第1章 随机事件及其概率课后习题答案(高教出版社,浙江大学)

合集下载

概率论与数理统计课后习题答案浙江大学第四版完整版.pdf

概率论与数理统计课后习题答案浙江大学第四版完整版.pdf

完全版概率论与数理统计课后习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一]写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一]1)nn n n o S1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一]2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一](3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二]设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A -(AB+AC )或A -(B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S -(A+B+C)或CB A(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生相当于C A C B B A ,,中至少有一个发生。

故表示为:C A C B B A 。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故表示为:ABCC B A 或(8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

故表示为:AB +BC +AC6.[三]设A ,B 是两事件且P (A )=0.6,P (B )=0.7.问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少?解:由P (A )=0.6,P (B )=0.7即知AB ≠φ,(否则AB =φ依互斥事件加法定理,P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为P (AB )=0.6+0.7-1=0.3。

第一章 随机事件及其概率课后习题参考答案

第一章  随机事件及其概率课后习题参考答案

第一章 随机事件及其概率1. 1) {}01001,,,.nn n n Ω=L2) {}{}10,11,12,13,,10.n n Z n Ω==∈≥L3) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。

写下检查四个产品所有可能的结果S ,根据条件可得样本空间Ω。

,,,,,,,,,,,,,,,,,,,,,,,,.,,,,S ++--++-++++-+++++---+--++-+-+-++⎧⎫=⎨⎬-+---+-+-++--+++-------+--+---++⎩⎭++--++-++++-+++++--+-+-+-++⎧⎫Ω=⎨⎬-+---+-+-++--+++--⎩⎭4) {}22(,)1.x y x y Ω=+<2. 1) ()A B C ABC --=, 2) ()AB C ABC -=, 3) A B C A B C ++=U U , 4) ABC ,5) ()A B C ABC Ω-++=, 6) ()AB BC AC AB BC AC Ω-++=++, 7) ()ABC A B C Ω-=U U , 8) AB AC BC ++.3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。

(2)当()1P A B +=时,()P AB 取到最小值0.3。

4. 解:依题意所求为()P A B C ++,所以()()()()()()()()1111000(0()()0)44485.8P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==Q 5. 解:依题意,()()()()()()()()()()()()()()0.70.50.25.()()()0.70.60.5P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++==++=+=+---===+-+-Q6. 解:由条件概率公式得到111()1()()(),(),3412()2P AB P AB P A P B A P B P A B ==⨯=== 所以1111()()()().46123P A B P A P B P AB +=+-=+-= 7. 解:1) 2028281222101028()45C C P P A A C P ===,2) 202__________282121212210101()()(|)45C C P P A A P A P A A C P ====,3) 1122________82821212121222210101016()()()145C C P P P A A A A P A A P A A C P P =+==--=U ,4) 1120____________8228121212122101()()()5C C C C P A A A A P A A P A A C +=+==U . 8. 解:(1) 以A 表示第一次从甲袋中取得白球这一事件,B 表示后从乙袋中取 得白球这一事件,则所求为()P B ,由题意及全概率公式得1()()()()().11n N m NP B P A P B A P A P B A n m N M n m N M +=+=⨯+⨯++++++ (2) 以123,,A A A 分别表示从第一个盒子中取得的两个球为两个红球、一红球一白球和两个白球,B 表示“然后”从第二个盒子取得一个白球这一事件,则容易推知211255441232229995103(),(),(),181818C C C C P A P A P A C C C ====== 123567(|),(|),(|).111111P B A P B A P B A === 由全概率公式得31551063753()()(|).18111811181199i i i P B P A P B A ===⨯+⨯+⨯=∑ 9. 解:以A 表示随机挑选的人为色盲,B 表示随机挑选的人为男子。

随机数列与概率(课后答案)

随机数列与概率(课后答案)

第一章 随机事件及其概率§ 1.1 随机事件及其频率·概率的统计定义§ 1.2 样本空间1.答:Ω={(A,B)、(A,C)、(A,D)、(A,E)、(B,A)、(B,C)、(B,D)、(B,E)、(C,A)、(C,B)、(C,D)、(C,E)、(D ,A)、(D ,B)、(D ,C)、(D ,E)、(E ,A)、(E ,B)、(E ,C)、(E ,D)} 成员A 被挑选出来的事件:A={(A,B)、(A,C)、(A,D)、(A,E)、(B,A)、(C,A)、(D ,A)、(E ,A)}2.(1)样本空间Ω; (2)事件A=“点数不超过2”;(3)事件B=“点数不超过3”; (4)事件C=“点数不小于4”;(5)事件D=“掷得奇数点”。

答:(){}11,2,3,4,5,6Ω= (){}21,A =2 (){}31,2,B =3(){}44,5,C =6 (){}51,3,5D =3. 在下列试验中,样本空间是什么?(A)在一次调查有三个孩子的家庭时,按年龄的递增次序纪录孩子们的性别;(B)把一本给定的书翻到任一页,计算该页印刷错误的数目。

答:(){},,,,,,,A BBB BGB BGG GGG GBB GBG BBG GGB Ω=()B 假设该页字数为,N {}0x x N Ω=≤≤4. 在下列试验中写出样本空间:(A)在一次调查有三个孩子的家庭时,记录男孩的数目;(B)从一个工厂的产品中任选四件产品,记录次品数目。

答:(){}0,1,2,3A Ω= ()B {}0,1,2,3,4Ω=§1.3 事件的关系及运算 §1.4 概率的古典定义1. 某人向固定目标射击三次,用表示“第i 次击中目标”i A)3,2,1(=i ,试用表示下列事件:321,,A A A (1)全部击中; (2)至少击中一次; (3)至少击中二次;(4)恰击中一次; (5)恰击中二次; (6)都未击中;(7)击中次数不多于一次; (8)击中次数不多于二次。

概率论数理统计高教出版社课后答案浙江大学共63页word资料

概率论数理统计高教出版社课后答案浙江大学共63页word资料

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

(1)该数是奇数的可能个数为48344=⨯⨯个,所以出现奇数的概率为(2)该数大于330的可能个数为48454542=⨯+⨯+⨯,所以该数大于330的概率为5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

