高分子改性

合集下载

高分子改性要点

高分子改性要点

高分子改性要点高分子材料在工业生产中具有广泛的应用,但其性能往往无法满足特定需求。

为了改善材料性能,高分子改性成为了一种重要的手段。

本文将就高分子改性的要点进行讨论。

一、改性目的高分子改性的目的是提升材料的性能,使其适用于更广泛的应用领域。

改性可以改善材料的力学性能,增加材料的耐热性、耐腐蚀性,改善材料的电性能等等。

二、改性方法1. 添加填充剂填充剂的添加可以有效地改善高分子材料的力学性能。

常用的填充剂包括纤维素、玻璃纤维、碳纤维等。

填充剂的添加可以增加材料的强度、硬度和耐磨性。

2. 引入交联剂通过引入交联剂,可以使高分子材料形成网状结构,从而提高其热稳定性和力学性能。

常用的交联剂有有机过氧化物、热塑性橡胶等。

交联剂的添加可以提高材料的强度、硬度和热变形温度。

3. 添加增容剂增容剂的添加可以改善高分子材料的加工性能。

常用的增容剂有增塑剂、润滑剂等。

增容剂的添加可以降低材料的熔融温度、提高材料的流动性,从而便于加工制造。

4. 表面改性通过表面改性,可以改善高分子材料的附着性、耐腐蚀性等性能。

常用的表面改性方法有等离子体处理、电子束辐照等。

表面改性可以提高材料的界面粘合能力,增加材料的耐候性和抗老化性。

三、改性注意事项在进行高分子材料改性时,需要注意以下几点:1. 注意添加剂的种类和添加量,确保其在改性过程中起到理想的作用,并避免副作用的产生。

2. 改性过程中的加工条件需要加以控制,包括温度、压力、时间等,确保改性剂的均匀分散和与高分子材料的良好相容性。

3. 需要进行严格的性能测试和评估,以验证改性后材料的实际性能是否满足要求。

综上所述,高分子改性是一项重要的技术手段,可使高分子材料的性能得到显著提升。

通过选择合适的改性方法和注意改性过程中的细节,可以实现高分子材料的优化。

高分子改性的研究和应用将对材料科学领域的发展起到积极的推动作用。

高分子化学改性

高分子化学改性

高分子材料改性(Modification of Polymeric Materials)(讲稿)第一讲第一章聚合物的化学改性什么是聚合物化学改性?聚合物化学反应的基本类型:聚合物与低分子化合物的反应、聚合物的相似转变、聚合物的降解与交联、聚合物大分子间的反应。

聚合物化学反应的作用:改变结构、提高性能,合成新的聚合物,扩大应用范围,在理论上研究和验证高分子的结构研究影响老化的因素和性能变化之间的关系,研究高分子的降解,有利于废聚合物的处理第一节聚合物的熔融态化学1.1 聚合物熔融态化学的研究目的与任务1.1.1 研究目的聚合物熔融态化学的研究目的是促进高分子材料行品种的开发、优化高分子材料的性能、提高材料的质量、推动新的成型加工技术的发展。

1.1.2 研究任务(1)为高分子材料的化学改性和通用聚合物的高性能化提供理论基础;(2)其次为多相复合材料界面相容性问题的解决提供思路;(3)为功能性高分子的开发提供理论基础;(4)创新高分子材料成型加工技术1.2 熔融态化学反应1.2.1 高分子化学反应的分类聚合度基本不变的反应:侧基和端基变化(相似转变)(聚合度相似转变:聚合物与低分子化合物作用,仅限于基团转变,聚合度基本不变的反应,称相似转变)聚合度变大的反应:交联、接枝、嵌段、扩链聚合度变小的反应:降解,解聚1.2.2 高分子化学反应的特点高分子官能团可以起各种化学反应,由于高分子存在链结构、聚集态结构,官能团反应具有特殊性。

