电磁场与电磁波的应用
电磁场与电磁波在电子通信技术中的应用研究

电磁场与电磁波在电子通信技术中的应用研究摘要:在对电磁现象讨论研究的过程中,电磁场的概念应运而生。
电磁场最早由英国科学家提出,随着研究的深入,电磁场的概念不断完善,人们发现电和磁关系密切。
在实验的过程中,在导体中放入导棒就会产生很强的电流,说明了二者之间关系密切。
带电物体产生的物理场就是电磁场,其具有相互联系、依存的特点。
电磁波的产生需要垂直和振荡的电场以及电磁场,二者在波的状态下移动时,物体会有电磁波产生和释放。
在电子通信技术中,电磁波和电磁场发挥了十分重要的作用。
尤其是电磁波的应用十分广泛,包括手机、网络传输等,为人们的通信带来了极大的便利。
关键词:电磁场;电磁波;电子通信技术;应用分析1电磁场电磁场是带电物体发射的物理磁场,在电磁场中带电的物体将清楚地感受到电磁场引起的相互作用力。
电磁场本身是内部耦合的,电材料和磁性材料相互存在,并且随着时间的推移,电材料产生磁性材料。
随着时间的延长,磁性材料产生电材料,它们成为每个人的原因和后果,形成整个电磁场。
当电磁场每天运行时,这可能是由带电粒子或其自身变速运动强度的变化引起的。
随着时间的变化,电磁场的时变电磁场与静态电磁场本身之间存在显着的差异,并且经常会观察到某些时变材料效应。
这些物质效应对产业发展具有重要意义,对产业发展具有重要作用。
电磁场的整体结构包括电材料和磁性材料两个方面。
在实际使用中,必须使用材料e的电强度(或电位移d)和磁性材料b的密度(或磁场强度h)来表达特异性。
据国外著名物理学家麦克斯韦称,权力产生磁场、电材料和磁性材料的理论是密切相关的。
随时间变化的电材料产生磁性材料,磁性材料也产生电材料。
当与发电有关的磁场开始随时间变化时,这种结构中的电材料和磁性材料相互摩擦,导致电磁场强烈的相互运动,形成电磁波。
电磁波在自由空间的透射率为c=3× 108米/秒。
2电磁波电磁波的概念始于1865年。
电磁波的概念是麦克斯韦提出的。
赫兹确认电磁波的存在直到1887年才实现。
电磁场与电磁波的理论与应用

电磁场与电磁波的理论与应用电磁场与电磁波是电磁学中的重要概念,它们在现代科技与生活中有着广泛应用。
本文将围绕电磁场与电磁波的理论基础展开讨论,并探索它们在实际应用中的意义。
1. 电磁场的理论基础电磁场是由带电粒子周围的电荷所形成的一种物理场。
根据电场与磁场之间的相互作用,我们可以推导出麦克斯韦方程组,这是电磁场理论的基础。
麦克斯韦方程组包括四个方程式,分别是:高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定理。
这些方程式描述了电荷的分布、电流的产生和磁场的形成,从而揭示了电磁场的本质。
2. 电磁波的理论基础电磁波是指由变化的电场和磁场相互作用而形成的波动现象。
根据麦克斯韦方程组的推导,我们可以得到有关电磁波的方程式,即麦克斯韦方程的波动解。
其中,电磁波的传播速度等于光速,即300,000km/s。
根据频率和波长的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等不同类型。
3. 电磁场与电磁波的应用电磁场与电磁波的理论已广泛应用于各个领域,为人类的生活与科技进步做出了重要贡献。
3.1 通信领域电磁波在通信领域起着关键作用。
无线电通信、手机通讯、卫星通信等都依赖于电磁波的传输和接收。
通过合理的调制和解调信号,我们可以实现远距离的信息传递。
3.2 医学领域医学成像技术如X射线、磁共振成像(MRI)和超声波等都利用了电磁波在物质中的相互作用特性。
这些技术可以帮助医生进行诊断和治疗,为疾病的早期发现和治疗提供了可能。
3.3 物理学研究电磁场与电磁波在物理学研究中扮演着重要角色。