概率论与数理统计(浙大) 习题答案 第1章

概率论与数理统计(浙大) 习题答案 第1章

第一章 概率论的基本概念1. 写出下列随机试验的样本空间.(1)记录一个小班一次数学考试的平均分数(充以百分制记分).解: }100 , ,1 ,0|{n i ni S ⋅⋅⋅==, 其中n 为小班人数. (2)同时掷三颗骰子, 记录三颗骰子点数之和;解: S ={3, 4, ⋅⋅⋅ , 18}.(3)生产产品直到得到10件正品为止, 记录生产产品的总件数;解: S ={10, 11, 12, ⋅⋅⋅ , n , ⋅⋅⋅ }.(4)对某工厂出厂的产品进行检查, 合格的记上“正品”, 不合格的记上“次品”, 如连续查出2个次品就停止检查, 或检查4个产品, 停止检查, 记录检查的结果.解: S ={00, 100, 0100, 0101, 1010, 0110,1100, 0111, 1011, 1101, 1110, 1111},其中0表示次品, 1表示正品.(5)在单位圆内任意取一点, 记录它的坐标;解: S ={(x , y )|x 2+y 2<1}.(6)将一尺之棰成三段, 观察各段的长度.解: S ={(x , y , z )|x >0, y >0, z >0, x +y +z =1}, 其中x , y , z 分别表示第一、二、三段的长度.2. 设A , B , C 为三事件, 用A , B , C 的运算关系表示下列各事件.(1)A 发生, B 与C 不发生;解: 表示为: A ⎺B ⎺C 或A -(AB +AC )或A -(B ⋃C ).(2)A , B 都发生, 而C 不发生;解: 表示为: AB ⎺C 或AB -ABC 或AB -C .(3)A , B , C 中至少有一个发生;解: 表示为: A +B +C .(4)A , B , C 都发生;解: 表示为: ABC(5)A , B , C 都不发生;解: 表示为: ⎺A ⎺B ⎺C 或S - (A +B +C)或C B A ⋃⋃(6)A , B , C 中不多于一个发生;解: 即A , B , C 中至少有两个同时不发生相当于⎺A ⎺B , ⎺B ⎺C ,⎺A ⎺C 中至少有一个发生.故表示为: ⎺A ⎺B +⎺B ⎺C +⎺A ⎺C .(7)A , B , C 中不多于二个发生;解: 相当于: ⎺A , ⎺B , ⎺C 中至少有一个发生.故表示为: ⎺A +⎺B +⎺C 或ABC .(8)A , B , C 中至少有二个发生.解: 相当于: AB , BC , AC 中至少有一个发生.故表示为: AB +BC +AC .3. 设A , B 是两事件且P (A )=0.6, P (B )=0.7. 问: (1)在什么条件下P (AB )取得最大值, 最大值是多少?(2)在什么条件下P (AB )取得最小值, 最小值是多少?解: (1)因为P (AB )=P (A )+P (B )-P (A ⋃B ), 且P (A )<P (B )≤P (A ⋃B ), 所以当A ⊂B 时, P (A ⋃B )=P (B ), P (AB )取到最大值, 最大值为P (AB )=P (A )=0.6.(2)当A ⋃B =S 时, P (AB )取到最小值, 最小值为P (AB )=0.6+0.7-1=0.3.4. 设A , B , C 是三事件, 且P (A )=P (B )=P (C )=1/4, P (AB )=P (BC )=0, P (AC )=1/8. 求A , B , C 至少有一个发生的概率. 解: P (A , B , C 至少有一个发生)=P (A +B +C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =(3/4)-(1/8)+0=5/8.5. 在一标准英语字典中有55个由两个不同的字母所组成的单词, 若从26个英文字母中任取两个字母予以排列, 问能排成上述单词的概率是多少?解: 记A 表“能排成上述单词”. 因为从26个任选两个来排列, 排法有226A 种. 每种排法等可能. 字典中的二个不同字母组成的单词: 55个, 所以1301155)(226==A A P .6. 在房间里有10人. 分别佩戴从1号到10号的纪念章, 任选3人记录其纪念章的号码.(1)求最小的号码为5的概率;解: 记“三人纪念章的最小号码为5”为事件A . 因为10人中任选3人为一组: 选法有310C 种, 且每种选法等可能. 又事件A相当于: 有一人号码为5, 其余2人号码大于5. 这种组合的种数有251C ⨯. 所以1211)(31025=⨯=C C A P .(2)求最大的号码为5的概率.解: 记“三人中最大的号码为5”为事件B , 同上, 10人中任选3人, 选法有310C 种, 且每种选法等可能, 又事件B 相当于: 有一人号码为5, 其余2人号码小于5, 选法有241C ⨯种, 所以2011)(31024=⨯=C C B P . 7. 某油漆公司发出17桶油漆, 其中白漆10桶、黑漆4桶, 红漆3桶. 在搬运中所有标签脱落, 交货人随意将这些标签发给顾客, 问一个定货4桶白漆, 3桶黑漆和2桶红漆顾客, 能按所订颜色如数得到定货的概率是多少?解: 记所求事件为A .在17桶中任取9桶的取法有310C 种, 且每种取法等可能. 取得4白3黑2红的取法有2334410C C C ⨯⨯, 故2431252)(6172334410=⨯⨯=C C C C A P .8. 在1500个产品中有400个次品, 1100个正品, 任意取200个.(1)求恰有90个次品的概率;解: 用A 表示取出的产品恰有90个次品. 在1500个产品中任取200个, 取法有2001500C 种, 每种取法等可能. 200个产品恰有90个次品, 取法有110110090400C C 种. 因此2001500110110090400)(C C C A P =. (2)至少有2个次品的概率.解: 用B 表示至少有2个次品. B 0表示不含有次品, B 1表示只含有一个次品. 同上, 200个产品不含次品, 取法有2001100C 种,200个产品含一个次品, 取法有19911001400C C 种. 因为⎺B =B 0+B 1且B 0, B 1互不相容, 所以P (B )=1-P (⎺B )=1-[P (B 0)+P (B 1)]20015002001100199110014001C C C C +-=.9. 从5双不同鞋子中任取4只, 这4只鞋子中至少有2只配成一双的概率是多少?解: 样本空间所含的样本点数为410C , 用A 表示4只全中至少有2支配成一对, 则⎺A 表示4只全不配对. ⎺A 所包含的样本点数为4452⨯C (先从5双鞋中任取4双, 再从每双中任取一只). 因此2182)(410445=⋅=C C A P , 21132181)(1)(=-=-=A P A P .10. 在11张卡片上分别写上Probabitity 这11个字母, 从中任意连抽7张, 求其排列结果为Abitity 的概率.解: 所有可能的排列构成样本空间, 其中包含的样本点数为711P . 用A 表示正确的排列, 则A 包含的样本点数为411111*********=C C C C C C C , 则0000024.04)(711==P A P .11. 将3个球随机地放入4个杯子中去, 求杯子中球的最大个数分别为1, 2, 3.解: 记A i 表示杯中球的最大个数为i 个( i =1, 2, 3). 三只球放入四只杯中, 放法有43种, 每种放法等可能. 对A 1: 必须三球放入三杯中, 每杯只放一球. 放法4×3×2种. 故1664234)(31=⨯⨯=A P . 对A 2: 必须三球放入两杯, 一杯装一球, 一杯装两球. 放法有3423⨯⨯C 种. 