数学实验4-线性规划
数学建模实验报告线性规划.doc

数学建模实验报告线性规划数学建模实验报告姓名:霍妮娜班级:计算机95学号:09055093指导老师:戴永红提交日期:5月15日一.线性规划问题描述:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人级大学生正在从若干个招聘单位中挑选合适的工作岗位,他考虑的主要因素包括发展前景、经济收入、单位信誉、地理位置等,试建立模型给他提出决策建议。
问题分析首先经过对问题的具体情况了解后,建立层次结构模型,进而进行决策分析。
下面我建立这样一个层次结构模型:某岗位综合分数发展前景x1经济收入x2家庭因素x3地理位置x4这是一个比较简单的层次结构模型,经过如下步骤就可以将问题解决。
1.成对比较从x1,x2,x3,x4中任取xi和xj,对他们对于y贡献的大小,按照以下标度给xi/xj赋值:xi/xj=1,认为前者与后者贡献程度相同;xi/xj=3,前者比后者的贡献程度略大;xi/xj=5,前者比后者的贡献程度大;xi/xj=7,前者比后者的贡献大很多;xi/xj=9,前者的贡献非常大,以至于后者根本不能和它相提并论;xi/xj=2n,n=1,2,3,4,认为xi/xj介于2n-1和2n+1直接。
xj/xi=1/n,n=1,2,…,9,当且仅当xi/xj=n。
2.建立逆对称矩阵记已得所有xi/xj,i,j=1,2,3,4,建立n阶方阵1135A=11351/31/3131/51/51/313.迭代e0=(1/n,1/n,1/n,1/n)Tek=Aek-1一直迭代直达到极限e=(a1,a2,…,a4)T则权系数可取Wi=ai 解:首先通过迭代法计算得x1,x2,x3,x4的权数分别为:0.278,0.278,0.235,0.209.假设对所有的xi都采用十分制,现假设有三家招聘公司,它们的个指标如下所示:x1x2x3x4甲8579乙7966丙5798按公式分别求出甲、乙、丙三家公司的综合指数为7.144,7.112和7.123.由此可以看出,应该选择甲公司。
初中数学知识归纳线性规划的应用

初中数学知识归纳线性规划的应用线性规划(Linear Programming,简称LP)是数学中的重要分支,也是运筹学的一种基础工具。
它可以帮助我们在特定的约束条件下,找到使目标函数达到最优值的最佳决策方案。
在实际生活中,线性规划有着广泛的应用。
本文将对初中数学中线性规划的应用进行归纳总结。
一、最大最小问题最大最小问题是线性规划的基础,也是求解其他问题的前提。
在初中数学中,我们经常遇到寻找最大最小值的问题,线性规划可以帮助我们解决这些问题。
例如,考虑以下问题:某公司生产两种产品A和B,每单位A产品需要5小时的工作时间,每单位B产品需要4小时的工作时间。
公司每天可用的工作时间为40小时,每单位A产品的利润为200元,每单位B产品的利润为150元。
如何安排生产以使得利润最大化?为了解决这个问题,我们可以定义以下变量:设x为生产的A产品数量(单位:个)设y为生产的B产品数量(单位:个)根据题目中的限制条件,我们可以得到以下约束条件:5x + 4y <= 40 (工作时间限制)x >= 0 (生产数量非负)同时,我们要最大化利润,因此目标函数为:200x + 150y (利润最大化)通过求解这个线性规划问题,我们可以得到最优解,即最大化的利润。
二、资源分配问题线性规划还可以处理资源分配问题。
在实际生活中,我们经常需要合理分配有限的资源以达到最佳效益。
例如:某餐厅每天供应A类和B类套餐,每份A类套餐需要2个鸡腿和3个薯条,每份B类套餐需要3个鸡腿和2个薯条。
餐厅每天供应的鸡腿总量为20个,薯条总量为15个。
假设A类套餐的利润为10元,B 类套餐的利润为8元,如何安排供应以使得利润最大化?我们可以定义以下变量:设x为供应的A类套餐数量(单位:份)设y为供应的B类套餐数量(单位:份)根据题目中的限制条件,我们可以得到以下约束条件:2x + 3y <= 20 (鸡腿供应限制)3x + 2y <= 15 (薯条供应限制)x >= 0 (供应数量非负)同时,我们要最大化利润,因此目标函数为:10x + 8y (利润最大化)通过求解这个线性规划问题,我们可以得到最优解,即最大化的利润。
高中数学简单线性规划教案

高中数学简单线性规划教案
目标:学生能够理解和应用简单线性规划概念,解决实际问题
一、引入
1. 引导学生回顾线性规划的基本概念:目标函数、约束条件等。
2. 引导学生思考以下问题:什么是线性规划?线性规划在生活中有哪些应用?