例如,研究电磁波的干涉和衍射现象可以揭示光的性质;通过电磁场的分析,可以研究电磁波与物质的相互作用规律。
这些研究对于理解自然界和推动科学发展具有重要意义。
3.4 能源领域电磁场与电磁波在能源领域也有广泛应用。
太阳能板利用光的电磁辐射转化为电能,而微波炉则是利用微波的电磁波来产生加热效果。
这些应用不仅改善了人们的生活质量,还为减少对化石燃料的依赖做出了贡献。
看见无形的力量电磁场与电磁波的应用与原理

看见无形的力量电磁场与电磁波的应用与原理看见无形的力量——电磁场与电磁波的应用与原理电磁场和电磁波是当今科学技术领域中至关重要的概念,它们具有广泛的应用和深远的影响。
不可见的电磁场和电磁波,正是支撑着我们日常生活中的许多现象和技术。
本文将就电磁场和电磁波的基本概念以及它们在现实生活中的应用进行探讨。
一、电磁场的基本概念与原理1. 什么是电磁场电磁场是由带电物体或变化的电流所产生的一种物理现象。
在电磁场中,电荷之间存在相互作用力,这种力被称为电磁力。
电磁场可以分为静电场和磁场。
静电场是由带电粒子产生的场,而磁场则由电流所产生。
2. 电磁场的产生和传播当电荷或电流产生时,它们会形成电场和磁场。
电场是由电荷引起的,而磁场是由电流引起的。
电磁场的变化会导致电磁波的产生和传播,这是电磁场与电磁波之间密切关联的一个重要方面。
3. 电磁场的数学描述电磁场可以用数学方程来描述。
麦克斯韦方程组是描述电磁场和电磁波的基本方程。
它们包括四个方程,即麦克斯韦方程组的两个高斯定律和两个法拉第定律。
通过这些方程,我们可以描述电磁场的起源和性质。
二、电磁波的基本概念与原理1. 什么是电磁波电磁波是由电磁场的变化产生的一种波动现象。
电磁波可以传播在真空中,也可以传播在介质中。
电磁波由电场和磁场相互作用而构成,其传播速度为光速。
2. 电磁波的特性电磁波具有很多特性,包括振幅、波长、频率、传播速度等。
振幅决定了电磁波的强度,波长和频率决定了电磁波的性质和种类。
电磁波的传播速度在真空中为光速,即约为300,000 km/s。
3. 电磁波的分类根据频率的不同,电磁波可以分为不同的种类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
这些电磁波在科学研究、通信、医疗、遥感等领域都有广泛的应用。
三、电磁场与电磁波的应用1. 通信技术电磁场和电磁波在通信技术中起着至关重要的作用。
无线电波被广泛应用于广播、电视、手机和无线网络等通信领域。
电磁场与电磁波的历史发展与典型应用论文

电磁场与电磁波理论的发展与应用论文电磁理论如今已经拥有十分完备的体系,并且广泛应用于我们的生活中,大大提高了我们的生活质量。
这并不是某一位科学家的功劳,而是靠着一代代科学家前赴后继,后人站在前人的肩膀上不断探索发现,不断发展的结果。
公元前6,7世纪,人们发现了磁石吸铁,磁石指南以及摩擦生电现象,从此人们对“磁"有了概念,但是也仅仅停留于经验阶段,并没有理论研究。
并且,19世纪以前,人们还是认为,“电"与“磁"是两个不相关的概念。
18实际末期,德国科学家谢林认为,宇宙是由活力的,而不是僵死的。
他认为电就是宇宙的活力,是宇宙的灵魂,磁、光、热是相互联系的。
1777年,法国物理学家库仑发明了能够以非常高的精度测出非常小的力的扭秤,利用扭秤可以算出磁力或者静电力的大小。
1785年,库仑利用自己的扭秤建立了库仑定理,即两个电荷之间的力与两电荷的乘积成正比,与他们之间的距离平方成反比。
库伦定理是电学史上第一个定量规律,他使电学研究从定性阶段进入到了定量阶段,在电学史上是一块重要的里程碑。
1789年,生物学家迦伐尼发现了动物电。
1800年,迦伐尼的好朋友伏打用锌片与铜片夹以盐水浸湿的纸片叠成电堆产生了电流,这个装置后来称为伏打电堆,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放多这样的小杯子中联起来,组成电池。
