数学分析简明教程答案(尹小玲 邓东皋)
数学分析简明教程答案22

数学分析简明教程答案22第二十二章各种积分间的联系与场论初步§1 各种积分间的联系1.应用格林公式计算下列积分:(1)ydx x dy xy L ?-22,其中L 为椭圆22a x +22by =1取正向;(2),)()(?-++Ldy y x dx y x L 同(1);(3)dy y xdx y x L)()(222+-+?, L 是顶点为)5,2(),2,3(),1,1(C B A 的三角形的边界,取正向;(4),1,)()(223333=+--+?y x L dy y x dx y x L为取正向;(5),sin sin ydy exdx e xLy-+?L 为矩形d y c b x a ≤≤≤≤, 的边界,取正向;(6)],))cos(sin ())cos(sin [(dy y x xy x dx y x xy y e L xy+++++?其中L 是任意逐段光滑闭曲线.解(1)原式 =()()d xdy y x dxdy x yDD+=--2222)(=ab()rdr r b r a d ??+122222220sin cos θθθπ(广义极坐标变换)=())(3sin cos 3122202222b a ab d b a ab +=+?πθθθπ.(2)?-++Ldy y x dx y x )()(=??=-Ddxdy 0)11(.(3)原式 ??+-=Ddxdy y x x ))(22(+-=-=-+-+215231143124322yy y y D dx ydy dx ydy ydxdy9143))5(127)(47(2252221-=-+--=??dy y y dy y y .(4)原式π23)(3)33(2222-=+-=--=DD dxdy y x dxdy y x .(5)原式 dxdy x e y e Dy x ??--=-)cos sin ( )cos sin (+-=-badcdcydy baxe dx x ydy dx e)sin )(sin ()cos )(cos 11(a b e e c d ee c d b a --+--=.(6))]cos(sin [),(y x xy y e y x P xy ++=,)]cos(sin [),(y x xy x e y x Q xy++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy x ye xQxy xy --++++=?? )]sin()cos(sin )cos (sin [y x y x y xy xy xy xy e xy --+++=,)]sin(cos [sin )]cos(sin [y x xy xy xy e y x xy y xe yPxy xy +-++++=?? )]sin(cos sin )cos (sin [y x xy x xy xy xy xy e xy +-+++=,)cos()(y x x y e yPx Q xy +-=??-??,所以,原式??+-=Dxy dxdy y x x y e ,)cos()( 其中D 为L 包围的平面区域. 2.利用格林公式计算下列曲线所围成的面积:(1)双纽线θ2cos 22a r =;(2)笛卡尔叶形线)0(333>=+a axy y x ;(3)t t a x sin )cos 1(2+=,t t a y cos sin 2=,π≤≤20t .解(1)==12||D Ddxdy dxdy D ?-?=L ydx xdy 212 ?=--=44)]sin (sin cos cos [ππθθθθθd r r r r 24424422cos a d a d r ===??--ππππθθθ,其中1D 由θ=2cos 22a r ,44π≤θ≤π-所围成.(2)作代换,tx y =则得曲线的参数方程为313tatx +=,3213t at y +=.所以, dt t t a dx 233)1()21(3+-=,dt t t at dy 233)1()2(3+-=,从而,dt t t a ydx xdy 2322)1(9+=-,于是,面积为 D =?C x y y x d -d 21=dt t t a ?∞++02322)1(29=223a .(3)D =-cydx xdy 21= {}-++?--?+π2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dtt t t t t a t t a t t t a t t a{}π-++?--?+2022322]sin )sin (cos 2cos )cos 1[(cos sin )sin cos sin 2(sin )cos1(21dt t t t t t a t t a t t t a t t a=21tdt t t a 2cos )cos 1(sin 22022+?π=24a π 3.利用高斯公式求下列积分:(1)y x z x z y z y x sd d d d d d 222++??.其中(a )S 为立方体a z y x ≤≤,,0的边界曲面外侧;(b )S 为锥面)0(222h z z y x ≤≤=+,下侧. 解:(a )y x z x z y z y x sd d d d d d 222++?? =2??++vdxdydz z y x )(=2++aaa dz z y x dy dx 0)(=43a(b)补充平面1S :h z h y x =≤+,222的上侧后,1S S +成为闭曲面的外侧, 而++1222S dxdy z dzdx y dydz x =??xyD dxdy h 2=22h h π?= π4h 所以 : ?? ++Sdxdy z dzdx y dydz x 222+π4h =+++1222S S dxdy z dzdx y dydz x=2z y x z y x V++d d )d (=2xyD dxdy ?+++h y x z z y x 22)d (=++xyD y x y x y x y x hy x h d )]d (- )+2(-+)+([222222=π-θ+θ-+θ+θθ20222])sin (cos 2)sin (cos 2[hrdr r r h hr d=1214h θ+θ+θ?πd 20)3sin 2cos 2(=2π4h 所以 ??++Sdxdy z dzdx y dydz x 222=442h h π-π=42h π- (2)++Sdxdy z dzdx y dydz x 333, 其中S 是单位球面的外侧;解:++Sdxdy z dzdx y dydz x 333=3++Vz y x z y x d d )d ( =3ππρρ??θ2014sin d d d=512π (3)设S 是上半球面222y x a z --=的上侧,求(a )??++Sy x z x z y z y x d d d d d d(b)++-+Sy x z y xy x z z y x z y xzd )d (2d )d (d d 2222解:补充平面1S :222,0a y x z ≤+=,下侧后,1S S +成为闭曲面的外侧,而(a )=++10S zdxdy ydzdx xdydz所以=++Szdxdy ydzdx xdydz ??+=++1S S zdxdy ydzdx xdydz 3Vdxdydz=213433?π?a =2π3a (b) ??++-+1d )d (2d )d (d d 2222S y x z y xy x z z y x z y xz=xyD xydxdy 2=2?π20d θr r aθθ03d cos sin =0所以++-+Sy x z y xy x z z y x z y xz d )d (2d )d (d d 2222 =+++-+1d )d (2d )d (d d 2222S S y x z y xy x z z y x z y xz = ++Vdxdydz z y x )(222 =?