二、知识点讲解
1. 线性规划的定义:将问题转化为目标函数和约束条件的最优化问题。
2. 线性规划的基本步骤:确定目标函数、列出约束条件、求解最优解等。
3. 简单线性规划的例子:例如生产某种产品时的最优生产数量、销售某种商品时的最大利润等。
三、练习与应用
1. 让学生通过实际例子练习简单线性规划的求解过程。
2. 给学生一个生活中的实际问题,让他们尝试用线性规划方法解决。
四、总结与反思
1. 总结本节课所学的内容,强调线性规划的重要性和应用价值。
2. 让学生思考如何将线性规划应用到更复杂的实际问题中,并鼓励他们多做练习。
五、作业
1. 布置相关练习题和应用题作为作业,巩固本节课所学的知识。
2. 提醒学生在做作业时要注意思考问题的建模和求解方法。
六、拓展
1. 可以邀请专业人士或相关领域的学者给学生讲解线性规划在实际中的应用和发展趋势。
2. 可以组织学生参加线性规划竞赛或实践活动,增强他们的动手能力和实际应用能力。
最优化方法-线性规划

引言
对线性规划贡献最大的是美国数学家G.B.Dantig(丹捷格),他 在1947年提出了求解线性规划的单纯形法(Simple Method),并同时给出了许多很有价值的理论,为线性规划 奠定了理论基础。在1953年,丹捷格又提出了改进单纯形法, 1954年Lemke(兰母凯)提出了对偶单纯形法(dual simplex method)。 在1976年, R. G. Bland 提出避免出现循环的方法后,使线 性规划的理论更加完善。但在1972年,V. Klee和G .Minmty 构造了一个例子,发现单纯形法的迭代次数是指数次运算,不 是好方法——并不是多项式算法(多项式算法被认为是好算 法),这对单纯形法提出了挑战。
min Ζ ’=-Ζ =-(c1x1+c2x2+…+cnxn)
(三)若xj<0,令xj=xj’-xj”,xj’≥0,xj”≥0 利用矩阵和向量的符号,线性规划问题可以写为
minΖ =CX s.t. AX=b X≥0 minΖ =CX s.t. Σ xjPj=b C=(c1,c2, …,cn)
a11 a12 …a1n A= ┆ ┆ ┆ am1 am2 …amn b1 b2 ┆ bm x1 x2 X= ┆ xn
化一般问题为标准形式: (一)若ak1x1+ak2x2+…aknxn≤bk 加一变量xn+k≥0(松驰变量),改写为 ak1x1+ak2x2+…aknxn+xn+k=bk 若ak1x1+ak2x2+…aknxn≥bk 减一变量xn+k≥0(剩余变量),改写为 ak1x1+ak2x2+…aknxn-xn+k=bk (二) 若目标函数为maxΖ =c1x1+c2x2+…+cnxn
用matlab求解线性规划问题

用m a t l a b求解线性规划问题Company number:【0089WT-8898YT-W8CCB-BUUT-202108】实验四 用M A T L A B 求解线性规划问题一、实验目的: 了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。
二、实验内容:线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++= 2211m in约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++221111212111这里nn x f x f x f z +++= 2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21 =称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵 称为不等式约束矩阵,由系数ij c 组成的矩阵 称为等式约束矩阵,列向量T n b b b b ),,,(21 =和T n d d d d ),,,(21 =为右端向量,条件0≥j x 称为非负约束。
一个向量Tn x x x x ),,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。
我们这里介绍利用Matlab 来求解线性规划问题的求解。