故169434)(3232=⨯⨯=C A P . 对A 3: 必须三球都放入一杯中. 放法有4种.16144)(33==A P . 12. 将50只铆钉随机地取来用在10个部件, 其中有3个铆钉强度太弱, 每个部件用3只铆钉, 若将三个强度太弱的铆钉都装在一个部件上, 则这个部件强度就太弱, 问发生一个部件强度太弱的概率是多少?解: 记A 表示10个部件中有一个部件强度太弱.把随机试验E 看作是用三个钉一组, 三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序. 但10组钉铆完10个部件要分先后次序)对E : 铆法有323344347350C C C C ⨯⨯⨯ 种, 每种装法等可能.对A : 三个次钉必须铆在一个部件上. 这种铆法数为10)(32334434733⨯⨯⨯C C C C ,故 00051.01960110][)(32334735032334434733==⨯⨯⨯⨯⨯⨯⨯=C C C C C C C A P .13. 已知3.0)(=A P , P (B )=0.4, 5.0)(=B A P , 求)|(B A B P ⋃.解: 7.0)(1)(=-=A P A P , 6.0)(1)(=-=B P B P ,B A AB B B A AS A ⋃=⋃==)(. 注意Φ=))((B A AB . 故有 2.05.07.)()()(=-=-=B A P A P AB P .再由加法定理8.05.06.07.0)()()()(=-+=-+=⋃B A P B P A P B A P ,于是 25.08.02.0)()()()]([)|(==⋃=⋃⋃=⋃B A P AB P B A P B A B P B A B P .14. 已知41)(=A P , 31)|(=A B P , 21)|(=B A P , 求P (A ⋃B ). 解: 根据条件概率)()|()()()()|(B P A B P A P B P AB P B A P ==, 61213141)|()|()()(=⨯==B A P A B P A P B P . 根据乘法公式1214131)()|()(=⨯==A P A B P AB P . 根据加法公式311216141)()()()(=-+=-+=⋃AB P B P A P B A P .15. 掷两颗骰子, 已知两颗骰子点数之和为7, 求其中有一颗为1点的概率(用两种方法).解法一: (在缩小的样本空间SB 中求P (A |B ), 即将事件B 作为样本空间, 求事件A 发生的概率).掷两颗骰子的试验结果为一有序数组(x , y )(x , y =1, 2, 3, 4, 5,6)并且满足x +y =7, 则样本空间为S ={(x , y )| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)},每种结果(x , y )等可能.A ={掷二骰子, 点数和为7时, 其中有一颗为1点}, 故 3162)(==A P . 解法二: 用公式)()()|(B P AB P B A P =. S ={(x , y )| x =1, 2, 3, 4, 5, 6; y =1, 2, 3, 4, 5, 6}, 每种结果均可能.A =“掷两颗骰子, x , y 中有一个为1点”,B =“掷两颗骰子, x +y =7”.则 6166)(2==B P , 262)(=AB P , 故 31626162)()()|(2====B P AB P B A P . 16. 据以往资料表明, 某3口之家, 患某种传染病的概率有以下规律:P {孩子得病}=0.6,P {母亲得病|孩子得病}=0.5,P {父亲得病|母亲及孩子得病}=0.4.求母亲及孩子得病但父亲未得病的概率.解: 令A ={孩子得病}, B ={母亲得病}, C ={父亲得病}, 则 P (A )=0.6, P (B |A )=0.5, P (C |AB )=0.4,所以 P (⎺C|AB )=1-P (C |AB )=1-0.4=0.6.P (AB )=P (A )P (B |A )=0.6×0.5=0.3,所求概率为P (AB ⎺C )=P (AB )·P (⎺C|AB )=0.3×0.6=0.18.17. 已知在10只晶体管中有2只次品, 在其中取两次, 每次任取一只, 作不放回抽样, 求下列事件的概率:(1)两只都是正品;(2)二只都是次品(记为事件B );(3)一只是正品, 一只是次品(记为事件C );(4)第二次取出的是次品(记为事件D );解: 设A i ={第i 次取出的是正品)(i =1, 2).(1)452897108)|()()(12121=⨯==A A P A P A A P . (2)45191102)|()()(12121=⨯==A A P A P A A P . (3))()()(21212121A A P A A P A A A A P +=⋃)|()()|()(121121A A P A P A A P A P +=45169810292108=⨯+⨯=. (4))()(21212A A A A P A P +=519110292108)|()()|()(121121=⨯+⨯=+=A A P A P A A P A P .18. 某人忘记了电话号码的最后一个数字, 因而他随机地拨号, (1)求他拨号不超过三次而接通所需的电话的概率; (2)若已知最后一个数字是奇数, 那么此概率是多少?解: 设A i ={第i 次拨号拨对}(i =1, 2, 3), A ={拨号不超过3次而拨通}, 则321211A A A A A A A ++=, 且三种情况互斥, 所以 )|()|()()|()()()(2131211211A A A P A A P A P A A P A P A P A P ++=. 于是(1)103819810991109101)(=⨯⨯+⨯+=A P . (2)53314354415451)(=⨯⨯+⨯+=A P .19. (1)设甲袋中装有n 只白球, m 只红球, 乙袋中装有N 只白球, M 只红球, 今从甲袋中任取一只球放入乙袋中, 再从乙袋中任意取一只球, 问取到白球的概率是多少?解: 用A 1表示“从甲袋中取得白球放入乙袋”, A 2表示“从甲袋中取得红球放入乙袋”. 再记B 表“再从乙袋中取得白球”. 因为 B =A 1B +A 2B 且A 1, A 2互斥,所以 P (B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)111++⨯+++++⨯+=M N N m n m M N N m n n )1)(()(+++++=N M n m n N m n .19. (2)第一只盒子装有5只红球, 4只白球; 第二只盒子装有4只红球, 5只白球. 先从第一盒子中任取2只球放入第二盒中去, 然后从第二盒子中任取一只球, 求取到白球的概率. 解: 记C 1为“从第一盒子中取得2只红球”. C 2为“从第一盒子中取得2只白球”. C 3为“从第一盒子中取得1只红球, 1只白球”, D 为“从第二盒子中取得白球”, 显然C 1, C 2, C 3两两互斥, C 1⋃C 2⋃C 3=S , 由全概率公式, 有P (D )=P (C 1)P (D|C 1)+P (C 2)P (D|C 2)+P (C 3)P (D|C 3)995311611711529141529242925=⋅⋅+⋅+⋅=C C C C C C C .20. 某种产品的高标为“MAXAM”, 其中有2个字母已经脱落, 有人捡起随意放回, 求放回后仍为“MAXAM”的概率. 