π20d θ2πsin ?d ?a4 d ρρ=554(4)+-++-++-Sy x y x z x z x z y z y y x d )d (d )d (d )d z (222222, S 是 2222)()()(R c z b y a x =-+-+- 的外侧.解:+-++-++-Sy x y x z x z x z y z y y x d )d (d )d (d )d z (222222, =3Vdxdydz =V 3=3343R π?=4π3R 4.用斯托克斯公式计算下列积分:(1)++Lzdz dy dx y x32, 其中(a )L 为圆周0,222==+z a y x ,方向是逆时针;(b )L 为y x z y ==+,122所交的椭圆,沿x 轴正向看去,按逆时针方向;解:(a )取平面0=z 上由交线围成的平面块为S ,上侧,由Stokes 公式zdz dy dx y x 32=?? Szy x z y x dxdy dzdx dydz1///32 =??-Sdxdy y x223=?----ax a xa dy y dx x 02222223=dx x a x a3222)(2?--=616a π-(b )取平面y x =上由交线围成的平面块为S ,上侧,由由Stokes 公式++Lzdz dy dx y x 32=??Szy x z y x dxdy dzdx dydz 132=??-Sdxdy y x 223=??-xyD dxdy y x 223=616a π-(2)dz y x dy x z dx z y L )()()(-+-+-?,L 是从)0,0,(a 经)0,,0(a 至),0,0(a 回到)0,0,(a 的三角形;解:三角形所在的平面为a z y x =++,取平面a z y x =++上由以上三角形围成的平面块为S ,取上侧,由stokes 公式dz y x dy x z dx z y L)()()(-+-+-?=---??Syx x z z y z y x dxdy dzdx dydz =??++-S dxdy dzdx dydz 2 =2-(??Sdydz +??Sdzdx +??Sdxdy )=2-(yzD dydz +??zxD dzdx +??xyD dxdy )=23a - (3)dz y x dy y x dx z yL)()()(222222+++++?,其中(a )L 为1=++z y x 与三坐标轴的交线,其方向与所围平面区域上侧构成右手法则;(b )L 是曲线Rx z y x 2222=++, rx y x 222=+ (0,0><<="" p="" r="">面的上侧构成右手法则;解:(a )中取平面1=++z y x 上与三坐标面交线所围平面块为S ,上侧;(b )中取曲面Rx z y x 2222=++上由L 所围曲面块为S ,上侧,则由stokes 公式,得dz y x dy y x dx z y L)()()(222222+++++?=+++??Sy x x z z y z y x dxdy dzdxdydz 222222 ??-+-+-=Sdxdy y x dzdx x z dydz z y )()()(2=2))()()((dxdy y x dzdx x z dydz z y SSS-+-+-则(a )+++++Ldz y x dy z x dx z y )()()(222222= dS y x x z z y Sγ-+β-+α-]cos )(cos )(cos )[(2=0 (因为cos α=cos β=cos γ=31)(b )注意到球面的法线的方向余弦为: R R x -= αcos , R y =βcos ,Rz=γcos ,所以 dz y x dy z x dx z y L)()()(222222+++++?=2??-+-+-SdS y x x z z y ]cos )(cos )(cos )[(γβα=2-SdS y z )(由于曲面S 关于oxz 平面对称,故=SydS .0 又π?=γ=SSr R dS R zdS 2cos 于是dz y x dy z x dx z y L)()()(222222+++++?=22r R π(4)xdz zdy dx y L++?,L 是2222a z y x =++,0=++z y x ,从x 轴正向看去圆周是逆时针方向.解:平面0=++z y x 的法线的方向余弦为 cos 31cos cos ===γβα,于是,dS xz y z y x xdz zdy ydx L Sγβα=++cos cos cos =??++-SdS )cos cos (cos γβα=332π-=23a π-5. 设L 为平面上封闭曲线L ,l 为平面的任意方向,证明:?=L ds l n 0),cos(,其中n 是L 的外法线方向。
数学分析简明教程答案(尹小玲 邓东皋)第一二章

5.在半径为r得瑟球内嵌入一内接圆柱,试将圆柱的体积表示为其高的函数,并求此函数 的定义域。
h2 解:设其高为h, 那么圆柱的底面半径为R r ; 于是圆柱体积 4 2 V R h
2
hr 2
4
h3
由于圆柱为球的内接圆柱,故有h (0, 2r ).
-2-
6.某公交车路线全长为20 Km, 票价规定如下:乘坐5 Km以下(包含5 Km)者收费1元;超过 5 Km但在15 Km以下(包含15Km)者收费2元;其余收费2元5角。试将票价表示成路线的 函数,并作出函数的图像。 解:设y为票价,x为路程,则有 1 y ( x) 2 2.5 它的函数图像如下: x (0,5] x (5,15] . x (15, 20]
画图板作图
7.一脉冲发生器产生一个三角波,若记它随时间t的变化规律为f (t ), 且三个角分别对应关 系f (0) 0, f (10) 20, f (20) 0, 求f (t )(0 t 20), 并作出函数的图形。 解:由题意可知所求函数为: 2t f (t ) 40 2t 其函数图像为:
2 2 2 2
(2). x1 x2 xn x1 x2 xn ; 证明:使用数学归纳法; i.对于x, y , 总有 x y xy, 于是有 x 2 x y y x 2 2 xy y 2 ; 整理后可得 x y x y ,即当n 2时所证成立。 ii.假设当n k时所证不等式也成立,即 x1 x2 xk x1 x2 xk . iii.当n k 1时,取y x1 x2 xk , 于是有: x1 x2 xk xk 1 y xk 1 y xk 1 x1 x2 xk xk 1 x1 x2 xk xk 1 即当n k 1时所证不等式也成立。 那么由数学归纳法可知题证成立。
数学分析简明教程答案(尹小玲邓东皋)第四章

x0
x
lim
x0
3x02x 3x2 x0 x
x3
3x02 ;
f '(0 0) lim f (0 x) f (x) lim x3 0 0,
x0
x
x0 x
f '(0 0) lim f (0 x) f (x) lim x3 0 0,
第四章 微商与微分
第一节 微商的概念及其计算
1.求抛物线y x2在A(1,1)点和B(2, 4)点的切线方程和法线方程。
解:函数y x2的导函数为y ' 2x,则它在A(1,1), B(2, 4)的切线斜率分别为
y '(1) 2, y '(2) 4;
于是由点斜式可以求得在这两点的切线方程分别为y 2x 1, y 4x 4.
由于法线斜率与切线斜率的乘积为 1, 故可以求得在这两点的法线斜率分别为
k1
1 2
,
k2
1; 4
那么由点斜式可以求得在这两点的法线方程分别为y 1 x 3 , y 1 x 9 . 22 42
2.若S vt 1 gt2,求 2
(1)在t 1,t 1 t之间的平均速度(设t 1, 0.1, 0.01); (2)在t 1的瞬时速度。 解:(1)可以求得
x
令
lim f (3 x) f (3) lim a(3 x) b 32 lim 3a a x b 9 6,
x0
x
x0
x
x0
x
那么必有
解得:a 6,b 9.