1. 反应产物的不均匀性高分子链上的官能团很难全部起反应一个高分子链上就含有未反应和反应后的多种不同基团,类似共聚产物 例如聚丙烯腈水解:1.3 熔融态化学反应的应用 1.3.1 聚合度相似的化学转变 (1)聚酯酸乙烯酯的醇解 聚乙烯醇只能从聚酯酸乙烯酯的水解得到 聚乙烯醇缩醛化反应可得到重要的高分子产品(2) 以苯乙烯-二乙烯苯共聚物为母体的离子交换树脂,是芳环取代反应的典型例子CH 2 CH3CH 3OH CHSOC-SNa RCH OCH 2CH 2 CH CHOH CH CH 2 CH O 22NR 3Cl+23OH31.3.2聚合度变大的反应以交联反应为例。

高分子材料改性技术

高分子材料改性技术

高分子材料的几种常用改性技术,如化学改性、共混改性、填充改性、纤维增强改性、表面改性技术。

化学改性是通过化学反应改变聚合物的物理、化学性质的方法。

如聚苯乙烯的硬链段刚性太强,可引进聚乙烯软链段,增加韧性;尼龙、聚酯等聚合物的端基(氨基、羧基、羟基等),可用一元酸(苯甲酸或乙酸酐)、一元醇(环己醇、丁醇或苯甲醇等)进行端基封闭;由多元醇与多元酸缩聚而成的醇酸聚酯耐水性及韧性差,加入脂肪酸进行改性后可以显著提高它的耐湿性和耐水性,弹性也相应提高。

共混是指共同混合,是一种物理方法,使几种材料均匀混合,以提高材料性能的方法,工业上用炼胶机将不同橡胶或橡胶与塑料,均匀地混炼成胶料是典型的例子,也可以在聚合物中加入某些特殊性能的成分以改变聚合物的性能如导电性能等。

在塑料成型加工过程中加入无机或有机填料的过程称为填充改性。

是在塑料基体(母体)中加入模量高得多的非纤维类的材料(一般为微粒状)。

通常认为填充改性是为了降低成本而进行的,实际上很多塑料制品如果没有填充助剂的加入,很难得到符合满意的应用效果。

高分子改性大全:增韧、增强、阻燃、导电、导热

高分子改性大全:增韧、增强、阻燃、导电、导热

高分子改性技术大全
-------(增韧、增强、阻燃、导电、导热)
按要改性目标选择合适的助剂,加入助剂应能充分发挥其功效,并达到要求的指标。

指标一般为产品的国家标准、国际标准,或客户提出的专项指标,大量加些这些极性填充会造成和高分子结合及分散不良,可适当加入南京塑泰适合的相容剂,以下是为了使塑料具有某种特殊性能需要加入的助剂:
(1)增韧—添加弹性体、热塑性弹性体和刚性增韧材料,南京塑泰有生产。

(2)增强—添加玻璃纤维、碳纤维、晶须和有机纤维;
(3)阻燃—添加溴类(普通溴系和环保溴系)、磷类、氮类、氮/磷复合类膨胀型阻燃剂、三氧化二锑、水合金属氧化物等各类阻燃剂;
(4)抗静电—添加各类抗静电剂;
(5)导电—添加碳类(炭黑、石墨、碳纤维、碳纳米管)、金属纤维和粉,金属氧化物;
(6)磁性—添加铁氧体磁粉,稀土磁粉包括钐钴类(SmCo5或Sm2Co17)、钕铁硼类(NdFeB)、钐铁氮类(SmFeN),铝镍钴类磁粉三大类;
(7) 导热—添加金属纤维和粉末,金属氧化物、氮化物和碳化物,碳类材料如炭黑、碳纤维、石墨和碳纳米管,半导体材料如硅、硼;
(8)耐热—添加玻璃纤维、无机填料、耐热剂如取代马来酰亚胺类和
β晶型成核剂;
(9)透明—添加成核剂,对PP而言,α晶型成核剂的山梨醇衍生物系列产品Millad 3988效果最好;
(10)耐磨—添加PTFE、石墨、二硫化钼、铜粉等;
(11)电绝缘—添加煅烧高岭土等;
(12)绝热—添加云母、蒙脱土、石英等。