解: 设A 1, A 2, ⋅⋅⋅ , A 10分别表示字母MA , MX , MA , MM , AX , AA , AM , XA , XM , AM 脱落的事件, 则101)(=i A P (i =1, 2, ⋅⋅⋅ , 10), 用B 表示放回后仍为“MAXAM”的事件, 则21)|(=i A B P (i =1, 2, ⋅⋅⋅ , 10), 1)|()|(64==A B P A B P , 所以由全概公式得5311011101821101)|()()(101=⨯+⨯+⨯⨯==∑=i i i A B P A P B P .21. 已知男子有5%是色盲患者, 女子有0.25%是色盲患者. 今从男女人数相等的人群中随机地挑选一人, 恰好是色盲患者, 问此人是男性的概率是多少?解: A 1={男人}, A 2={女人}, B ={色盲}, 显然A 1⋃A 2=S , A 1 A 2=∅. 由已知条件知21)()(21==A P A P ,%5)|(1=A B P ,%25.0)|(2=A B P . 由贝叶斯公式, 有)|()()|()()|()()()()|(22111111A B P A P A B P A P A B P A P B P B A P B A P +== 2120100002521100521100521=⋅+⋅⋅=.22. 一学生接连参加同一课程的两次考试. 第一次及格的概率为p , 若第一次及格则第二次及格的概率也为p ; 若第一次不及格则第二次及格的概率为2p . (1)若至少一次及格则他能取得某种资格, 求他取得该资格的概率. (2)若已知他第二次已经及格, 求他第一次及格的概率.解: A i ={他第i 次及格}(i =1, 2).已知P (A 1)=P (A 2|A 1)=p , 2/)|(12p A A P =.(1)B ={至少有一次及格}, 则21}{A A B ==两次均不及格,所以 )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-=)]|(1)][(1[1121A A P A P ---=22123)21)(1(1p p p p -=---=. (2)由乘法公式, 有P (A 1A 2)=P (A 1)P (A 2| A 1)=p 2.由全概率公式, 有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2p p p p p p +=⋅-+⋅=. 于是 1222)|(2221+=+=p p p p p A A P .23. 将两信息分别编码为A 和B 传递出去, 接收站收敛到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1, 若收站收到的信息是A , 问原发信息是A 的概率是多少?解: 设B 1, B 2分别表示发报台发出信号“A ”及“B ”, 又以A 1有A 2分别表示收报台收到信号“A ”及“B ”. 则有32)(1=B P , 31)(2=B P , P (A 1|B 1)=0.98, P (A 2|B 1)=0.08, P (A 1|B 2)=0.01, P (A 2|B 2)=0.91,从而由Beyes 公式得)|()()|()()|()()|(2121111111B A P B P B A P B P B A P B P A B P i += 19719601.03198.03298.032=⨯+⨯⨯=.24. 有两箱同种类的零件, 第一箱装50只, 其中10只一等品; 第二箱装30只, 其中18只一等品, 今从两箱中任挑出一箱, 然后从该箱中取零件两次, 每次任取一只, 作不放回抽样. 试求(1)第一次取到的零件是一等品的概率; (2)第一次取到的零件是一等品的条件下, 第二次取到的也是一等品的概率. 解: (1)记A i ={在第i 次中取到一等品}(i =1, 2), B ={挑到第i 箱}. 则有4.03018215121)|()()|()()(2121111=⨯+⨯=+=B A P B P B A P B P A P . (2))|()()|()()(2212121121B A A P B P B A A P B P A A P +=19423.030182129175121499=⨯⨯+⨯⨯=, 4856.04.019423.0)()()|(12112===A P A A P A A P .25. 某人下午5:00下班, 他所积累的资料表明: 到家时间 5:35~5:39 5:40~5:44 5:45~5:49 5:50~5:54 5:54之后的, 试求他是乘地铁回家的概率.解: 设A ={乘地铁}, B ={乘汽车}, C ={在5:47到家}, 由题意, AB =∅, A ⋃B =S .已知P (A )=0.5, P (C|A )=0.45, P (C|B )=0.2, P (B )=0.5, 由贝叶斯公式有)()|()()|()()|()()()|()|(B P B C P A P A C P A P A C P C P A P A C P C A P +== 6923.05.02.05.045.05.045.0=⨯+⨯⨯=.26. (1)设有4个独立工作的元件1, 2, 3, 4. 它们的可靠性分别为p 1, p 2, p 3, p 4, 将它们按图1-3的方式联接, 求系统的可靠性.解: 记A i 表示第i正常.因为A =A 1A 2A 3+A 1A 4两种情况不互斥, 所以P (A )=P (A 1A 2A 3)+P (A 1A 4)-P (A 1A 2A 3 A 4) (加法公式) =P (A 1)P (A 2)P (A 3)+P (A 1)P (A 4)-P (A 1)P (A 2)P (A 3)P (A 4) =p 1p 2p 3+p 1p 4-p 1p 2p 3p 4 (A 1, A 2, A 3, A 4独立).26. (2)设有5独立工作的元件1, 2, 3, 4, 5, 它们的可靠性均为p , 将它们按图1-4的方式联接, 求系统的可靠性. 解: 记A i 表示第i 个元件正常工作(i =1, 2, 3, 4, 5), B 表示系统正常, 则)()(2345453121A A A A A A A A A A P B P ⋃⋃⋃=)()()()(2345453121A A A P A A P A A A P A A P +++= )()()(432154215321A A A A P A A A A P A A A A P ---)()()(5432543215431A A A A P A A A A A P A A A A P --- )()(45432154321A A A A A P A A A A A P -+24222522p p p p +-+=.27. 如果一危险情况C 发生时, 一电路闭合并发出警报, 我们可以借用两个或多个开关并联以改善可靠性. 在C 发生时这些开关每一个都应闭合, 且至少一个开关闭合了, 警报就发出, 如果两个这样开关并联接, 它们每个具有0.95的可靠性(即在情况C 发生时闭合的概率). (1)这时系统的可靠性(即电路闭合的概率)是多少?(2)如果需要有一个可靠性至少为0.9999的系统, 则至少需要用多少只开关并联?这里各开关闭合与否都是相互独立的.解: (1)设A i 表示第i 个开关闭合, A 表示电路闭合, 于是A =A 1⋃A 2. 由题意当两个开关并联时P (A )=0. 96. 再由A 1, A 2的独立性得P (A )=P (A 1⋃A 2)=P (A 1)+P (A 2)-P (A 1A 2)=P (A 1)+P (A 2)-P (A 1)P (A 2)=2⨯0.96-(0.96)2=0.9984.(2)设至少需要n 个开关闭合, 则∏==≥-=--=⋃=ni i i n i A P A P A P 1419999.004.01)](1[1)()(, 即 0.04n ≤0.00001,所以 58.304.0lg 00001.0lg =≥n , 故至少需要4只开关联.28. 