3a b 9 0 a 6
数学分析简明教程答案

第二十一章曲线积分与曲面积分§1 第一型曲线积分与曲面积分1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。
解:第一型曲线积分的性质:1(线性性)设⎰L ds z y x f ),,(,⎰L ds z y x g ),,(存在,21,k k 是实常数,则[]ds z y x g k z y x f kL ⎰+),,(),,(21存在,且[]ds z y x g k z y x f k L⎰+),,(),,(21⎰⎰+=LLds z y x g kds z y x f k ),,(),,(21;2l ds L=⎰1,其中l 为曲线L 的长度;3(可加性)设L 由1L 与2L 衔接而成,且1L 与2L 只有一个公共点,则⎰Lds z y x f ),,(存在⇔⎰1),,(Lds z y x f 与⎰2),,(L ds z y x f 均存在,且=⎰Lds z y x f ),,(⎰1),,(L ds z y x f +⎰2),,(L ds z y x f ;4(单调性)若⎰L ds z y x f ),,(与⎰L ds z y x g ),,(均存在,且在L 上的每一点p 都有),()(p g p f ≤则⎰⎰≤L L ds p g ds p f )()(;5若⎰L ds p f )(存在,则⎰L ds p f )(亦存在,且≤⎰ds p f L)(⎰Ldsp f )(6(中值定理)设L 是光滑曲线,)(p f 在L 上连续,则存在L p ∈0,使得l p f ds p f L)()(0=⎰,l 是L 的长度;第一型曲面积分的性质: 设S 是光滑曲面,⎰⎰S ds p f )(,⎰⎰S ds p g )(均存在,则有1(线性性)设21,k k 是实常数,则[]⎰⎰+Sds p g k p f k)()(21存在, 且[]⎰⎰+Sds p g k p f k )()(21⎰⎰⎰⎰+=SSds p g k ds p f k )()(21;2s ds S=⎰1, 其中s 为S 的面积;3(可加性)若S 由1S ,2S 组成21S S S =,且1S ,2S 除边界外不相交,则⎰⎰Sds p f )(存在⇔⎰⎰1)(S ds p f 与⎰⎰2)(S ds p f 均存在,且⎰⎰Sds p f )(=⎰⎰1)(S ds p f +⎰⎰2)(S ds p f4 (单调性)若在S 上的的每一点p 均有),()(p g p f ≤则⎰⎰⎰⎰≤SSds p g ds p f )()(;5⎰⎰S ds p f )(也存在,且≤⎰⎰Sdsp f )(⎰⎰Sds p f )(;6 (中值定理)若)(p f 在S 上连续,则存在S p ∈0,使得使得s p f ds p f S⎰⎰=)()(0,其中s 为S 的面积。
《数学分析简明》尹小玲 第9章答案

第九章 再论实数系§1 实数连续性的等价描述2.利用紧致性定理证明单调有界数列必有极限.证明 设数列}{n x 单调递增且有上界,则}{n x 是有界数列,由紧致性定理知数列}{n x 必有收敛子数列}{k n x ,设c x k n k =∞→lim ,则由}{n x 单调递增知c 必为数列}{n x 的上界,且根据数列极限的定义知,,0K ∃>∀ε当K k >时,有ε<-c x k n ,即εε+<<-c x c k n ,特别地 ε->+c x K n 1,取1+=k n N ,则当1+=>k n N n 时,由数列}{n x 单调递增且c 为它的上界知εε+<≤≤<-+c c x x c n n K 1,即ε<-c x n ,从而c x n n =∞→lim ,即单调递增有上界数列必有极限.同理可证}{n x 单调递减有下界时必有极限,因而单调有界原理成立.3.用区间套定理证明单调有界数列必有极限.证明 不妨假设数列}{n x 单调递增有上界(}{n x 单调递减有下界可同理证明),即存在R b ∈,使得b x x x a n ≤≤≤≤≤= 21,下证数列}{n x 有极限.若b a =,则}{n x 为常驻列,故}{n x 收敛,因而以下假设b a <. 取b b a a ==11,,二等分区间],[11b a ,分点为211b a +,若211b a +仍为}{n x 的上界,则令2,11212b a b a a +==;若211b a +不是}{n x 的上界,即存在m ,使211b a x m +>,则令12112,2b b b a a =+=. 二等分区间],[22b a ,分点为222b a +,若222b a +为}{n x 的上界,则令2,22323b a b a a +==;若222b a +不是}{n x 的上界,则令 .,223223b b b a a =+= 依此类推得一闭区间套{}],[n n b a ,每一个区间的右端点都是}{n x 的上界,由闭区间套定理知存在唯一的R c ∈,使得c 属于所有闭区间,下证数列}{n x 的极限为c .由于02lim)(lim 1=-=--∞→∞→n n n n n ab a b ,故根据数列极限的定义,0>∀ε,存在N ,当N n >时,都有2ε<-n n a b ,而],[n n b a c ∈,故),(],[εε+-⊂c c b a n n . (*)另一方面,由闭区间套的构造知K ∃,使得n K n b x a ≤≤,故对K n >∀,由于K n x x >,故n n K n b x x a ≤≤≤. 而由(*)知εε+<<-c x c n ,即ε<-c x n ,从而c x n n =∞→lim ,因而单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件⊃⊃],[],[2211b a b a 去掉或将条件0→-n n a b 去掉,结果怎样?试举例说明.分析(1)若将闭区间列改为开区间列,结果不真.如开区间列⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛n 1,0满足001lim =⎪⎭⎫ ⎝⎛-∞→n n 且 ⊃⎥⎦⎤⎢⎣⎡⊃⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡n 1,031,021,011,0,但不存在r ,使r 属于所有区间.(2)若将定理其它条件不变,去掉条件 ⊃⊃],[],[2211b a b a ,则定理仍不成立,如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+n n n 1,是闭区间列,且0→-n n a b ,但显然不存在r ,使r 属于所有区间. (3)若去掉定理条件0→-n n a b ,则定理仍不成立,如闭区间序列⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n 13,11满足 ⊃⊃],[],[2211b a b a ,此时区间]3,1[内任意一点都属于闭区间序列的任何区间,与唯一性矛盾.5.若}{n x 无界,且非无穷大量,则必存在两个子列∞→k n x ,a x k m →(a 为有限数). 证明 由于}{n x 无界,故N k ∈∀,都存在k n x ,使得k x k n >,因而∞=∞→k n k x lim .又由于}{n x 不是无穷大量,根据无穷大量否定的正面陈述知0M ∃,对0>∀K ,存在K m k >,使得0||M x k m <. 从而对于0>∀K ,数列}{k m x 为有界数列,从而必有收敛子列}{k m x .故结论成立.6.有界数列}{n x 若不收敛,则必存在两个子列b x a x k k m n →→,)(b a ≠.证明 由于}{n x 为有界数列,由紧致性定理知数列}{n x 必有收敛的子列}{k n x ,不妨设)(∞→→k a x k n ,又因为数列}{n x 不收敛于a ,故从}{n x 中去掉}{k n x 后所得的项还有无穷多项(否则数列}{n x 就收敛于a ).记其为数列}{k n x ,又因为}{k n x 为有界数列,故有收敛子列,设此子列的极限为b ,则b a ≠,而此子列也是}{n x 的子列,故设其为}{k m x ,因而)(lim b a b x k m k ≠=∞→.7.求证:数列}{n a 有界的充要条件是,}{n a 的任何子数列}{k n a 都有收敛的子数列. 证明 必要性:由紧致性定理知结论成立.充分性:反设数列}{n a 无界.若}{n a 是无穷大量,则}{n a 的任何子列都不存在收敛的子列,矛盾;若}{n a 不是无穷大量,则由第5题知}{n a 有一子列}{k n a 是无穷大量,从而}{k n a 没有收敛的子数列,也矛盾.因而数列}{n a 有界.8.设)(x f 在],[b a 上定义,且在每一点处函数的极限存在,求证:)(x f 在],[b a 上有界.