在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下:X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。
线性规划综合性实验报告

《线性规划综合性实验》报告一、实验目的与要求掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高应用线性规划方法解决实际问题的实践动手能力。
通过实验,更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。
要求能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包WinQSB中Linear and Integer Programming模块的操作方法与步骤,能对求解结果进行简单的应用分析。
二、实验内容与步骤1.确定线性规划问题(写出线性规划问题)2.建立线性规划模型(写出线性规划数学模型)3.用WinQSB中Linear and Integer Programming模块求解线性规划模型(写出求解的具体步骤)4.对求解结果进行应用分析(指出最优方案并作出一定的分析)三、实验题目、实验具体步骤及实验结论(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。
近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。
为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。
2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。
该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。
在市场调查的基础上,从企业实际出发普遍下调整车出厂价和目标利润率,有关数据如下表1资金占用情况如下表2由于发动机改型生产的限制,改型车M3和M6两种车1999年的生产量预测数分别为20000辆和22000辆。
数学建模实验4-线性规划模型求解
2.
H=[2 -2 3;-2 4 0;3 0 0];
C=[0 4 0];
A=[2 3 1];
b=[8];
Aeq=[1 -1 2];
beq=[8];
lb=zeros(3,1);
[xopt,fopt]=quadprog(H,C,A,b,Aeq,beq,lb)
Optimization terminated.
xopt = 0 0 4
fopt =0
3.
一
二
三
四
五
A
X1A
X2A
X3A
X4A
B
X3B
C
X2C
D
X1DX2DX3D源自X4DX5DMax z = 1.15*X4A+1.25*X3B+1.40*X2C+1.06*X5D
S.t
X1A+X1D=100000
X2A+X2C+X2D=1.06*X1D
X3A+X3B+X3D=1.06*X2D+1.15*X1A
其次,最后一道题编写M文件时,因未知数过多,所以需要更加的细心和耐心,否则很容易出错。
X4A+X4D=1.06*X3D+1.15*X2A
X5D=1.15*X3A+1.06*X4D
X3B<=40000
X2C<=30000
X1A,X2A,…,X5D>=0
编制M文件:
max 1.15x4a+1.40x2c+1.25x3b+1.06x5d
f=[0 0 0 -1.15 -1.25 -1.40 0 0 0 0 -1.06];
数学公式知识:线性规划的基本概念与解法
数学公式知识:线性规划的基本概念与解法线性规划是一种数学优化方法,它的目的是在一组线性约束条件下,最大化或最小化一个线性目标函数。
基本概念
1.线性函数
线性函数是指满足以下两个条件的函数:(1)任意两个自变量的加权和的值,等于这两个自变量各自代入函数后的加权和的值;(2)函数的系数是定值。
2.线性规划模型
线性规划模型是由线性约束条件和线性目标函数组成的模型。
线性约束条件包括不等式约束条件和等式约束条件。
线性目标函数表示需要优化的目标。
3.线性规划问题
线性规划问题是指在一组线性约束条件下,求解线性目标函数的最大值或最小值。
4.线性规划的基本形式