三个独立地去破译份密码, 已知各人能译出的概率分别为1/5, 1/3, 1/4, 问三个中至少有一个能将此密码译出的概率是多少?解: 设A , B , C 分别表示{第一、二、三人独立译出密码}, D 表示{密码被译出}, 则)(1)()(C B A P C B A P D P ⋃⋃-=⋃⋃=)()()(1)(1C P B P A P C B A P -=⋂⋂-=534332541=⨯⨯-=.29. 设第一个盒子装有3只蓝球, 2只绿球, 2只白球;第二个盒子装有2只蓝球, 3只绿球, 4只白球. 独立地分别在两只盒子中各取一只球.(1)求至少有一只蓝球的概率;(2)求有一只蓝球一只白球的概率;(3)已知至少有一只蓝球, 求有一只蓝球一只白球的概率. 解: 记A 1, A 2, A 3分别表示是从第一只盒子中取到一只蓝球, 一只绿球, 一只白球, B 1, B 2, B 3分别表示是从第二只盒子中取到一只蓝球, 一只绿球, 一只白球. 则A i 与B i 独立(i =1, 2, 3).(1)所求概率为9592739273)()()()(111111=⨯-+=-+=⋃B A P B P A P B A P . (2)所求概率为)()()()()(13311331B P A P B P A P B A B A P +=⋃631692729473=⨯+⨯=. (3)所求概率为P (A 1B 3⋃A 3B 1| A 1⋃B 1)=P (A 1B 3| A 1⋃B 1)+P (A 3B 1| A 1⋃B 1))())(()())((111113111131B A P B A B A P B A P B A B A P ⋃⋃+⋃⋃= )())()())(11131311131131B A P B A B A A P B A P B B A B A P ⋃⋃+⋃⋃= 35169/563/16)()()(111331==⋃+=B A P B A P B A P .30. A , B , C 三人在同一办公室工作, 房间有三部电话, 据统计知, 打给A , B , C 的电话的概率分别为2/5, 2/5, 1/5. 他们三人常因工作外出, A , B , C 三人外出的概率分别为1/2, 1/4, 1/4, 设三人的行动相互独立, 求:(1)无人接电话的概率;(2)被呼叫人在办公室的概率;若某一时间段打进3个电话, 求:(3)这3个电话打给同一人的概率;(4)这3个电话打给不同人的概率;(5)这3个电话都打给B , 而B 却都不在的概率. 解: 设A 1, B 1, C 1分别表示A , B , C 三个人外出的事件, A , B , C 分别表示打给三个人的电话的事件.(1)P (无人接电话)=P (A 1B 1C 1)=P (A 1)P (B 1)P (C 1)321414121=⨯⨯=. (2)用D 表示被呼叫人在办公室的事件, 则C C B B A AD 111++=,)()(111C C B B A A P D P ++=)()(()()()(111C P C P BP P B P A P A P ++=2013514352435221=⨯+⨯+⨯=.(3)用E 表示3个电话打给同一个人的事件, E 1, E 2, E 3分别表示3个电话是打给A , B , C , 则E =E 1+E 2+E 3,)()()()(321E P E P E P E P ++=12517)51()52()52(333=++=.(4)用F 表示3个电话打给不同的人的事件, 则F 由六种互斥情况组成, 每种情况为打给A , B , C 的三个电话, 每种情况的概率为1254515252=⨯⨯, 于是 1252412546)(=⨯=F P . (5)由于是知道每次打电话都给B , 其概率是1, 所以每一次打给B 电话而B 不在的概率为41, 且各次情况相互独立, 于是 P (3个电话都打给B , B 都不在的概率)641)41(3==.31. 袋中装有m 只正品硬币, n 只次品硬币(次品硬币的两面均印有国徽). 在袋中任取一只, 将它投掷r 次, 已知每次都得到国徽. 问这只硬币是正品的概率为多少?解: 用A 表示出现r 次国徽的事件, B 表示任取一只是正品的事件, 则r r nm n n m m B A P B P B A P B P A P 1)21()|()()|()()(⨯+++=+=,)()|()()|(A P B A P B P A B P =r n m m2⋅+=.32. 设一枚深炸弹击沉一潜水艇的概率为1/3, 击伤的概率为1/2, 击不中的概率为1/6, 并设击伤两次也会导致潜水艇下沉, 求施放4枚深炸能击沉潜水艇的概率.解: 用A 表示施放4枚深炸击沉潜水艇的事件, 则433446131]21)61()61[(1)(1)(-=⨯+-=-=C A P A P .33. 设根据以往记录的数据分析, 某船只运输某种物品损坏的情况共有三种: 损坏2%(这一事件记为A 1), 损坏10%(事件A 2), 损坏90%(事件A 3), 且知P (A 1)=0.8, P (A 2)=0.15, P (A 3)=0.05, 现在从已被运输的物品中随机地取3件, 发现这3件都是好的(这一事件记为B ), 试分别求P (A 1|B ), P (A 2|B ), P (A 3|B )(这里设物品件数很多, 取出一件后不影响后一件是否是好品的概率). 解: 因为B 表取得三件好物品.B =A 1B +A 2B +A 3B , 且三种情况互斥,由全概率公式, 有P (B )=P (A 1)P (B|A 1)+P (A 2)P (B|A 2)+P (A 3)P (B|A 3) =0.8×(0.98)3+0.15×(0.9)3+0.05×(0.1)3=0.8624,8731.08624.0)98.0(8.0)()|()()()()|(31111=⨯===B P A B P A P B P B A P B A P , 1268.08624.0)9.0(15.0)()|()()()()|(32222=⨯===B P A B P A P B P B A P B A P , 0001.08624.0)1.0(05.0)()|()()()()|(33333=⨯===B P A B P A P B P B A P B A P .34. 将A , B , C 三个字母一一输入信道, 输出为原字母的概率为α, 而输出为其它一字母的概率都是(1-α)/2. 今将字母串AAAA , BBBB , CCCC 之一输入信道, 输入AAAA , BBBB , CCCC 的概率分别为p 1, p 2, p 3 (p 1+p 2+p 3=1), 已知输出为ABCA , 问输入的是AAAA 的概率是多少?(设信道传输每个字母的工作是相互独立的. )解: 用A , B , C 分别表示输入信号为AAAA , BBBB , CCCC ,用H 表示输出信号为ABCA . 由于每个字母的输出是相互独立的, 于是有4)1(]2/)1[()|(2222αααα-=-=A H P , 8)1(]2/)1[()|(33αααα-=-=B H P , 8)1(]2/)1[()|(33αααα-=-=C H P . 又P (A )=p 1, P (B )=p 2, P (C )=p 3, 由贝叶斯公式得)()|()()|()()|()()|()|(C P C H P B P B H P A P A H P A P A H P H A P ++= 33231221228)1(8)1(4)1(4)1(p p p p ⋅-+⋅-+⋅-⋅-=αααααααα ))(1(223211p p p p +-+=ααα.。