证明 对],[b a t ∈∀,由于)(x f 在t 处的极限存在,故设A x f tx =→)(lim ,则对01>=ε,存在0>t δ,x ∀,当t t x δ<-<||0时,有1)(=<-εA x f ,从而1||)(+<A x f ,取{}1||),(max +=A t f M ,则),(t t t t x δδ--∈∀,都有M x f <)(,即)(x f 在区间),(t t t t δδ--上有界.对所有],[b a t ∈,在1=ε下所取的t δ为半径的开区间{}],[|),(b a t t t t t ∈+-δδ构成闭区间],[b a 上的一个开覆盖,由有限覆盖定理知,存在],[,,,21b a t t t n ∈ ,使得),(],[1i i t i t i ni t t b a δδ+-⊂= ,而)(x f 在每个区间),(i i t i t i t t δδ+-),,2,1(n i =上有界,又由于区间个数有限,故)(x f 在],[b a 上有界.9.设)(x f 在],[b a 无界,求证:存在],[b a c ∈,对任意0>δ,函数)(x f 在],[),(b a c c δδ+-上无界.证明 反设结论不真,即],[b a c ∈∀,0>∃c δ,函数)(x f 在],[),(b a c c c c δδ+-上有界,则对所有的c ,{}],[|),(b a c c c c c ∈+-δδ构成区间],[b a 的一个开覆盖,由有限覆盖定理知其有有限子覆盖,即],[,,,21b a c c c n ∈∃ ,使),(],[1i i c i c i ni c c b a δδ+-⊂= ,由于函数在每一个],[),(b a c c i i c i c i δδ+-有界,而n 是有限数,故)(x f 在],[b a 有界,矛盾.因此结论成立.10.设)(x f 是),(b a 上的凸函数,且有上界,求证:)(lim ),(lim x f x f bx ax -+→→存在. 证明 由于)(x f 在),(b a 上有上界,故0>∃M ,对M x f b a x ≤∈∀)(),,(.先证明)(lim x f bx -→存在. 在区间),(b a 中任取一点0x ,并令 00)()()(x x x f x f x g --=,则由)(x f 是),(b a 上的凸函数知)(x g 在),(0b x 上递增,在),(0b x 中任取一点1x ,考察区间),(1b x ,),(1b x x ∈∀,由于1000)()()()(x x x f M x x x f x f x g --≤--=, 即)(x g 在),(1b x 上有上界,从而)(x g 在),(1b x 上单调递增且有上界,由定理3.12知)(lim x g b x -→存在,不妨令A x g bx =-→)(lim ,则 )()()()()()(lim )(lim 000000x f x b A x f x x x f x f x x x f b x b x +-=⎥⎦⎤⎢⎣⎡+--⋅-=--→→, 即)(lim x f bx -→存在. 再证明)(lim x f ax +→存在. 由于)(x f 是),(b a 上的凸函数,从而)(x g 在),(0x a 上递增,在),(0x a 中任取一点2x ,考察区间),(2x a ,),(2x a x ∈∀,由于ax Mx f x x x f x f x x x f x f x g --≥--=--=000000)()()()()()(, 即)(x g 在),(2x a 上有下界,从而)(x g 在),(2x a 上单调递增且有下界,由定理3.12的推论知)(lim x g ax +→存在,设B x g ax =+→)(lim ,则)()()()()()(lim )(lim 000000x f B x a x f x x x f x f x x x f a x a x +-=⎥⎦⎤⎢⎣⎡+--⋅-=++→→, 即)(lim x f ax +→也存在. 11.设)(x f 在],[b a 上只有第一类间断点,定义)0()0()(--+=x f x f x ω.求证:任意εωε≥>)(,0x 的点x 只有有限多个.证明 反证法,使用区间套定理. 根据结论,反设存在00>ε,在],[b a 上使0)(εω≥x 的点有无限多个.记],[],[11b a b a =,二等分区间],[11b a ,则在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+111111,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为],[22b a ,再二等分区间],[22b a ,在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+222222,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为 ],,[33b a ,如此继续下去,得闭区间套],[n n b a ,且每个区间],[n n b a 中含有无限多个x 使0)(εω≥x .由区间套定理可知存在唯一 ,2,1],,[=∈n b a r n n由于)(x f 在],[b a 上只有第一类间断点,而],[b a r ∈,故)0(+r f 和)0(-r f 存在,设B r f A r f =-=+)0(,)0(,则对上述00>ε,存在),(,011δδ+∈∀>r r x 时,有2)(0ε<-A x f ,即2)(2εε+<<-A x f A ,从而由极限不等式知,当),(1δ+∈r r x 时,0)(εω<x ;同理存在),(,022r r x δδ-∈∀>时,0)(εω<x .取{}21,min δδδ=,则在),(δδ+-r r 上满足0)(εω≥x 的点至多只能有r 一个点.而根据区间套性质知,N n N >∀∃,时,都有),(],[δδ+-⊂r r b a n n ,从而在],[n n b a 中最多只能有一个点,使得0)(εω≥x ,这与区间套的构造矛盾.故原结论成立.12.设)(x f 在],0[+∞上连续且有界,对),(+∞-∞∈∀a ,a x f =)(在),0[+∞上只有有限个根或无根,求证:)(lim x f x +∞→存在.证明 由)(x f 在],0[+∞上有界知)(x f 在],0[+∞上既有上界又有下界,不妨设上界为v ,下界为u ,若v u =,则v u x f x ==+∞→)(lim ,结论必然成立,故以下假定v u <.令],[],[11v u v u =,二等分区间],[11v u ,分点为211v u +,由于2)(11v u x f +=在),0[+∞上只有有限个根或无根,而且)(x f 连续,因而11,0X x X >∀>∃时,有2)(11v u x f +>或2)(11v u x f +<.若2)(11v u x f +>,令⎥⎦⎤⎢⎣⎡+=11122,2],[v v u v u ,若2)(11v u x f +<,则令⎥⎦⎤⎢⎣⎡+=2,],[11122v u u v u ,因此1X x >∀时,],[)(22v u x f ∈,即22)(v x f u ≤≤.二等分区间],[22v u ,分点为222v u +,由于2)(22v u x f +=在),0[+∞上只有有限个根或无根且)(x f 连续,故212,X x X X >∀>∃时,有2)(22v u x f +>或2)(22v u x f +<.若2)(22v u x f +>,令⎥⎦⎤⎢⎣⎡+=22233,2],[v v u v u ,反之令⎥⎦⎤⎢⎣⎡+=2,],[22233v u u v u ,因此2X x >∀时,],[)(33v u x f ∈,即33)(v x f u ≤≤. 依此类推,得一区间套]},{[n n v u ,而且由区间套的构造知,n n n X x X X >∀>∃-,1时,n n v x f u ≤≤)(.由区间套定理知存在唯一的 ,2,1],,[=∈n v u r n n ,下证r x f x =+∞→)(lim .事实上,对0>∀ε,由闭区间套]},{[n n v u 的构造知,存在N ,N n >∀时,有),(],[εε+-⊂r r v u n n ,特别地取1+=N n ,则),(],[11εε+-⊂++r r v u N N ,按区间套的构造知11,++>∀∃N N X x X 时,),(],[)(11εε+-⊂∈++r r v u x f N N ,即εε+<<-r x f r )(,从而ε<-r x f )(,即r x f x =+∞→)(lim ,也就是说)(lim x f x +∞→存在.§3 实数的完备性1.设)(x f 在),(b a 连续,求证:)(x f 在),(b a 一致连续的充要条件是)(lim x f ax +→与)(lim x f b x -→都存在.