线性规划的基本形式是将问题转化为以下形式:最大化cT x (或最小化cT x),使得Ax≤b,x≥0,其中c、x和b都是向量,A是一个矩阵。
解法
线性规划的解法分为两种:图形法和单纯性法。
1.图形法
图形法是一种直观的方法,它使用二维或三维图形表示变量的取值范围,并在此基础上确定最优解。
2.单纯性法
单纯性法是一种基于矩阵运算的高效解法。
它通过不断地迭代,减少约束条件的个数,并在此过程中找到最优解。
线性规划在实际应用中具有广泛的应用,例如,生产成本优化、库存管理、交通运输规划等。
它是一种非常有用的工具,可以帮助管理者更有效地制定决策方案。
第4讲 线性规划
当目标函数该边后,等值线的方向会发生改变, 如果等值线与某个约束对应的函数直线平行, 则该函数值线上的所有可行解都是最优解
最优解(1,4)
2 x 1 x 2 2
x1 2 x 2 2
x1 x 2 5
注 释
可能出现的情况: • 可行域是空集
• 可行域无界无最优解 • 最优解存在且唯一,则一定在顶点上达到 • 最优解存在且不唯一,一定存在顶点是最优 解
m 定义 2.2.2: B 是秩为 设
基本可行解,这时对应的基阵 为可行基。 B 1 b 0 如果 则称该基可行解为非退化的,如果一个线 性规划的所有基可行解都是非退化的则称该规划为非退化 的。
B
例 考虑问题:
min z x 1 x 2 2 x 1 x 2 x 3 2 x1 2 x 2 x 4 2 s .t . x1 x 2 x 5 5 x j 0; j 1,2,3,4,5
或
a i 1 x 1 a i 2 x 2 a in x n bi a i 1 x 1 a i 2 x 2 a in x n bi
例2.1.3 把问题转化为标准
形式
max z x1 x 2 2 x 1 x 2 2 x1 2 x 2 2 s .t . x1 x 2 5 x1 0
基本可行解与基本 定理
• 定义 • 基本定理 • 问题
基本可行解定 义
令 A ( B , N ) , x =( x B , x N )。
Ax b
分块 左乘B
xN
1
Bx B Nx N b
x B B 1 Nx N B 1 b
线性规划实验
实验一:线性规划实验1. 求解线性规划问题123451234512345min 23523..2342330,1,2,,5j f x x x x x s t x x x x x x x x x x x j =++++⎧⎪++++≥⎪⎨-+++≥⎪⎪≥=⎩2. 农场种植计划问题某农场Ⅰ、Ⅱ、Ⅲ等耕地的面积分别为100km 2、300 km 2和200 km 2,计划种植水稻、大豆和玉米,要求三种作物的最低收获量分别为190000kg 、130000kg 和350000kg 。
Ⅰ、Ⅱ、Ⅲ等耕地种植三种作物的单产如表1所示。
若三种作物的售价分别为水稻1.20元/kg ,大豆1.50元/kg ,玉米0.80元/kg 。
那么:(1)如何制定种植计划,才能使总产量最大? (2)如何制定种植计划,才能使总产值最大?23. 厂址选择问题考虑A 、B 、C 三地,每地都出产一定数量的原料,也消耗一定数量的产品,如表2所示。
已知制成每吨产品需3吨原料,各地之间的距离为:A-B ,150km ;A-C ,100km ;B-C ,200km 。
假定每万吨原料运输1km 的运价是5000元,每万吨产品运输1km的运价是6000元。
由于地区条件的差异,在不同地点设厂的生产费用也不同。
问究竟在哪些地方设厂,规模多大,才能使总费用最小?另外,由于其他条件限制,在B 处建厂的规模(生产的产品数量)不能超过5万吨。
表2 A 、B 、C 三地出产原料、消耗产品情况表4. 生产计划问题某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用A 、B 机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A 、B 、C 三种机器加工,加工时间为每台各1小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时。
问该厂应生产甲、乙机床各几台,才能使总利润最大?5. 军事方案问题某战略轰炸机群奉命摧毁敌人军事目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