第1章随机事件及其概率习题解答

第1章随机事件及其概率习题解答

第1章随机事件及其概率习题解答一.选择题1.下列关系正确的是( C ).A ..B ..C .0∈∅{0}∅∈{0}∅⊂.D .{0}∅=.2.随机试验E 为:统计某路段一个月中的重大交通事故的次数,A ={无重大交通事故};B ={至少有一次重大交通事故};C ={重大交通事故的次数大于1};{重大交通事故的次数小于2},则互不相容的事件是( D ).D =A .B 与C . B .A 与. C .D B 与. D .C 与.D D 3.设{}{}2222(,)1,(,)4P x y x y Q x y x y =+==+=,则( C ).A ..B ..C .与P Q ⊂P Q <P Q ⊂P Q ⊃都不对.D ..4P Q =4.打靶3发,事件{击中发},i =0,1,2,3.那么事件i A =i 12A A A A 3=U U 表示( B ). A .全部击中.B .至少有一发击中.C .必然击中.D .击中不少于3发.5.设,,A B C 为随机试验中的三个事件,则A B C U U 等于( B ) .A .ABC U U . B .A B C I I . C ..D ..A B C I I A B C U U 6.设A 与B 互斥(互不相容),则下列结论肯定正确的是( D ) .A .A 与B 不相容. B .A 与B 必相容.C ..D .()()()P AB P A P B =()(P A B P A )−=.7.设随机事件A 、B 互斥,(), (),P A p P B q ==则()P A B =U ( D ).A ..B .1.C ..D .1q q −p p −.8.设随机事件A 、B 互斥,(), ()P A p P B q ==,则()P A B =I ( A ).A ..B .1.C ..D .1p p −q q −.9.设有10个人抓阄抽取两张戏票,则第三个人抓到戏票的概率等于( D ).A .0 .B .14.C .18.D .15.10.设,则下列公式正确的是( C ).()0, ()0P A P B >>A .[]()() 1(P A B PA PB −=−). B .( )()()P A B P A P B =⋅.C .(|)(|P AB A P B A )=.D .()(|P A B P B A =).11.随机事件A 、B 适合B A ⊂,则以下各式错误的是( B ).A ..B .()(P A B P A =U )(|)()P B A P B =.C .( )()P A B P A =.D .()()P B P A ≤.12.设A .B 为任意两个事件并适合A B ⊂,,则下结论必然成立的是( B ). ()0P B >A .. B .()(|)P A P A B <()(|)P A P A B ≤.C ..D ..()(|)P A P A B >()(|)P A P A B ≥13.已知()0.8, ()0.6, ()0.96P A P B P A B ===U ,则(|)P B A =( B ).A ..B .0.55.C .0.441115. D .. 0.4814.设,A B 相互独立,,()0.75P A =()0.8P B =,则()P A B =U ( B ).A .0.45.B .0.4.C .0.6.D .0.55.15.某类灯泡使用时数在500小时以上的概率为0.5,从中任取3个灯泡使用,则在使用500小时之后无一损坏的概率为( A ).A .18.B .28.C .38.D .48. 16.一批产品,优质品占20%,进行重复抽样检查,共取5件产品进行检查,则恰有三件是优质品的概率等于( D ).A . .B ..C . 30.230.20.8×230.210×.D . .32100.20.8××17.若,A B 相互独立,,()0.3P B =()0.6P A =,则(P B A )等于( B ).A .0.6B .0.3C .0.5D .0.1818.设,A B 相互独立且()0.7,()0.4P A B P A ==U ,则()P B =( A ).A .0.5.B .0.3.C .0.75.D .0.42.19.一批产品的废品率为0.01,从中随机抽取10件,则10件中废品数是2件的概率为( C ).A .B .210(0.01)C 22822810(0.01)(0.99)C C . D .8210(0.01)(0.99)C 8810(0.01)(0.99)C 20.每次试验的成功率为(01)p p <<,则在三次独立重复试验中,至少失败一次的概率为( B ).A .3(1)p −.B .31p −.C .3(1)p −.D .23(1)(1)(1)p p p −+−+−. 二.填空题21. 设A ={掷一颗骰子出现偶数点},B ={掷一颗骰子出现2点},则A 与B 有关系B A ⊂.22.如果A B A =U ,且AB A =,则事件A 与B 满足的关系是__ A=B ________.23.对目标进行射击,设表示恰好射中i 次的事件,(=0,1,2,3,4).那么表示事件“射中次数___i A i 23A A A A =U U 4不小于二次(或≥2)______”24.设样本空间,则{1,2,10},{2,3,4,},{3,4,5,},{5,6,7}U A B C ====L ()A B C =U {1,2,5,6,7,8,9,10}.25.已知,()0.72P AB =()0.18P AB =,则()P A =____0.90_______.26.设,A B 是两个互不相容的随机事件,且知11(),()42P A P B ==则()P A B =U ()()()()(()()1/2P A P B P AB P A P B P A P AB +−=+−+=. 27.一批产品1000件,其中有10件次品,每次任取一件,取出后不放回去,连取二次,则取得的都是正品的概率等于99098910879100099911100×=.28.已知:.则__()0.4, ()0.3, ()0.3P A P B P A B ==−=()P A B =U _0.6_______.29.已知和,则()P A (P AB )()P A B =U 1()()P A P AB −+. 30.已知:11()()() ()() ()0416P A P B P C P AB P BC P AC ======. 则(P A B C ⋅⋅=)___3/8_______.31.已知()0.5 ()0.4 ()0.7P A P B P A B ===U .则()P A B −=____0.3______.32.已知()0.1,()0.3,()0.2P A P B P A B ===,则(|)P A B =__4/70_______.33.已知11(),()24P A P B A ==,则()P AB =_____3/8_____. 34.已知1334(),(|),(|)35P A P B A P B A ===(|)P A B ,则=__2/7___. 35.已知12(),(),(|)25P A P B P B A 23===,则()P A B =U ___17/30_________. 36.设是随机试验123,,A A A E 的三个相互独立的事件,已知1()P A α=,2()P A β=,3()P A γ=,则至少有一个发生的概率是123,,A A A αβγαββγγααβγ++−−−+. 37.事件,A B 相互独立,且(),(01),()(01)P A p p P B q q =<<=<<,则{}P A B =U 1pq −.38.设,A B 相互独立,且知11(),()23P A P B ==,则()P A B =U ___2/3________. 39.从含有6个红球,4个白球和5个蓝球的盒中随机地摸取一个球,则取到的不是红球的事件的概率等于_______3/5______________.40.某车间有5台机器,每天每台需要维修的概率为0.2,则同一天恰好有一台需要维修的概率为145(0.2)(0.8)0.4096C =.41.一只袋中有4只白球和2只黑球,另一只袋中有3只白球和5只黑球,如果从每只袋中独立地各摸一只球,则事件“两只球都是白球”的概率等于___1/4______.42.设袋中有两个白球和三个黑球,从袋中依次取出一个球,有放回地连续取两次,则取得二个白球的事件的概率是220.1655⋅=.43.某产品的次品率为0.002,现对其进行重复抽样检查,共取200件样品,则查得其中有4件次品的概率的计算式是p 44196200(0.002)(0.998)C ××.44.设在一次试验中事件A 发生的概率为p ,则在5次重复独立试验中.A 至少发生一次的概率是51(1)p −−.三.应用计算题 45.已知()0.3P A =,()0.4P AB =,()0.5P B =,求(1); (2); (3); (4)(P AB )))(P B A −(P A B U (P AB ).解:(1)由 ()0.3P A =,()()()0.4P AB P A P AB =−=得,()0.P AB =3(2)()()()0.50.30.2P B A P B P AB −=−=−=(3)()()()()0.9P A B P A P B P AB =+−=U (4)(()1()0.P P A B P A B ==−U U 1= 46. 已知3.0)(=A P ,4.0)(=B P ,5.0(=B A P ,求(B A B P U .解:由()()()0.5P AB P A P AB =−=得,()0.P AB 2=[()]()()P B A B P B A B P A B =I U U U ()()()()P A B P A P B P AB =+−I 0.20.250.8== 47. 已知41)(=A P ,31)(=AB P ,21)(=B A P ,求. )(B A P U 解:由()1()()3P AB P B A P A ==,得11()()31P AB P A 2==;又由()1()()2P AB P A B P B ==, 得1()2()6P B P AB ==,由此得 ()()()()P A B P A P B P AB =+−U 111146123=+−= 48. 某门课只有通过口试及笔试两种考试才能结业.某学员通过口试的概率为80%,通过笔试的概率为65%,至少通过两者之一的概率为85%.问这名学生能完成这门课程结业的概率是多少?解:设A ={通过口试},B ={通过笔试},则这名学生能完成这门课程结业的概率为 ()()()()0.80.650.850.6P AB P A P B P A B =+−U =+−=49.一批产品总数为100件,其中有2件为不合格品,现从中随机抽取5件,问其中有不合格品的概率是多少?解:设A ={所抽取的5件没有不合格品},则其中有不合格品的概率为598510089397()1()11990990C P B P A C =−=−=−= 50. 在区间(0,1)中随机地取两个数,求这两个数只差的绝对值小于21的概率. 解:设A ={取到的两个数只差的绝对值小于21},又设取到的两个数分别为和x y ,则,{(,)|01,01}x y x y Ω=<<<<{(,)|||1/2}A x y x y =−<,则有11/43()0.7514A S P A S Ω−==== 51. 设某种动物由出生算起活20年以上的概率为0.8,活25年以上的概率为0.4.如果现在有一只20岁的这种动物,问它能活到25岁以上的概率是多少?解:设A ={某种动物由出生算起活20年以上},B ={某种动物由出生算起活25年以上},则一只20岁的这种动物,它能活到25岁以上的概率为()()0.4(|)0.5()()0.8P AB P B P B A P A P A ==== 52. 设有100件产品,其中有次品10件,现依次从中取3件产品,求第3次才取到合格品的概率.解:设{第i 次取到合格品},则第3次才取到合格品的概率为i A =123121312()()(|)(|)P A A A P A P A A P A A A =10990910099981078=××= 53. 有两个口袋,甲袋中盛有2个白球,1个黑球;乙袋中盛有1个白球,2个黑球.由甲袋中任取一球放入乙袋,再从乙袋任取一球,问从乙袋取得白球的概率是多少?解:设A={从甲袋中取白球放入乙袋},B={从乙袋取得白球},则()()(|)()(|P B P A P B A P A P B A =+22115343412=×+×= 54. 设男女两性人口之比为51:49.又设男人色盲率为2%,女人色盲率为0.25%.现随机抽到一个人为色盲,问该人是男人的概率是多少?解:设A={男},B={色盲},则()(|)()P AB P A B P B =()(|)()(|)()(|)P A P B A P A P B A P A P B A =+ 0.510.020.89280.510.020.490.0025×=≈×+× 55. 做一系列独立的试验,每次试验中成功的概率为p ,求在成功次之前已经失败次的概率.n m 解:设A={前1n m +−试验中有失败},B={n m m +次试验成功},则在成功n 次之前已经失败m 次的概率为111()()()(1)(1)m n m m n m n m n P AB P A P B C p p p C p p −+−+−==−⋅=−m56. 加工某一零件共需经过四道工序,设各道工序的次品率分别是2%, 3%,5%,3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解:设{第i 道工序合格},则加工出来的零件的次品率为i A =12341234()()P P A A A A =U U U I I I 12341(P A A A A )=−I I I12341()()()()P A P A P A P A =−10.980.970.950.970.124=−×××≈。