证明 )⇒必要性由)(x f 在),(b a 一致连续知,0,0>∃>∀δε,),(,b a x x ∈'''∀且δ<''-'||x x 时,都有ε<''-')()(x f x f .特别地,当),(,δ+∈'''a a x x 时,δ<''-'x x ,故ε<''-')()(x f x f ,由Cauchy 收敛原理知)(lim x f a x +→存在.同理可知)(lim x f b x -→也存在.)⇐充分性证法1 0>∀ε,由)(lim x f a x +→存在知1δ∃,),(,1δ+∈'''∀a a x x 时,ε<''-')()(x f x f ,又由于)(lim x f b x -→也存在,故2δ∃,),(,2b b x x δ-∈'''∀时,ε<''-')()(x f x f .取⎭⎬⎫⎩⎨⎧-=4,2,2min 21a b δδδ,则由以上两条知)(x f 在),[],,(b b a a δδ-+上一致连续,而又因为)(x f 在],[δδ-+b a 上连续,因而一致连续,因此)(x f 在],(δ+a a 、],[δδ-+b a 、),[b b δ-上均一致连续,因此)(x f 在),(b a 一致连续.证法2 由已知)(lim x f ax +→与)(lim x f bx -→ 都存在,设B x f A x f bx ax ==-+→→)(lim ,)(lim ,令 ⎪⎩⎪⎨⎧=∈==.);,()(;)(b x B b a x x f a x Ax F 则)(x F 在],[b a 连续,因而一致连续,从而)(x F 在),(b a 一致连续,而)(x F 在),(b a 上就是)(x f ,因而)(x f 在),(b a 上一致连续.2.求证数列nx n 1211+++= ,当∞→n 时的极限不存在.证明 利用Cauchy 收敛原理的否定形式证明. 取0,0210>∀>=N ε,任取N n >,则N n >2,从而 nn n x x n n 2121112+++++=-021212121212111ε==+++>+++++>n n n n n n , 由Cauchy 收敛原理的否定知数列nx n 1211+++= 当∞→n 时的极限不存在.3.利用Cauchy 收敛原理讨论下列数列的收敛性. (1))||,1||(2210M a q q a q a q a a x k n n n ≤<++++= ;(2)n n n x 2sin 22sin 21sin 12++++= ; (3)nx n n 1)1(312111+-+-+-= . 解(1)0>∀ε,由1||<q 知0lim 1=+∞→n n q ,从而N ∃,N n >∀时,有εMq qn ||1||1-<+,对上述N m n N >∀,,时(不妨n m >),有m n n m n n m n x x x x x x x x +++≤+++=-++++ 2121++=++++≤++++++221121||||||||n n n n m n n q a q a x x x ()εε=-⋅-<-=++≤+++Mq q M q q M q q M n n n ||1||1||1||||||121.由Cauchy 收敛原理知数列}{n x 收敛.(2)这是(1)中21,sin ,10===q k a a k 的特殊情形,由于21||,1<≤q a k ,故数列}{n x 收敛.(3)证法1 利用Cauchy 收敛原理.0>∀ε,由01lim=∞→n n 知,N ∃,N n >∀时ε<n1,对上述N m n N >∀,,时(不妨n m >),有 mn n x x m n n m n 1)1(21)1(11)1(132+++-+++-++-=-mn n n m 1)1(21111---+++-+=. 由于01)1(21111>-+++-+--mn n n m ,故 mn n x x n m m n 1)1(21111---+++-+=- .若n m -为偶数,则mn n x x n m m n 1)1(21111---+++-+=- m m m n n n 11121312111-⎪⎭⎫ ⎝⎛-----⎪⎭⎫ ⎝⎛+-+-+= ε<+≤11n . 若n m -为奇数,则mn n x x n m m n 1)1(21111---+++-+=- ⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛+-+-+=m m n n n 111312111 ε<+≤11n . 因而由Cauchy 收敛原理知数列}{n x 收敛.证法2 先考虑数列}{n x 的偶子列}{2n x ,由于22131211221)1(3121132)1(2+--+-=+-+-+-=++n n x n n ⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=221121211214131211n n n n n x n n 2211214131211=⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-> , 故偶子列}{2n x 是单调递增的数列,又由于1211213121121)1(31211122<⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛--=-+-+-=+n n n x n n , 因而偶子列}{2n x 是单调上升且有上界的数列,由单调有界原理知}{2n x 必有极限存在,设a x n n =∞→2lim . 又由于121212++=+n x x n n 且0121lim=+∞→n n ,从而a n x x n n n n n =++=∞→∞→+∞→121limlim lim 212.于是我们证得数列}{n x 的奇、偶子列均收敛而且极限相同,故数列}{n x 收敛.4.证明:极限)(lim 0x f x x →存在的充要条件是:对任意给定0>ε,存在0>δ,当δ<-'<00x x ,δ<-''<00x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性设A x f x x =→)(lim 0,则δδε<-<∀>∃>∀00,,0,0x x x ,就有2)(ε<-A x f ,因此由δ<-'<00x x ,δ<-''<00x x 知ε<-''+-'<-''--'=''-'A x f A x f A x f A x f x f x f )()())(())(()()(,因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→且0x x n ≠的数列,由已知0,0>∃>∀δε,只要δ<-'<00x x ,δ<-''<00x x 时,有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,且0x x n ≠,故N n N >∀∃,时,有δ<-<||00x x n ;N m >∀时,有δ<-<||00x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 而不等于0x 的实数列}{n x 都有极限)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知)(lim 00x y x y n n n ≠=∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而任意趋向于0x 而不等于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在.而且它们的极限都相等.由Heine 归结原则知)(lim 0x f x x →存在.5.证明)(x f 在0x 点连续的充要条件是:任给0>ε,存在0>ε,当δ<-'0x x ,δ<-''0x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性由)(x f 在0x 点连续知)()(lim 00x f x f x x =→,故δδε<-∀>∃>∀0,,0,0x x x ,就有2)()(0ε<-x f x f ,因此由δ<-'0x x ,δ<-''0x x 知))()(())()(()()(00x f x f x f x f x f x f -''--'=''-'ε<-''+-'≤)()()()(00x f x f x f x f .