高分子聚合物的改性方法多种多样

高分子聚合物的改性方法多种多样

1 高分子聚合物‎的改性方法多‎种多样,总体上可划分‎为共混改性、填充改性、复合材料、化学改性、表面改性几大‎类。

2 广义的共混包‎括物理共混、化学共混和物‎理/化学共混。

3 第一个实现工‎业化生产的共‎混物是 1942 年投产的聚氯‎乙烯与丁腈橡‎胶的共混物。

4 1964 年,四氧化锇染色‎法问世,应用于电镜观‎测,使人们能够从‎微观上研究聚合物两相形‎态,成为聚合物改‎性研究中的重‎要里程碑。

5 共混改性的方‎法又可按共混‎时物料的状态‎,分为熔融共混‎、溶液共混、乳液共混等。

6 通常所说的机‎械共混,主要就是指熔‎融共混。

7 共混物的形态‎是多种多样的‎,但可分为三种‎基本类型:均相体系、“海-岛结构”两相体系和“海-海结构”两相体系。

8 在共混过程中‎,同时存在着“破碎”与“集聚”这两个互逆的‎过程。

当集聚过程与破碎过程达‎到动态平衡时‎,分散相粒子的‎粒径达到一个‎平衡值,这一平衡值称为“平衡粒径”9 塑料大形变的‎形变机理,包含两种可能‎的过程,其一是剪切形‎变过程,其二是银纹化过程‎。