他指出这种电池"具有取之不尽,用之不完的电”,“不预先充电也能给出电击"。
伏打电堆(电池)的发明,提供了产生恒定电流的电源――化学电源,使人们有可能从各个方面研究电流的各种效应。
从此,电学进入了一个飞速发展的时期――电流和电磁效应的新时期。
直到现在,我们用的干电池就是经过改时后的伏打电池。
干电池中用氯化铵的糊状物代替了盐水,用石墨棒代替了铜板作为电池的正极,而外壳仍然用锌皮作为电池的负极。
人们为了纪念他们的功绩,就把这种电池称为伽伐尼电池或伏打电池,并把电压的单位用"伏特"来命名。
电磁场与电磁波在电子通信技术领域中的应用

电磁场与电磁波在电子通信技术领域中的应用电、磁现象是大自然最重要的物理现象,也是最早被科学家们关心和研究的物理现象。
19世纪以前,电、磁现象作为两个独立的物理现象,没有发现电与磁的联系,但是这些研究为电磁学理论的建立奠定了基础。
18世纪末期,德国哲学家谢林认为,宇宙是有活力的,而不是僵死的。
他认为电就是宇宙的活力,是宇宙的灵魂,电、磁、光、热是相互联系的。
法拉第在谢林的影响下,相信电、磁、光、热是相互联系的。
奥斯特1820年发现电流以力作用于磁针后,法拉第敏锐地意识到,电可以对磁产生作用,磁也一定能够对电产生影响。
1821年他开始探索磁生电的实验。
1831年他发现,当磁捧插入导体线圈时,导体线圈中就产生电流。
这表明电与磁之间存在着密切的联系。
麦克斯韦深入研究并探讨了电与磁之间相互作用的关系,并发展了场的概念。
他在法拉第实验的基础上,总结了宏观电磁现象的规律,引进位移电流的概念。
这个概念的核心思想是:变化着的电场能产生磁场;与变化着的磁场产生电场相对应。
在此基础上提出了一组表达电磁现象基本规律的偏微分方程,称为麦克斯韦方程组,成为经典电磁场理论的基本内容。
电磁场作为无线电技术的理论基础,集中于三大类应用问题的研究。
电磁场(或电磁波)作为能量的一种形式,是当今世界最重要的能源,其研究领域涉及能量的产生、储存、变换、传输和综合利用;电磁波作为信息传输的载体,成为当今人类社会发布和获取信息的主要手段,主要研究领域为信息的产生、获取、交换、传输、储存、处理、再现和综合利用;电磁波作为探测未知世界的一种重要手段,主要研究领域为电磁波与目标的相互作用特性、目标特征的获取与重建、探测新技术等。
1887年,德国科学家赫兹用火花隙激励一个环状天线,用另一个带隙的环状天线接收,证实了麦克斯韦关于电磁波存在的预言,这一重要的实验导致了后来无线电报的发明。
从此开始了电磁场理论应用与发展的时代,并且发展成为当代最引人注目的学科之一。
电磁场与电磁波谢处方pdf

电磁场与电磁波谢处方pdf电磁场与电磁波是物理学中非常重要的概念,对我们的生活、科技和社会发展都有着深远的影响。
本文将介绍电磁场与电磁波的基本概念,并探讨它们在各个领域的应用和意义。
首先,我们来了解一下什么是电磁场。
电磁场是由电荷和电流引起的空间中的物理场,它包括电场和磁场两个部分。
电场是由电荷产生的力场,描述了电荷之间的相互作用。
磁场是由电流产生的力场,描述了电流所产生的磁力和磁感应强度。
电磁场的存在对我们生活中的各种电器和通讯设备起着至关重要的作用。
例如,电磁场可以通过无线电波传输信息,实现手机和电视的无线通讯。
此外,电磁场也广泛应用于医学领域,如核磁共振成像(MRI)技术利用强大的磁场和电磁波来观察人体内部结构,帮助医生做出准确的诊断。
接下来,我们来了解一下电磁波。
电磁波是电磁场的一种传播方式,它是一种特殊的波动现象,可以在空间中传播而不需要媒质的支撑。
电磁波具有等电场和等磁场的交替变化,并以光速传播。
根据波长的不同,电磁波被分为不同的频段,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