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计 浙江大学第四版 课后习题答案 word 完整版

概率论与数理统计浙江大学第四版课后习题答案word 完整版完全版概率论与数理统计课后习题答案第四版盛骤浙江大学浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S10,11,12,………,n,………(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] 3)S00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。

表示为: 或A- AB+AC或A- B∪C(2)A,B都发生,而C不发生。

表示为: 或AB-ABC或AB-C(3)A,B,C中至少有一个发生表示为:A+B+C(4)A,B,C都发生,表示为:ABC(5)A,B,C都不发生,表示为:或S- A+B+C或(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于中至少有一个发生。

故表示为:。

(7)A,B,C中不多于二个发生。

相当于:中至少有一个发生。

故表示为:(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。

故表示为:AB+BC+AC6.[三] 设A,B是两事件且P A0.6,P B0.7. 问1在什么条件下P AB取到最大值,最大值是多少?(2)在什么条件下P AB取到最小值,最小值是多少?解:由P A 0.6,P B 0.7即知AB≠φ,(否则AB φ依互斥事件加法定理, PA∪BP A+P B0.6+0.71.31与P A∪B≤1矛盾).从而由加法定理得P ABP A+P B-P A∪B*(1)从0≤PAB≤PA知,当ABA,即A∩B时PAB取到最大值,最大值为PABPA0.6,(2)从*式知,当A∪BS时,PAB取最小值,最小值为PAB0.6+0.7-10.3 。

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

浙江大学《概率论、数理统计与随机过程》课后习题答案第一章

1解:该试验的结果有9个:(0,a ),(0,b ),(0,c ),(1,a ),(1,b ),(1,c ),(2,a ),(2,b ),(2,c )。

所以,(1)试验的样本空间共有9个样本点。

(2)事件A 包含3个结果:不吸烟的身体健康者,少量吸烟的身体健康者,吸烟较多的身体健康者。

即A 所包含的样本点为(0,a ),(1,a ),(2,a )。

(3)事件B 包含3个结果:不吸烟的身体健康者,不吸烟的身体一般者,不吸烟的身体有病者。

即B 所包含的样本点为(0,a ),(0,b ),(0,c )。

2、解 (4)(1)AB BC AC 或ABC ABC ABC ABC ;(5)(2)ABBCAC(6)(提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (7)(3)ABC ABC ABC ;(8)(4)AB C 或ABC ;(9)(提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);3(1)错。

依题得,但,故A 、B 可能相容。

(2)错。

举反例 (3)错。

举反例(4)对。

证明:由,知,即A 和B 交非空,故A 和B 一()()()()0=-+=B A p B p A p AB p 空集≠B A ()6.0=A p ()7.0=B p ()()()()()3.03.1>-=-+=B A p B A p B p A p AB p定相容。

4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P AB P B ==;5解:由题知,.因得,故A,B,C 都不发生的概率为.6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; ()3.0=BC AC AB p ()05.0=ABC P ()()()()()ABC p BC p AC p AB p BC AC AB p 2-++= ()()()()4.023.0=+=++ABC p BC p AC p AB p ()()C B A p C B A p -=1()()()()()()()()[]ABC p BC p AC p AB p C p B p A p +++-++-=1()05.04.02.11+--=15.0=(2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)118221016()45C C P B C ==; (3)111187282104()5A A A A P C A +==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