因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→的数列,由已知0,0>∃>∀δε,只要δ<-'0x x ,δ<-''0x x 时,就有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,故N n N >∀∃,时,有δ<-||0x x n ,N m >∀时,有δ<-||0x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 的实数列}{n x ,)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n n n n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知0lim x y n n =∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而,任意趋向于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在,而且极限都相等,由Heine 归结原则知)(lim 0x f x x →存在.特别地,取}{n x 为恒为0x 的常数列,则可得)()(lim 0x f x f n n =∞→,即)()(lim 00x f x f x x =→,从而)(x f 在0x 点连续. 6.证明下列极限不存在:(1)32cos 11πn n n x n +-=;(2)n n n n x )1(21-+=;(3))sin(2n n x n +=π;(4)n x n cos =;(5)n x n tan =.解(1)取}{n x 的两个子序列,当k n 3=时,131336cos 13133+-=+-=k k k k k x k π,从而可以得到1lim 3=∞→k k x .而当13+=k n 时,233213)13(2cos 23313+⋅-=++=+k k k k k x k π,从而21lim 13-=+∞→k k x .}{n x 的两个子序列极限不等,故}{n x 的极限不存在. (2)对}{n x 的奇子列,由于121212211+++⎪⎭⎫ ⎝⎛+=k k k x ,而且12lim 12=+∞→k k ,故1l i m 12=+∞→k k x ;对}{n x 的偶子列,由于k k k x 22221+=,而222212222→⋅≤+≤k k k ,故2lim 2=∞→k k x .原数列的奇子列与偶子列极限不同,故}{n x 的极限不存在. (3)由于()21lim 2=-+∞→n n n n ,故取41=ε,则存在00,N n N >∀时 41212=<--+εn n n , 从而 4121412<--+<-n n n , 即 43412+<+<+n n n n , 从而 ()πππππ43412+<+<+n n n n . 当n 为偶数时,由于ααπsin )sin(=+n ,从而由上式知()1sin 222≤+=≤n n x n π;当n 为奇数时,由于ααπsin )sin(-=+n ,从而()22sin 12-≤+=≤-n n x n π. 因此取220=ε,对N ∀,任取},max{0N N n >,则},max{10N N n >+,而且n x 和1+n x 一个在⎥⎦⎤⎢⎣⎡1,22内,另一个在⎥⎦⎤⎢⎣⎡--22,1内,从而0122ε=>-+n n x x ,由Cauchy收敛原理的否定形式知数列}{n x 极限不存在.(4)取1sin 20=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得142+>+N k ππ, 在⎪⎭⎫ ⎝⎛++432,42ππππk k 区间上,由于区间长度12>π,从而存在N n >,使得 ⎪⎭⎫ ⎝⎛++∈+432,421ππππk k n , 对于n 和2+n ,有1sin )1sin(222sin 22sin 2cos )2cos(+=-+++=-+n n n n n n n 01sin 21sin 222ε==⋅≥, 由Cauchy 收敛原理的否定形式知数列}{cos }{n x n =极限不存在.(5)取0330>=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得N k >π,由于⎪⎭⎫ ⎝⎛++2,6ππππk k 的区间长度13>π,从而在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有一个或两个大于N 的正整数点. 若在⎪⎭⎫ ⎝⎛++2,6ππππk k 中只有一个正整数点n ,则 ⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+++∈+ππππππππ)1(,2)1(22,21k k k k n , 从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n ; 若在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有两个大于N 的正整数点,则取较大的正整数为n ,同样,⎪⎭⎫ ⎝⎛+-+∈+πππ)1(,2)1(1k k n ,从而0336tan tan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n . 由Cauchy 收敛原理的否定形式知数列}{tan }{n x n =极限不存在.7.设)(x f 在),(+∞a 上可导,|)(|x f '单调下降,且)(lim x f x +∞→存在,求证: 0)(lim ='+∞→x f x x .证明 由于)(lim x f x +∞→存在,由Cauchy 收敛原理,0,0>∃>∀X ε,当X x >2时,也有X x >,从而22)(ε<⎪⎭⎫⎝⎛-x f x f .又因为)(x f 在),(+∞a 可导,故)(x f 在⎪⎭⎫ ⎝⎛x x ,2上满足Lagrange 中值定理条件,因而⎪⎭⎫ ⎝⎛∈∃x x ,2ξ,使得2)(2)(x f x f x f ξ'=⎪⎭⎫ ⎝⎛-,从而 )(2)(2ξf x x f x f '=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-, 又根据)(x f '单调下降得εεξξ=⋅<⎪⎭⎫ ⎝⎛-='='≤'='222)(2)()()()(x f x f f x f x x f x x f x , 因此0)(lim ='+∞→x f x x . 8.设)(x f 在),(+∞-∞可导,且1)(<≤'k x f ,任给0x ,令),2,1,0()(1 ==+n x f x n n ,求证:(1) n n x +∞→lim 存在; (2) 上述极限为)(x f x =的根,且是唯一的.证明(1)0>∀ε,取k x x k N ln )1(ln 01--=ε,N m n >∀,,不妨m n <,下证ε<-||n m x x .由已知)(x f 在),(+∞-∞可导,故由Lagrange 中值定理得1111))(()()(---+-≤-'=-=-n n n n n n n n x x k x x f x f x f x x ξ,同理 ,211----≤-n n n n x x k x x ,依此类推得011x x k x x n n n -≤-+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--010111)(x x kk x x k k nn n --=-++<+ . 由于k x x k N n ln )1(ln 01--=>ε,而1<k ,从而01)1(ln ln x x k k n --<ε,故ε<--=-011x x kk x x nn m , 因此由Cauchy 收敛原理知n n x +∞→lim 存在. (2)由于)(x f 在),(+∞-∞可导,因而连续,在)(1n n x f x =+两边同时对∞→n 取极限,则)lim (lim n n n n x f x +∞→+∞→=,即n n x +∞→lim 是)(x f x =的根,下证唯一性. 反设有)(,b a b a ≠,且)(a f a =,)(b f b =,则b a b a k b a f b f a f b a -<-≤-⋅'=-=-)()()(ξ,矛盾,故根是唯一的.9.设)(x f 在],[b a 满足条件:(1)10],,[,,)()(<<∈∀-≤-k b a y x y x k y f x f ;(2))(x f 的值域包含在],[b a 内.则对任意],[0b a x ∈,令),2,1,0()(1 ==+n x f x n n ,有(1)n n x +∞→lim 存在; (2)方程)(x f x =的解在],[b a 上是唯一的,这个解就是上述极限值.证明(1)0>∀ε,取k x x k N ln ||)1(ln 01--=ε,N m n >∀,,不妨m n <,下证ε<-n m x x .