电磁波在我们的生活中起着至关重要的作用。
无线电波使得我们能够通过无线电收音机和电视接收到远方的信息,微波炉利用微波来加热食物,光线使得我们能够看到周围的世界。
此外,紫外线可以杀灭细菌和病毒,被广泛应用于消毒和杀虫。
电磁场和电磁波的研究对于我们理解自然界的基本规律和发展新技术有着重要的意义。
我们通过对电磁场和电磁波的认识,掌握了无线通信技术、医学诊断技术、光电子技术等一系列重要的科学和技术。
我们能够利用电磁波来探测遥远的星系和宇宙,推动了天文学的发展。
同时,电磁场和电磁波的研究也带动了量子物理学、相对论等前沿领域的发展。
总之,电磁场与电磁波是物理学中非常重要的概念。
它们在我们的生活中起到了举足轻重的作用,广泛应用于电子技术、通讯技术、医学技术等领域。
我们的科技和社会发展离不开对电磁场和电磁波的研究。
电磁场与电磁波的应用

电磁场与电磁波的应用0 引言电磁场与电磁波简介:电磁波是电磁场的一种运动形态。
电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。
变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。
电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。
如果没有发现电磁波,现在的社会生活将是无法想象的。
所以,本文主要研究电磁场与电磁波在生活中的多项应用,其中,将主要研究电能的无线传输技术。
1 电磁场与电磁波理论的建立在电磁学发展的早期,人们认识到带电体之间以及磁极之间存在作用力,而作为描述这种作用力的一种手段而引入的"场"的概念,并未普遍地被人们接受为一种客观的存在。
现在人们已经认识清楚,电磁场是物质在一种形态,它可以和一切带电物质相互作用,产生出各种电磁现象。
电磁场本身的运动服从波动的规律。
这种以波动形式运动变化的电磁场称为电磁波。
库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。
安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。
基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。
但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。
直到法拉第, 他认为场是真实的物理存在, 电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。
他在1831 年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述。
1846 年, 法拉第还提出了光波是力线振动的设想。
法拉第提出的电磁感应定律表明,磁场的变化要产生电场。
高中物理课件 电磁波及其应用

判一判 (1)变化的电场一定产生变化的磁场。 (×) (2)恒定电流周围产生磁场,磁场又产生电场。 (×) (3)电磁波和光在真空中的传播速度都是3.0×108 m/s。 (√ ) (4)麦克斯韦预言并验证了电磁波的存在。 (×) (5)电磁波在任何介质中的传播速度均为3×108 m/s。 (×)
知识点二、电磁波谱的理解 角度1. 各种电磁波的共性和个性 1.共性: (1)在本质上都是电磁波,遵循相同的规律,各波段之间的区别并没有 绝对的意义。 (2)都遵循公式v=λf,在真空中的传播速度都是c=3×108 m/s。 (3)传播都不需要介质。 2.个性:不同的电磁波由于具有不同的波长(频率),故具有不同的特性。
第六章 电磁现象与电磁波 6.4 电磁波及其应用