(1)该数是奇数的可能个数为48344=⨯⨯个,所以出现奇数的概率为48.010048= (2)该数大于330的可能个数为48454542=⨯+⨯+⨯,所以该数大于330的概率为48.010048=5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412131425=C C C C ;(2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。

6,一公司向M 个销售点分发)(M n n <张提货单,设每张提货单分发给每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(n k k ≤张提货单的概率。

解:根据题意,)(M n n <张提货单分发给M 个销售点的总的可能分法有n M 种,某一特定的销售点得到)(n k k ≤张提货单的可能分法有k n k n M C --)1(种,所以某一特定的销售点得到)(n k k ≤张提货单的概率为n k n k n MM C --)1(。

7,将3只球(1~3号)随机地放入3只盒子(1~3号)中,一只盒子装一只球。

若一只球装入与球同号的盒子,称为一个配对。

(1)求3只球至少有1只配对的概率。

(2)求没有配对的概率。

解:根据题意,将3只球随机地放入3只盒子的总的放法有3!=6种:123,132,213,231,312,321;没有1只配对的放法有2种:312,231。

至少有1只配对的放法当然就有6-2=4种。

所以(2)没有配对的概率为3162=;(1)至少有1只配对的概率为32311=-。

8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ⋃, )|(),|(AB A P B A AB P ⋃.(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。

连续取球4次,求第一、二次取到白球且第三、四次取到红球的概率。

解:(1)由题意可得7.0)()()()(=-+=⋃AB P B P A P B A P ,所以313.01.0)()()|(===B P AB P B A P , 515.01.0)()()|(===A P AB P A B P , 75)()()()]([)|(=⋃=⋃⋃=⋃B A P A P B A P B A A P B A A P , 71)()()()]([)|(=⋃=⋃⋃=⋃B A P AB P B A P B A AB P B A AB P , 1)()()()]([)|(===AB P AB P AB P AB A P AB A P 。

(2)设)4,3,2,1(=i A i 表示“第i 次取到白球”这一事件,而取到红球可以用它的补来表示。

那么第一、二次取到白球且第三、四次取到红球可以表示为4321A A A A ,它的概率为(根据乘法公式))|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==⨯⨯⨯=。

9,一只盒子装有2只白球,2只红球,在盒中取球两次,每次任取一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另一只也是红球的概率。

解:设“得到的两只球中至少有一只是红球”记为事件A ,“另一只也是红球”记为事件B 。

则事件A 的概率为65314232422)(=⨯+⨯⨯=A P (先红后白,先白后红,先红后红) 所求概率为51653142)()()|(=⨯==A P AB P A B P10,一医生根据以往的资料得到下面的讯息,他的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。

以A 表示事件“一病人以为自己患癌症”,以B 表示事件“病人确实患了癌症”,求下列概率。

(1))(),(B P A P ;(2))|(A B P ;(3))|(A B P ;(4))|(B A P ;(5))|(B A P 。

解:(1)根据题意可得%50%45%5)()()(=+=+=B A P AB P A P ;%15%10%5)()()(=+=+=A B P BA P B P ;(2)根据条件概率公式:1.0%50%5)()()|(===A P AB P A B P ; (3)2.0%501%10)()()|(=-==A P AB P A B P ; (4)179%151%45)()()|(=-==B P B A P B A P ; (5)31%15%5)()()|(===B P AB P B A P 。

11,在11张卡片上分别写上engineering 这11个字母,从中任意连抽6张,求依次排列结果为ginger 的概率。

解:根据题意,这11个字母中共有2个g ,2个i ,3个n ,3个e ,1个r 。

从中任意连抽6张,由独立性,第一次必须从这11张中抽出2个g 中的任意一张来,概率为2/11;第二次必须从剩余的10张中抽出2个i 中的任意一张来,概率为2/10;类似地,可以得到6次抽取的概率。

最后要求的概率为924013326403661738193102112==⨯⨯⨯⨯⨯;或者92401611111311131212=A C C C C C C 。

12,据统计,对于某一种疾病的两种症状:症状A 、症状B ,有20%的人只有症状A ,有30%的人只有症状B ,有10%的人两种症状都有,其他的人两种症状都没有。

在患这种病的人群中随机地选一人,求(1)该人两种症状都没有的概率;(2)该人至少有一种症状的概率;(3)已知该人有症状B ,求该人有两种症状的概率。

解:(1)根据题意,有40%的人两种症状都没有,所以该人两种症状都没有的概率为%40%10%30%201=---;(2)至少有一种症状的概率为%60%401=-;(3)已知该人有症状B ,表明该人属于由只有症状B 的30%人群或者两种症状都有的10%的人群,总的概率为30%+10%=40%,所以在已知该人有症状B 的条件下该人有两种症状的概率为41%10%30%10=+。

13,一在线计算机系统,有4条输入通讯线,其性质如下表,求一随机选择的进入讯号无误差地被接受的概率。

通讯线通讯量的份额 无误差的讯息的份额 10.4 0.9998 20.3 0.9999 30.1 0.9997 4 0.2 0.9996解:设“讯号通过通讯线i 进入计算机系统”记为事件)4,3,2,1(=i A i ,“进入讯号被无误差地接受”记为事件B 。

则根据全概率公式有 9996.02.09997.01.09999.03.09998.04.0)|()()(41⨯+⨯+⨯+⨯==∑=i i i A B P A P B P=0.9997814,一种用来检验50岁以上的人是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为他患关节炎。

已知人群中有10%的人患有关节炎,问一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。

解:设“一名被检验者经检验认为患有关节炎”记为事件A ,“一名被检验者确实患有关节炎”记为事件B 。

根据全概率公式有%1.12%4%90%85%10)|()()|()()(=⨯+⨯=+=B A P B P B A P B P A P , 所以,根据条件概率得到所要求的概率为%06.17%1.121%)851%(10)(1)|()()()()|(=--=-==A P B A P B P A P A B P A B P 即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为17.06%.15,计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。

已知一程序因打字机发生故障而被破坏了,求该程序是在A,B,C 上打字的概率分别为多少?解:设“程序因打字机发生故障而被破坏”记为事件M ,“程序在A,B,C 三台打字机上打字”分别记为事件321,,N N N 。

则根据全概率公式有025.004.01.005.03.001.06.0)|()()(31=⨯+⨯+⨯==∑=i i i N M P N P M P ,根据Bayes 公式,该程序是在A,B,C 上打字的概率分别为24.0025.001.06.0)()|()()|(111=⨯==M P N M P N P M N P , 60.0025.005.03.0)()|()()|(222=⨯==M P N M P N P M N P , 16.0025.004.01.0)()|()()|(333=⨯==M P N M P N P M N P 。

相关文档
最新文档