由已知)(1n n x f x =+,而],[0b a x ∈且)(x f 的值域包含在],[b a 内,因而对n ∀,都有],[b a x n ∈,从而01111)()(x x k x x k x f x f x x n n n n n n n -≤-≤-=---+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--ε<--=-++<+010111)(x x kk x x k k nn n . 因此由Cauchy 收敛原理知n n x +∞→lim 存在. (2)设方程)(x f x =在],[b a 上有两个不同的解d c ,,则d c d c k d f c f d c -<-<-=-)()(,矛盾,故根是唯一的.§4 再论闭区间上连续函数的性质1.设)(x f 在],[b a 上连续,并且最大值点0x 是唯一的,又设],[b a x n ∈,使)()(lim 0x f x f n n =+∞→,求证0lim x x n n =+∞→. 证明 不妨设),(0b a x ∈,当a x =0或b x =0时同理可证.对任意},min{000x b a x --<<ε,由于)(x f 在],[b a 上连续,故)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上连续,由闭区间连续函数的最值定理,)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上均有最大值,显然)(x f 在],[00εε+-x x 上的最大值为)(0x f ,设)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,由最大值点的唯一性可知M x f >)(0. 取02)(0>-M x f ,由)()(lim 0x f x f n n =+∞→知N n N >∀∃,时, 2)()()(00M x f x f x f n -<-,即 M M x f M x f x f x f n >+=-->2)(2)()()(000, 而)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,故),(00εε+-∈x x x n ,即ε<-||0x x n ,从而0lim x x n n =+∞→. 2.设)(x f 在],[b a 上连续,可微;又设(1) )(max )(min x f p x f bx a b x a ≤≤≤≤<<; (2) 如果p x f =)(,则有0)(≠'x f ,求证:p x f =)(的根只有有限多个.证明 利用区间套定理.反设p x f =)(在],[b a 上有无穷多个根,设],[],[11b a b a =,二等分区间],[11b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为],[22b a ,再二等分区间],[22b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为 ],,[33b a .依此类推得一区间套]},{[n n b a ,由区间套的构造知p x f =)(在任意],[n n b a 有无穷多个根.由区间套定理知],[b a r ∈∃,使得对于任意],[,n n b a r N n ∈∈+.若p r f ≠)(,则令p x f x g -=)()(,)(x g 也在],[b a 连续,且0)()(≠-=p r f r g ,从而由保号性知),(,δδδ+-∈∀∃r r x 时,都有0)(≠x g ,即p x f ≠)(,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 无根,这与区间套的构造矛盾.若p r f =)(,则0)(≠'r f ,即0)()(li m ≠--→r x r f x f r x ,从而x ∀'∃,δ,当δ'<-<||0r x 时,有0)()(≠--rx r f x f ,即p x f ≠)(,从而在),(δδ'+'-r r 上)(x f 只有一个根r ,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 只有一个根,这与区间套的构造矛盾.因此p x f =)(在],[b a 上只有有限多个根.3.设)(x f 在],[b a 上连续,0)(,0)(><b f a f ,求证:存在),(b a ∈ξ,使0)(=ξf 且)(0)(b x x f ≤<>ξ.证明 令],[|{b a x x E ∈=且}0)(=x f ,由于0)(,0)(><b f a f ,且)(x f 在],[b a 上连续,由介值性定理知φ≠E ,从而E 为非空有界数集,由确界原理知E 有上确界,设E sup =ξ,下证0)(=ξf .事实上,由于E sup =ξ,由本章第一节习题3知可以在E 中选取数列}{n x ,使ξ=∞→n n x lim ,又由)(x f 连续知 0)(lim )lim ()(===∞→∞→n n n n x f x f f ξ, 又对于],(b x ξ∈∀,由于E x ∉,从而0)(≠x f ,又根据0)(>b f 知0)(>x f ,因而结论成立.4.设)(x f 是],[b a 上的连续函数,其最大值和最小值分别为M 和)(M m m <,求证:必存在区间],[βα,满足条件:(1) m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2) M x f m <<)(,当),(βα∈x .证明 由于)(x f 是],[b a 上的连续函数,且有最大值M 和最小值m ,故由最值定理知],[b a c ∈∃,使得M c f =)(;],[b a d ∈∃,使得m d f =)(,由于M m <,故d c ≠,令},min{d c =α,},max{d c =β,则在区间],[βα上满足:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)对),(βα∈∀x ,由于m f M f ==)(,)(βα或M f m f ==)(,)(βα,而m M ,分别为],[b a 上的最大值和最小值,故M x f m <<)(.5.设)(x f 在]2,0[a 上连续,且)2()0(a f f =,求证:存在],0[a x ∈,使)()(a x f x f +=.证明 考虑辅助函数)()()(a x f x f x g +-=,],0[a x ∈.若)()0(a f f =,根据已知条件)2()0(a f f =可知,取0=x 或a x =时,均有)()(a x f x f +=,命题已证.若)()0(a f f ≠,则)()0()0(a f f g -=,)0()()2()()(f a f a f a f a g -=-=,从而)0(g 与)(a g 符号相反,由零点定理知],0[a x ∈∃,使0)(=x g ,即)()(a x f x f +=.6.设)(x f 在],[b a 上连续,且取值为整数,求证≡)(x f 常数.证明 反设)(x f 不恒为常数,则],[,21b a x x ∈∃,使得)()(21x f x f ≠,又由于)(x f 取值为整数,故)(),(21x f x f 均为整数,在)(),(21x f x f 之间任取一非整数c ,则由介值性定理知],[b a ∈∃ξ,使得c f =)(ξ,这与)(x f 取值为整数矛盾.7.设)(x f 在),(b a 一致连续,±∞≠b a ,,证明:)(x f 在],[b a 上有界.证明 由于)(x f 在],[b a 上一致连续,故取01>=ε,则0>∃δ,当δ<-21x x 时,有1)()(21<-x f x f . 取定11,b a ,其中δ+<<a a a 1,b b b <<-1δ,则],(1a a x ∈∀, 有δ<-1a x ,故1)()(1<-a f x f ,因而1)()(1+<a f x f ;同理),[1b b x ∈∀,有δ<-1b x , 故1)()(1<-b f x f ,因而1)()(1+<b f x f ,因此)(x f 在区间],(1a a 和区间),[1b b 均有界. 另一方面,由于)(x f 在],[11b a 上一致连续,根据闭区间上连续函数的性质可知存在01>M ,使得111)(],,[M x f b a x <∈∀. 取0}1)(,1)(,max{111>++=b f a f M M ,则),(b a x ∈∀,均有M x f <)(,因而)(x f 在),(b a 上有界.8. 若函数)(x f 在),(b a 上满足利普希茨(Lipschitz )条件,即存在常数K ,使得x x K x f x f ''-'≤''-')()(,),(,b a x x ∈'''.