知识梳理 一、电磁场与电磁波 1.电磁场:(1)麦克斯韦电磁场理论的两个基本假设: ①变化的磁场能够在周围空间产生_电__场__(如图甲所示)。 ②变化的电场能够在周围空间产生_磁__场__(如图乙所示)。
(2)电磁场:变化的_电__场__和变化的_磁__场__交替产生,形成不可分割 的统一体,称为_电__磁__场__。
强
荧光效应
最强
电磁波谱 用途
无线电波 红外线
可见光 紫外线
X射线
γ射线
通信、广 播、导航
加热遥测、 遥感、红外 摄像、红外 制导
日光灯、杀 照明、
菌消毒、治 照相等
疗皮肤病等
检测、探 探测、
测、透视、 治疗
治疗
提醒: (1)波长越长的电磁波频率越低,能量越低,衍射能力越强,穿透力越差。 (2)波长越短的电磁波频率越高,能量越高,衍射能力越弱,穿透力越强。
2.雷达: (1)雷达是利用_电__磁__波__进行测距、定位的仪器。 (2)组成:雷达主要由发射机、接收机和显示器等部分组成。 (3)雷达工作时使用的是_微__波__(选填“长波”“中波”或“微波”)。 3.移动电话: (1)_现__代__通__信__技__术__是电磁波最辉煌的应用成果之一。 (2)无线电话、无线对讲机、移动电话均是通过_电__磁__波__实现信号的发射 KH—12光学侦察卫星,采用先进的自适应光学 成像技术,地面分辨率最高可达0.1 m,是美国天基侦查的主力军。那么, 你知道它上面携带的相机在夜间进行红外摄像时工作在什么波段吗?该波 段有什么特点?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称振子天线的远区 辐射场为
(8.2.1)
从式(8.1)可知,H 只有eφ分量,如果磁 棒垂直放置,那么电 感线圈的方向和磁场 方向平行,不会切割 磁力线,如图8.7所示。 所以磁性天线不能垂 直放置。
那么磁性天线应水平放置在收音机内,当磁 棒轴线与电波的传播方向(er)平行时,如 图8.8(a)所示,线圈内感应电动势很小, 收音机的声音也很小; 当磁棒轴线与电波的 传播方向垂直时,如图8.8(b)所示,线圈内感 应电动势最大,收音机的声音也最大。绕垂 直轴旋转收音机时,声音会发生变化。
4. 外层空间传播 外层空间传播是通过卫星 来实现的,如图8.5所示。 外层空间传播,电磁波主 要受到大气层的影响,大 气层对流层中的氧和水蒸 气会对电磁波有吸收作用, 雨雾以及雪也会对电波产 生吸收和散射损耗,电离 层对短波还会有反射作用。 综合上述影响,无线电波 在0.3~10GHz频段,大气 吸收损耗最小,称为“无 线电窗口”。因此通常选 择在这个窗口附近。
2. 空间波传播 空间波的传播有两种: 一种是当发射天线和 接收天线均高出地面一个波长以上时,直接 在空中传播,如图8.2所示。 另一种空间波由直射波及入射波、反射波组 成,具有多径效应,如图8.3所示。 超短波和微波可采用空间波传播。
3. 电离层波传播 无线电波从发射天线发出, 经电离层反射而到达接收 天线称为电离层波传播, 如图8.4所示。 短波沿地面绕射传播能力 差,但利用电离层波传播 是最适宜的。但频率太高 的无线电波、超短波或微 波,一般要穿过电离层, 不能被电离层反射回来, 所以频率不能很大,此外 还存在一个寂静区,如图 8.4所示,在这个区域既 接收不到地波信号,也接 收不到电离层波信号
8.2广播电视系统
无线电广播中波波段一般采用525~1605kHz,短波波 段采用2~24MHz,调频广播波段为88~108MHz。广 播是人类在社会实践中对信息的需求与现代科学技术 相结合的产物,是电磁场与电磁波的最早的应用之一。 传输电视信号需要相当宽的频带,因此需要采用超短 波或更高频段的无线电波。最早分配给电视广播的 VHF有12个频道,频率为49.75~216.25MHz,后来又 分配UHF频段,共有56个频道,频率范围为 471.25~951.25MHz。 电视信号可以利用同轴电缆传输,称为有线电视。有 线电视已经发展为频率从49.75~878.25MHz,有99个 频道的强大网络。