10 塑料基体可分‎为两大类:一类是脆性基‎体,以 PS、PMMA 为代表;另一类是准韧性基体‎,以 PC、PA 为代表。

11 对于脆性基体‎,橡胶颗粒主要‎是在塑料基体‎中诱发银纹;而对于有一定‎韧性的基体,橡胶颗粒主要‎是诱发剪切带‎。

12 两阶共混历程‎的关键是制备‎具有海-海结构的中间‎产物,这也是两阶共‎混不同于一般的“母粒共混”的特征所在。

13 相容剂的类型‎有非反应性共‎聚物、反应性共聚物‎等,也可以采用原‎位聚合的方法制备。

14 聚合物共混物‎,从总体上来说‎,可以分为以塑‎料为主体的共‎混物和以橡胶‎为主体的共混物‎两大类。

15 在 PVC 硬制品中添加‎C PE,主要是起增韧‎改性的作用;而在 PVC 软制品中添加 CPE 是用作增塑剂‎,以提高 PVC 软制品的耐久‎性。

16 为改善共混体‎系的透光性,通常有两种可‎供选择的途径‎,其一是使共混‎物组成间具有相近‎的折射率;其二是使分散‎相粒子的粒径‎小于可见光的‎波长。

高分子材料的合成与改性方法

高分子材料的合成与改性方法

高分子材料的合成与改性方法高分子材料是一类具有长链结构的大分子化合物,广泛应用于塑料、橡胶、纤维等各个领域。

为了提高高分子材料的性能和应用范围,人们经过长期研究,发展了多种合成和改性方法。

本文将介绍一些常见的高分子材料的合成与改性方法。

一、高分子材料的合成方法1. 缩聚聚合法缩聚聚合法是一种常用的高分子材料合成方法。

它通过将两个或多个小分子单体,在适当的条件下,通过缩聚反应或聚合反应连接成长链高分子化合物。

常见的缩聚聚合法包括:(1)酯交换聚合法:如聚酯的合成。

该方法以酯类单体为原料,通过酯交换反应,合成具有酯键的长链高分子。

(2)醚化聚合法:如聚醚的合成。

该方法以含有醚键的单体为原料,通过醚化反应,将多个单体连接成长链高分子。

(3)胺缩合聚合法:如聚酰胺的合成。

该方法以胺类和酸酐为原料,通过胺缩合反应,生成酰胺键,形成长链高分子。

2. 聚合反应法聚合反应法是指通过单体的自由基聚合、离子聚合或开环聚合等反应,将单体聚合成高分子链的方法。

常见的聚合反应法包括:(1)自由基聚合法:如聚丙烯的合成。

该方法以丙烯单体为原料,通过自由基引发剂引发聚合反应,形成聚合度较高的聚丙烯。

(2)阴离子聚合法:如聚乙烯的合成。

该方法以乙烯单体为原料,通过阴离子引发剂引发聚合反应,生成聚合度较高的聚乙烯。

3. 交联聚合法交联聚合法是指通过交联剂将线性高分子材料进行交联,形成具有空间网络结构的材料。

该方法可以提高高分子材料的力学性能和热稳定性,常见的交联聚合法包括:(1)辐射交联法:如交联聚乙烯的合成。

该方法以聚乙烯为原料,通过辐射照射,引发聚乙烯链的交联,形成具有交联结构的聚乙烯材料。

(2)化学交联法:如交联聚氨酯的合成。

该方法以含有多官能团的单体为原料,通过化学反应引发交联反应,形成交联结构的聚氨酯材料。

二、高分子材料的改性方法1. 加入填料加入填料是一种常用的高分子材料改性方法。

填料可以提高高分子材料的强度、硬度、耐磨性和导热性等性能,常见的填料有纤维素、硅酸盐、碳黑等。

高分子材料的合成与改性

高分子材料的合成与改性

高分子材料的合成与改性高分子材料在现代工业和科学中具有重要的地位,其广泛应用于塑料制品、橡胶制品、纤维材料、涂料等领域。

高分子材料的性能往往直接关系到其合成方法和改性方式。

本文将介绍高分子材料的合成方法和改性技术,以及这些方法和技术在不同领域的应用。

一、高分子材料的合成方法高分子材料的合成方法主要包括聚合法、缩聚法和交联法。

聚合法是将单体分子通过化学反应逐一连接成长链高分子,常见的聚合方法有自由基聚合和阴离子聚合。

缩聚法是通过反应两种或多种具有活性基团的分子,使它们相互连接形成高分子,如酯交换反应和酰胺缩合反应。

交联法是在聚合体中引入交联剂,使其形成三维网络结构,从而增加材料的力学性能和热稳定性。

二、高分子材料的改性技术1. 添加剂改性添加剂改性是通过向高分子材料中添加适量的改性剂来改变其性能,常见的添加剂包括增塑剂、增韧剂、阻燃剂等。

增塑剂可以提高材料的柔软性和延展性,增韧剂可以增加材料的韧性和抗冲击性,阻燃剂可以提高材料的阻燃性能。

2. 聚合改性聚合改性是将具有特定功能基团的单体引入到高分子材料中,使其具有新的性能。

例如,引入亲水性基团可以提高材料的亲水性;引入功能性基团可以使材料具有生物活性等。

3. 化学修饰化学修饰是在高分子材料表面进行化学反应,改变其表面性质。

常见的化学修饰方法包括硫化、酸碱处理、活性基团的引入等。

化学修饰可以改善材料的粘接性能、耐热性和抗溶剂性。

4. 物理改性物理改性是通过对材料进行物理处理,改变其结构和性能。

常见的物理改性方法包括拉伸、压缩、注塑等。

物理改性可以改变材料的力学性能、热性能和透明性。

三、高分子材料的应用高分子材料具有广泛的应用前景,以下介绍其中几个典型应用领域:1. 塑料制品高分子材料在塑料制品中有着广泛的应用,如包装材料、电子产品外壳、汽车零部件等。