• 线性规划 • 整数线性规划 • 0-1线性规划 • 线性多目标规划 • 最优化问题简介
参看:实验8,实验9
5
一、线性规划
1、引例 例1、生பைடு நூலகம்计划问题:
某企业生产A,B两 种产品,成本和利润指标如下:
7
A 煤 1 劳动日 3 仓库 0 利润 40
例2、 (资源配置问题) 有一批长度为7.4m的钢筋若干根。现有5中下料方 案,分别作成2.9m, 2.1m,1.5m的钢筋架子各100 根。每种下料方案及剩余料头如下表所示: 2.9m 2.1m 1.5m 合计 料头 Ⅰ 1 0 3 7.4 0 Ⅱ 2 0 1 7.3 0.1 Ⅲ 0 2 2 7.2 0.2 Ⅳ Ⅴ 1 0 2 1 0 3 7.1 6.6 0.3 0.8
解:% lp2.m %
c=[4,3];a=[1,1];b=[5]; vlb=[-6;-1]; %lower bound of vector x % vub=[10;4]; % upper bound of vector x % [X,Z]=linprog(c,a,b,[],[],vlb,vub)
20
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为: ( 8 25 2% x1 8 15 5% x2 ) 2 8 x1 12 x2
24
故目标函数为:
min z ( 32 x1 24 x 2 ) (8 x1 12 x2 ) 40 x1 36 x2 Matlab程序如下: 约束条件为: c = [40;36]; 8 25 x1 8 15 x2 1800 A=[-5 -3]; 8 25 x 1800 1 b=[-45]; Aeq=[]; 8 15 x2 1800 beq=[]; x 0 , x 0 1 2 vlb = zeros(2,1); vub=[9;15]; [x,fval]= linprog(c,A,b,Aeq,beq,vlb,vub)
14
s.t.
以上问题的特点:
1.在人力、财力、资源给定条件下,如何 合理安排任务,使得效益最高. 2.某项任务确定后,如何安排人力、财力、 物力,使之最省. 数学模型都是在线性等式或不等式约束下, 求线性函数的最大值或最小值问题。这类问 题称为线性规划LP (Linear Programming) 问题。
15
2、线性规划问题的一般形式
max(min)Z=c1x1+ c2x2+…+cnxn a11x1+ a12x2+…+ a1nxn (=, )b1, a21x1+ a22x2+…+ a2nxn (=, )b2, s.t. … … … am1x1+ am2x2+…+ amnxn (=, )bm, xj 0(j=1,…,n);
23
例5 某厂每日8小时的产量不低于1800件。为了进 行质量控制,计划聘请两种不同水平的检验员。一级 检验员的标准为:速度25件/小时,正确率98%,计时 工资4元/小时;二级检验员的标准为:速度15小时/ 件,正确率95%,计时工资3元/小时。检验员每错检 一次,工厂要损失2元。为使总检验费用最省,该工 厂应聘一级、二级检验员各几名? 解 设需要一级和二级检验员的人数分别为x1、 x2人,则应付检验员的工资为:
10,
22
解:% lp4.m %
c=[2,1,3,2,2,4,3,4,2]; a(1,:)=[1,1,1,0,0,0,0,0,0]; a(2,:)=[0,0,0,1,1,1,0,0,0]; a(3,:)=[0,0,0,0,0,0,1,1,1]; b=[50;30;10]; aeq(1,:)=[1,0,0,1,0,0,1,0,0]; aeq(2,:)=[0,1,0,0,1,0,0,1,0]; aeq(3,:)=[0,0,1,0,0,1,0,0,1]; beq=[40;15;35]; vlb=zeros(9,1); % lower bound of vector x % vub=[]; % upper bound of vector x % [x,Z]=linprog(c,a,b,aeq,beq,vlb,vub)
仓库 车间
1 2 2 3 40
2 1 2 4 15
3 3 4 2 35
库存容量 50 30 10
1 2 3 需求
问:如何安排运输任务使得总运费最小?