8.1电磁波谱及应用概述
电磁波谱范围极大,习惯上把频率在3kHz~3000GHz 的电磁波称为无线电波,相应的波长范围为10-4 ~105m。通常所说的可见光是一种电磁波,波长为 0.4~0.76μm,比可见光的波长更长的区域即是红外 区,常用的光纤通信就工作在近红外区,波长范围为 0.8~1.8μm,相应的频率为1.67×1014 ~ 3.75×104Hz。比可见光的波长更短的区域有紫外区、 X射线、γ射线,它们都有很多的应用。 为了更好地使用频率资源,减少相互间的干扰,国际 无线电咨询委员会(CCIR)为不同行业指定使用不 同的频段。无线电波一般可按波段划分,划分后的波 段名称、波长、频率范围见表8.1。
如果是金属拉杆天线,应如何放置呢?显然应 该垂直放置。 这是因为对称振子天线的辐射场为
Байду номын сангаас
(8.2.2)
拉杆天线垂直放置时与eθ主方向一致,产生的 感应电流最大。
8.3移 动 通 信
20世纪20年代,现代移动通信技术的发展宣告开始。 从20世纪20年代至40年代是现代移动通信的起步阶 段。 1987年11月18日,中国第一个TACS模拟蜂窝移动电 话系统在广东省建成并投入商用。这一时期的系统主 要是依赖第一代移动通信技术(1G),采用的是模 拟技术和频分多址(FDMA)技术。 第二代移动通信(2G)主要采用的是数字的时分多 址(TDMA)技术和码分多址(COMA)技术,频谱 利用率高,可大大提高系统容量,能提供数字化的语 言业务及低速数据业务。
广播电视系统本身就是电磁场与电磁波的重要应用, 前面所讲的很多理论性的问题都可以具体应用到系统 中去。举一个最简单的例子来说明,收音机的天线是 什么样子?从理论上分析为什么要这样放置?收音机天 线之一如图8.6所示。 磁性天线由铁氧体棒上平绕多匝漆包线而成,可直接 放在收音机内。它又可作为收音机输入回路的电感线 圈。那么磁性天线如何放置在收音机内呢?
电磁场与电磁波的应用贯穿于整个移动通信技 术,下面的例子是从电磁场与电磁波应用的角 度来探讨移动定位技术。 蜂窝网无线定位是通过检测移动台和多个固定 位置收、发信机之间传播信号的特性参数(如 电波场强、传播时间或时间差、入射角等)来 估算出目标移动台的位置。移动定位技术有多 种,其中之一是基于三角关系和运算的定位技 术,可细分为两种,即基于距离测量定位技术 和基于角度测量的定位技术。
目前正在迅速发展的是第三代移动通信技术(3G), 它是将高速移动接入和基于互联网协议的服务结合起 来,提高无线频率的利用效率,实现高速数据传输和 宽带多媒体服务,传输速率最低为384KB/s,最高为 2MB/s,带宽可达5MHz以上,使用频率 1.885~2.025GHz和2.110~2.200GHz,提供全球覆盖, 实现有线和无线以及不同无线网络之间业务的无缝连 接,满足多媒体业务的要求。主要技术有WCDMA、 CDMA2000、TD-SCDMA。 3G系统仍然无法满足未来的多媒体通信的需求,未 来的移动通信系统是第四代移动通信系统(4G)。 它是宽带(broadband)接入和分布网络,具有更高 的无线频率使用效率,且具有更好的抗信号衰落性能, 上网速度可提高到100MB/s,具有不同频率间的自动 切换能力。
无线电在空间的传播途径有四种。
1. 地波传播 地波传播是无线电波沿地球 表面传播,如图8.1所示。 通常波长越长,绕射距离越 远,这是因为无线电波具有 与其波长相比拟的障碍物尺 寸时才能发生绕射,即进行 地波传播。那么利用地波传 播,短波不超过100km,中 波可达几百公里。长波、甚 长波、特长波可达几千公里 甚至上万公里。