a
F
b
A
FAY
x1
C x2
l
B
FBY
M

x
§6-4 矩形截面梁的切应力
分几种截面形状讨论弯曲切应力
一、矩形截面梁切应力
b y A n x n1 dx P m m1
q(x)
m h
m
m1 O
Fs z q1 y
B x
p n dx p1 n1 y
x
关于切应力的分布作两点假设: 1、横截面上各点的切应力方向平行于剪力 2、切应力沿截面宽度均匀分布
第六章 梁的应力
§6-1 梁的正应力(纯弯曲) §6-2 梁的正应力强度条件及其应用 §6-3 梁的合理截面形状及变截面梁 (工程上提高弯曲强度的一些措施) §6-4 矩形截面梁的切应力
§6-6 梁的切应力强度条件
§6-1 (纯弯曲)梁的正应力
回顾与比较 内力 应力
FN A
T IP

§6-1 (纯弯曲)梁的正应力
三、静力学方面
FN、My、Mz
M EI Z
EIZ ——弯曲刚度
1
§6-1 (纯弯曲)梁的正应力
变形几何关系 物理关系
E
1

y
E
y
M 静力学关系 EI Z

1 为曲率半径, 为梁弯曲变形后的曲
率 (6-6)
My 正应力公式 IZ
ql2 / 8 4kN m

x
FAy 4kN FBy 4kN ql2 4kN m 2. 求最大弯矩 M max 8 2 2 bh 0.14 m 0.21 m 2 WZ 0.103 10 2 m3 6 6
解:1. 求支反力
最大正应力为:
max
M max 4 10 3 N m 3.88MPa 10 MPa 2 3 WZ 0.103 10 m
§6-2 梁的正应力强度条件及其应用
例题6-5一⊥形截面的外伸梁如图所示,已知l=600mm, a=40mm,b=30mm,c=80mm,F1=24kN,F2=9kN,材料 的许用应力[σt]=30MPa,许用压应力[σc]=90MPa。试校 核梁的强度。
解:先画出弯矩图。需算出形心C的位置及截面对中性轴 的惯性矩,算得结果为:
max
M max WZ
2.选择截面
M max WZ
3.计算梁所能承载的最大荷载
M max W Z
§6-2 梁的正应力强度条件及其应用
q=2kN/m x l = 4m
FBY
例题6-2
140
210 B
A C
[σ]=10MPa,试校核该梁 的强度。
xm
FAY
M
§6-3 变截面梁形状及变截面梁
矩形截面
方形截面b=h=a
圆截面
1 2 W1 bh A bh 6
1 3 W2 a 6
A a2
(1)先比较矩形和正方形 2 1 2 1 hb bh a bh Ah h W1 6 6 1 3 1 a W2 W1 a Aa h a 1 矩形截面更合理 6 6 W
Mx WZ x
x l = 4m
xm
M
ql2 / 8 4kN m

x
等强度梁——梁强度沿轴线 均匀分布
Mx WZ x
§6-3 变截面梁形状及变截面梁
当荷载比较复杂时,等强度梁难以加工,增加了加工 制造成本,一般很少采用等强度梁。
§6-3 变截面梁形状及变截面梁
M
FS
? ?
§6-1 (纯弯曲)梁的正应力
纯弯曲
梁段CD上,只有弯矩,没有剪力--纯弯曲
梁段AC和BD上,既有弯矩,又有剪力--横力弯曲
目录
§6-1 (纯弯曲)梁的正应力
一、几何方面
m a b n
d
m´ n´
a
b

b´ m´ 平面假设:
m dx n
a´ b´

横截面变形后保持为平面,且仍 然垂直于变形后的梁轴线,只是绕截 面内某一轴线偏转了一个角度。
max MC y2 IZ
§6-2 梁的正应力强度条件及其应用
(2)校核最大压应力 与分析最大拉应力一样,要比较C、B两个截面。C截面上 最大压应力发生在上边缘。因MC、y1分别大于MB、y2,所 以最大压应力一定发生在C截面上。即 MC 2.7 10 3 N m 0.072 m c,max y1 33.9MPa c 5 4 IZ 0.573 10 m 满足强度要求。
K
§6-4 矩形截面梁的切应力
二、矩形截面梁切应力分布 公式中,对某一截面来说, FS、IZ、b均为常数,只有 静矩是变量。
SZ A y 0 h h b y y y / 2 2 2
FSSZ IZb
b h2 2 y 2 4
§6-1 (纯弯曲)梁的正应力
正应力分布
M
My IZ
正应力大小与其到 中性轴距离成正比; • 与中性轴距离相等 的点, 正应力相等; • 中性轴上,正应力等于零

max
M
Mymax IZ
M WZ
WZ
IZ ymax
max
min
M WZ
§6-1 (纯弯曲)梁的正应力
§6-2 梁的正应力强度条件及其应用
在最大正弯矩的C截面上,最大拉应力发生在截面的下边 缘,其值为 MC max y2 IZ 在最大负弯矩的B截面上,最大拉应力发生在截面的上边 缘,其值为 MB max y1 IZ
§6-2 梁的正应力强度条件及其应用
C B
MB max y1 IZ 在上面两式中,MC>MB而y2<y1,应比较MCy2与MBy1: M C y 2 2.7 10 3 N m 0.038 m 103 N m 2 M B y1 1.8 10 3 N m 0.072 m 129 N m 2 因MCy2<MBy1,所以最大拉应力发生在B截面上,即 MB 129 N m 2 t ,max y1 22 .5 10 6 Pa 2.5MPa t IZ 0.573 10 5 m 4 满足强度要求。
相关文档
最新文档