10
解: 设x 为i 仓库运到 j车间的原棉数量(i =1,2,3; ij j =1,2,3)。则 minZ= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33 x11 +x12+x13 50, 车间 仓库 x21+x22+x23 30, 1 x31+x32+x33 10, 2 x11 +x21+x31 = 40, 3 x12 +x22+x32 =15, 需求 x13 +x23+x33 =35, xij 0, i =1,2,3; j =1,2,3;
2.9m 2.1m 1.5m 合计 料头 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 1 2 0 1 0 0 0 2 2 1 3 1 2 0 3 7.4 7.3 7.2 7.1 6.6 0 0.1 0.2 0.3 0.8
9
例3、(运输问题)
某棉纺厂的原棉需从仓库运送到各车间。各车间原 棉需求量,单位产品从各仓库运往各车间的运输费 以及各仓库的库存容量如下表所列:
模型: min z = f’x s.t. Ax ≤ b 模型: min z = f’x s.t. Ax ≤ b Aeqx = beq 模型: min z = f’x s.t. Ax ≤ b Aeqx = beq lb ≤ x ≤ ub 指令: x=linprog(f, A, b) 指令: x=linprog(f, A, b, Aeq, beq)
求:如何分配投资资金使得5年末总资本最大?
12
解: 设xik( i =1,2,3,4,5; k =A,B,C,D)表示第i年初投
资第k项目的资金数。
年份 项目
1 x1A
2 x2A x2C
3 x3A x3B
4 x4A
5
A B C D
x1D
x2D
x3D
x4D
x5D
13
xik( i =1,2,…,5; k =A,B,C,D)为第i年初投k项目的 资金数.则: maxZ= 1.15x4A +1.40 x2C+1.25x3B+1.11x5D x1A+x1D=10 x2A+x2C+x2D= 1.11 x1D x2C 3 x3A +x3B+x3D =1.15 x1A+ 1.11 x2D x3B 4 x4A +x4D =1.15 x2A+ 1.11 x3D x5D =1.15 x3A+ 1.11 x4D xik 0, i =1,2,…,5; k =A,B,C,D;
数学实验
Experiments in Mathematics Laboratory Mathematics
阮小娥博士
线性规划
1
问题1
现有10万元,可连续投资于4个项目。各项目投资时 间和本利情况如下: 项目A:从第1年 到第4年每年初要投资,次年末 回收本利1.15倍。 项目B:第3年初投资,到第5年末回收本利1.25倍, 最大投资4万元。 项目C:第2年初投资,到第5年末回收本利1.40倍, 最大投资3万元。 项目D:每年初投资,每年末回收本利1.11倍。
解:程序如下
c=[-40,-50]; a=[1,2;3,2;0,2]; b=[30;60;24]; x=linprog (c,a,b) z=c*x
[x, Z] =linprog (c,a,b)
19
例2:
min Z= 4x1 +3x2
s.t.
x1+x2 5, -6 x1 10, -1 x2 4;
例3: min Z = -x1+2x2 –3x3
s.t.
x1+x2 +x3 7, -x1 +x2 -x3 -2, x1 , x 2 , x3 0 ;
% lp3.m % 解: c=[-1,2,-3];a=[1,1,1;-1,1,-1]; b=[7;-2]; vlb=[0;0;0]; % lower bound of vector x % vub=[]; % upper bound of vector x % x=linprog(c,a,b,[],[],vlb,vub) z=c*x
21
例4:
minZ= 2x1 + x2+3x3+2x4 +2x5 +4x6 +3x7 +4x8 +2x9
x1 x2 s.t. x3 x1 +x2+x3
+x4 +x5 +x6 x4+x5+x6
+x7 +x8
= 40, =15,
+x9 =35,
50, 30,
x7+x8+x9 xi 0, i =1,2,…,9;
问:如何下料使得剩余料头最少?
8
解:设按第i种方案下料的原材料为xi根,则: minZ= 0.1x2 + 0.2x3+0.3x4+0.8x5 x 1 + 2x 2 + x4 =100, 2x3 +2x4+ x5=100, s.t. 3x1+ x2+2x3 +3x5=100, xi 0 (i =1,…,5),且为整数;