在塑料制品的生产中,通过改变高分子材料的合成方法和改性技术,可以实现塑料材料的力学性能、透明性、耐热性等方面的优化。

高分子改性材料

高分子改性材料

高分子改性材料高分子改性材料是指将高分子材料通过物理或化学方法与其他物质进行相互作用,使其性能发生明显改变的材料。

高分子改性材料在工业生产和科学研究中有着广泛的应用。

下面就高分子改性材料的种类、制备方法和应用领域进行详细介绍。

高分子改性材料主要有以下几类:共混物、复合材料、共聚物和交联物。

共混物是指将两种或多种高分子材料混合后形成的新材料,它们之间没有化学反应,只是物理上混合在一起。

复合材料是指在高分子基体中加入其他材料(如纤维、颗粒等),以增强材料的某些性能。

共聚物是指两种或多种单体在聚合过程中同时存在而共聚成的高分子材料。

交联物是指在高分子材料中引入交联结构,以提高材料的力学性能和热稳定性。

高分子改性材料的制备方法多种多样,包括物理法、化学法和辅助法。

物理法主要包括共混、溶胶凝胶、胶体稳定法等;化学法主要包括共聚、交联和化学修饰等;辅助法包括扩散法、溶胶浸渍法等。

制备方法的选择取决于所需改性效果和原材料特性。

高分子改性材料具有广泛的应用领域。

在材料工程领域,高分子改性材料可以提高材料的强度、硬度、韧性和耐磨性,延长材料的使用寿命。

同时,高分子改性材料的改性效果还可以通过调控其结构和表面性质来调整材料的电学、光学和磁学性能,使其在电子器件、光学器件和传感器等领域得到应用。

在环境保护领域,高分子改性材料的改性效果可以使废弃物得到有效利用,减少环境污染。

在医学领域,高分子改性材料可以用于制备生物材料和医用材料,如人工关节、心脏支架等,在实现人工替代器官和组织工程方面发挥重要作用。

综上所述,高分子改性材料作为一种重要的材料类别,在工业生产和科学研究中具有广泛的应用前景。

随着科技的快速发展,对高分子改性材料的需求也将不断增加,相信这将进一步推动高分子改性材料的发展和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二氧化硅粒子的表面化学改性—方法、原理
姓名:孙文建学号2012020472
一.引言:
二氧化硅( SiO2) 又称硅石,是一种常用的无机材料,属非金属氧化物,具有优良的化学稳定性和热稳定性。

实验室中常以溶胶-凝胶( sol-gel) 法制备SiO2微球,也有报道用微乳液和聚苯乙烯( PS) 模板“一步法”制备中空的SiO2微球.
通过与有机基体的复合,SiO2可将自身的优异性能赋予复合材料。

但由于其表面大量的羟基和不饱和键,使其表面能较高、易团聚,影响了在有机基体中分散的均匀性,致使复合材料内部产生缺陷。

因此,SiO2与基体复合前,需要进行表面改性,以降低表面能、提高分散性; 同时,可通过表面接枝聚合物增加与基体的相容性,赋予复合材料优异的性能。

SiO2粒子的改性方法很多,按原理可分为表面物理修饰和化学修饰两大类。

表面物理修饰主要是通过吸附、涂覆及包覆等物理作用对粒子表面进行改性,利用紫外线、等离子体等对粒子表面的改性也属于物理修饰。

表面化学修饰即通过无机粒子表面和改性剂之间的化学反应,改变SiO2粒子的表面结构,达到表面改性的目的。

表面化学修饰主要包括3 种方法: 偶联剂法、表面接枝法和一步法。

二.化学修饰方法及机理
2.1 偶联剂法
偶联剂法主要包括后嫁接法( post synthesis grafting
method ) 和共缩聚法( co-condensation method)。

后嫁接法指先制备SiO2粒子,然后通过偶联剂与SiO2表面的羟基反应,在SiO2表面接上有机基团,得到有机功能化的SiO2。

共缩聚法指在SiO2制备过程中,在模板剂作用下,将含有特定有机基团的偶联剂与正硅酸乙酯( TEOS) 同时加入体系中共缩聚,一步直接合成有机功能化的SiO2。

,硅烷偶联剂通式可表示为:Y(CH2)nSiX3其中n = 0—3; X 代表不同的可水解基团,通常是氯基、烷氧基等,X 影响水解速率,对复合材料的性能影响不大; Y 代表不同的有机官能团,多指乙烯基、氨基等,Y 能与树脂反应形成“分子桥”,增强与有机基体之间的作用力,同时Y 可为SiO2的进一步修饰提供可反应基团。

根据反应条件,硅烷偶联剂对SiO2的修饰可分成有水反应和无
水反应,如图式1 所示。

有水存在的条件下,硅烷偶联剂上的X 基团水解生成羟基,形成Si—OH,此Si—OH 再与SiO2表面的Si—OH发生
缩水反应生成Si—O—Si,同时硅烷偶联剂的分子间也发生脱水缩合
反应,形成不规则的多分子层;无水条件下,基团X直接与SiO2表面的Si—OH 发生缩醇反应生成Si—O—Si,形成较规则的单分子层。

偶联剂法对SiO2的修饰一般选择在有水条件下进行。

2.2 表面接枝法
表面接枝法是通过SiO2粒子表面的官能团与改性单体或聚合物
上的功能基团反应,在SiO2表面接枝上聚合物链,达到改性的目的,主要包括: 表面聚合生长接枝法和偶联接枝法。

经表面接枝的SiO2 复合微球具有不同的宏观形态( 如: 核-壳结构、中空结构、树莓结构以及以电纺制备的项链结构等) 和微观形态( 线形、V 形、Y形等刷状结构)
2.2.1 表面聚合生长接枝法
单体在引发剂作用下,直接从SiO2粒子表面开始聚合生长
( grafting from) 完成粒子表面高分子包覆,这种方法的特点是枝率高。

以此种方法进行修饰时,将表面接有可反应基团的SiO2
粒子分散在单体的“溶液”中,在其表面引发单体聚合形成聚合物链。

根据SiO2表面可利用的反应基团,实施表面聚合生长接枝的主要方法包括: (1) SiO2表面修饰双键,进行传统的自由基聚合反应( FRP) ;
(2) SiO2表面修饰卤原子,用于ATRP 反应; (3) SiO2表面修饰
双硫酯或三硫酯,用于可逆加成-断裂链转移自由基聚合(RAFT) RAFT 可实现增长自由基的可逆链转移,对于SiO2的改性而言,关键是使具有高链转移常数和特定结构的链转移剂—-双硫酯或三硫酯修饰在SiO2表面,用作RAFT 反应的链转移剂。

RAFT 的优点是,可供聚合使用的单体范围广,且不需要含金属的催化剂等应用RAFT方法在SiO2表面的接枝聚合可分为R-基团途径( R-group approach) 和Z- 基团途径( Z-group approach) ,如图式3 所示。

R 基团途径中,RAFT 试剂的双硫酯有部分从粒子表面脱落进入单体溶液,而Z-基团途径则没有。

因此R-基团途径中,单体不只在粒子表面聚合,单体扩散位
阻小,得到的粒子接枝率高,而Z-基团途径得到的粒子一般接枝率较低。

R-基团途径不足之处是粒子表面的大分子自由基容易双基终止,不利于“刷状”结构的形成,但却利于粒子表面形成环形的链。

而Z-基团途径表面无自由基,不存在上述不足和优势。

两种途径难分伯仲,实际操作中应根据具体问题选择合适的接枝方法.
RAFT 试剂的结构和通过R-基团途径和Z-基团途径聚合原理
2. 2. 2 偶联接枝法
偶联接枝是通过无机粒子表面的官能团与高分子链的官能团之间反
应实现接枝,即“Grafting onto”。

点击化学( click chemistry ) 被形象地称为“搭扣”,用这种方法把分子片段拼接在一起就像搭扣一样,无论搭扣自身接着什么,只要搭扣的两部分碰在一起就能相互间结合起来,而且搭扣的两部分结构决定只能彼此结合,这种方法操作简单,反应条件温和,反应过程对氧气和水不敏感,也被用于
SiO2表面的改性。

例:Kar 等用SiO2表面Si—OH 与叠氮丙基三乙氧基硅烷( AzPTES) 在醇水比为1∶ 1条件下反应将叠氮基团接枝在SiO2表面,叠氮基团接枝密度达到3 个/nm2。

再将含端炔的聚左旋赖氨酸( PLL) 与修饰有叠氮基团的SiO2在pH = 7、Cu + 催化条件下发生叠氮-炔基点击化
学反应(图式6)
图式6 点击化学反应法将PLL 接枝到SiO2表面
通过常温常压下官能团间的酯化反应(esterification reaction) 也可将聚合物接枝到SiO2表面,形成复合粒子。

这种方法的反应条件较温和。

例:在SiO2表面接PEG(酯化反应)
首先,SiO2与(2,3-环氧丙氧基) 丙基三甲氧基硅烷( GPTMS) 反应,将环氧基团修饰在SiO2表面上,然后将其与乙醇的盐酸溶液
100 ℃下回流2 h,使环氧基团开环形成烷羟基( SiO2 -CH2OH) ; SiO2 -CH2OH 上的羟基与合成的含端羧基的PEG( PEG-COOH) 上的羧基在
室温常压下,以N,N'-二环己基碳二亚胺( DCC) 为活化剂、以4-二甲胺基吡啶-p-甲苯磺酸盐( DPTS) 为催化剂发生酯化反应,将PEG 接枝在SiO2表面。

图式7 酯化反应法将PEG 接枝到SiO2表面
2. 3 一步法
除了偶联剂法和表面接枝法,还可以运用一步法( one-step method) 对SiO2表面进行修饰达到改性的目的。

Fuertes 等制备了酚醛树脂包覆的SiO2微球。

SEM 显示单分散性好,TEM 观察到明显的核壳结构,壳厚约20 nm。

其原理是: 在用Stober方法制备SiO2微球的过程中,铵根离子覆盖在SiO2表面阻止了粒子团聚并且利于形成稳定的胶束,同时间苯二酚和甲醛在OH 的催化下反应,形成大量的羟甲基取代物,这种产物通过与铵根离子静电作用沉积在SiO2表面,形成酚醛树脂包覆的SiO2微球。

再对其进行高温碳化及HF刻蚀,形成碳空心球。

Dai等则选用碳产率高的多巴胺或聚多巴胺对SiO2包覆,再对其进行高温碳化及HF刻蚀,形成碳空心球。

例;
三.结论及展望
综上,偶联剂法可以为表面接枝法提供进行下一步化学反应的有机官能团,即在SiO2表面进行化学反应时,首先在其表面修饰了有机官能基团,比如—NH2 —Br,—SH等,以实现对二氧化硅表面的功能化。

利用ATRP、RAFT 等活性聚合方法在SiO2表面引发单体聚合以制备接枝聚合物的复合粒子,或通过ATRP、RAFT 等方法先合成聚合物链再利用开环加成反应、点击化学反应或酯化反应等将其偶联
接枝在SiO2表面,这两种途径都能控制接枝的聚合物链的长度,有效地对SiO2表面进行改性,以得到理想的有机/ 无机复合粒子。

ATRP 虽接枝率高,但需要使用过渡金属作催化剂,其在产物中难以分离; RAFT 虽适用单体范围广,但其链转移剂( RAFT 试剂) 一般需要自己合成,特别是将双硫酯或三硫酯接枝到SiO2表面形成的新型的RAFT 试剂( SiO2 -ZSS) 。

如何既提高接枝率又使产物较纯净,将两种
方法的优点结合起来,是以后研究的关注重点。

相关文档
最新文档