证明:)(x f 在),(b a 上一致连续.证明 ,0>∀ε 取,21εδK= 则对δ<''-'∈'''∀x x b a x x ),,(,,由Lipschitz 条件知εε<⋅<''-'≤''-'KK x x K x f x f 21)()(,因而依定义知)(x f 在),(b a 上一致连续. 9.试用一致连续的定义证明:若函数)(x f 在],[c a 和],[b c 上都一致连续,则)(x f 在],[b a 上也一致连续.证明 对0>∀ε,由函数)(x f 在],[c a 一致连续知01>∃δ,对],[,21c a x x ∈∀而且121δ<-x x ,就有2)()(21ε<-x f x f ;又根据函数)(x f 在],[b c 上一致连续知02>∃δ,],[,21b c x x ∈∀且221δ<-x x 时,就有2)()(21ε<-x f x f .取},min{21δδδ=,则],[,21b a x x ∈∀且δ<-21x x 时,若21,x x 同属于],[c a ,有εε<<-2)()(21x f x f ;若21,x x 同属于],[b c ,也有εε<<-2)()(21x f x f ;若21,x x 一个属于],[c a ,另一个属于],[b c ,则由δ<-21x x 知δδ<-<-c x c x 21,,从而εεε=+<-+-≤-22)()()()()()(2121x f c f c f x f x f x f .因而],[,21b a x x ∈∀且δ<-21x x 时,ε<-)()(21x f x f . 因此由一致连续的定义可知)(x f 在],[b a 上一致连续.10.设函数)(x f 在),(+∞-∞上连续,且极限)(lim x f x -∞→与)(lim x f x +∞→存在. 证明:)(x f 在),(+∞-∞上一致连续.证明 对0>∀ε,由于)(lim x f x -∞→存在,根据Cauchy 收敛原理知,存在01>X ,任意121,X x x -<时,就有ε<-)()(21x f x f ;又由于)(lim x f x +∞→存在,故存在02>X ,任意221,X x x >,就有ε<-)()(21x f x f .由于)(x f 在),(+∞-∞上连续,故)(x f 在区间]1,1[21+--X X 上连续,因而在]1,1[21+--X X 上一致连续,由一致连续的定义知,对上述0>ε,存在01>δ,任意]1),1([,2121++-∈X X x x ,只要112δ<-x x ,就有ε<-)()(21x f x f .取0}1,min{1>=δδ,则),(,21+∞-∞∈∀x x ,只要δ<-21x x ,则21,x x 同属于区间),(1X --∞、]1),1([21++-X X 或),(2+∞X ,由上述讨论知,不管在哪种情况下,都有ε<-)()(21x f x f ,因而)(x f 在),(+∞-∞上一致连续.11.若)(x f 在区间X (有穷或无穷)中具有有界的导数,即M x f ≤')(,X x ∈,则)(x f 在X 中一致连续.证明 对0>∀ε,取Mεδ=,则对任意X x x ∈21,,只要δ<-||21x x ,根据Lagrange 中值定理,存在ξ在21,x x 之间,且εδξ=<-≤-'=-M x x M x x f x f x f 212121|))((|)()(,从而)(x f 在X 中一致连续.12.求证:x x x f ln )(=在),0(+∞上一致连续.证明 由于x x x f ln )(=,故xx x xxx f 2ln 2ln 211)(+=+=',xx x x f 4ln )(-='',令0)(=''x f 得1=x ,故1=x 是)(x f '的稳定点,当0)(),1,0(>''∈x f x ,从而)(x f '单调递增;而当0)(),,1(<''+∞∈x f x ,故)(x f '单调递减,因此1=x 是)(x f '的极大值点,也是最大值点,而1)1(='f ,从而对),0(+∞∈∀x ,1)(≤'x f .再令0)(='x f 得2-=e x ,在区间),[2+∞-e 上,由于0)(≥'x f ,因而在),[2+∞-e 上1)(0≤'≤x f ,即1)(≤'x f ,由上题结论知)(x f 在),[2+∞-e 上一致连续.此外,由于0ln lim )(lim 00==++→→x x x f x x ,若令 ⎩⎨⎧=>=.00,0ln )(x x xx x g则)(x g 在]2,0[连续,因而一致连续,从而)(x g 在]2,0(上一致连续,即)(x f 在]2,0(一致连续.对0>∀ε,由)(x f 在),[2+∞-e 上一致连续知,01>∃δ,对任意),[,221+∞∈-e x x 且121δ<-x x ,都有ε<-)()(21x f x f ;又由)(x f 在]2,0(上一致连续知,02>∃δ,对任意]2,0(,21∈x x 且221δ<-x x ,也有ε<-)()(21x f x f .取0}1,,min{21>=δδδ,则当),0(,21+∞∈x x 且δ<-21x x 时,要么],2,0(,21∈x x要么),[,221+∞∈-e x x ,从而ε<-)()(21x f x f .因此x x x f ln )(=在),0(+∞上一致连续.13.设)(x f 在),(+∞a 上可导,且+∞='+∞→)(lim x f x ,求证:)(x f 在),(+∞a 上不一致连续.证明 取10=ε,对0>∀δ,由于+∞='+∞→)(lim x f x ,故0>∃X ,当X x >时,有δ2)(>'x f ,任取X x >1,X x x >+=212δ,虽然有δδ<=-221x x ,但根据lagrange中值定理知,存在)2,(11δξ+∈x x ,使得02121122)()()(εδδξ==⋅>-⋅'=-x x f x f x f . 根据一致连续的否定定义知)(x f 在),(+∞a 上不一致连续.14.求证:x x x f ln )(=在),0(+∞上不一致连续.证明 由于+∞=+='+∞→+∞→)1(ln lim )(lim x x f x x ,由上题结论知结论成立.§5 可积性1. 判断下列函数在区间]1,0[上的可积性: (1))(x f 在]1,0[上有界,不连续点为),2,1(1==n nx ; (2)⎪⎩⎪⎨⎧=∈⎪⎭⎫⎝⎛=;0,0],1,0(,sin sgn )(x x x x f π (3)⎪⎩⎪⎨⎧=∈⎥⎦⎤⎢⎣⎡-=;0,0],1,0(,11)(x x x x x f (4)[]⎪⎩⎪⎨⎧=∈=.0,0],1,0(,1)(1x x x f x解(1)由于)(x f 在]1,0[上有界,故存在0>M ,对]1,0[∈∀x ,都有M x f ≤)(,故在区间]1,0[的任何子区间上,)(x f 的振幅M 2≤ω.对任给0>ε,由于04lim=∞→n M n ,故N n N >∀∃,时,都有24ε<n M ,特别地取10+=N n 时,也有240ε<n M . 由于)(x f 在⎥⎦⎤⎢⎣⎡1,10n 上只有有限个间断点,因而是可积的,即01>∃δ,使得对区间⎥⎦⎤⎢⎣⎡1,10n 的任何1)max(δλ<∆='i x 的分法,都有∑<∆'''2i i i x εω.取⎭⎬⎫⎩⎨⎧=011,min n δδ,对]1,0[的任意δλ<∆=)max(i x 的分法,下证εω<∆∑=ni i i x 1.由于)1,0(10∈n ,故对上述任意分法,都存在分点00,1i i x x -,使得00011i i x n x <≤-,因而 ∑∑∑∑∑+=-=+==-=∆++∆≤∆+∆+∆=∆ni i iii i i ni i iii i n i i i iiiixM x M xx xx o 11111110000022ωδωωωωεεεε=+<++≤222121200n M n M, 这里最后一项210εω<∆∑+=ni i i i x 是由于[]⎥⎦⎤⎢⎣⎡⊂+1,11,010n x i ,而)(x f 在⎥⎦⎤⎢⎣⎡1,10n 可积,故函数在区间[]1,10+i x 可积,因而210εω<∆∑+=n i i iix .因此0lim 1=∆∑=→ni iix ωλ,即)(x f 在]1,0[上可积.(2)由于)(x f 在]1,0[上有界,且不连续点为),2,1(1==n nx 和0=x ,根据(1)的证法知)(x f 在]1,0[上可积.(3)由于)(x f 在]1,0[上有1)(≤x f ,故)(x f 有界,而且)(x f 的不连续点为0=x 和),2,1(1==n nx ,由(2)的证法知,)(x f 在]1,0[可积. (4)由于)(x f 在]1,0[上有1)(0≤≤x f ,故)(x f 有界,而且)(x f 的不连续点只有),2,1(1==n nx ,由(1)的证明知)(x f 在]1,0[可积. 2.讨论)(),(),(2x f x f x f 三者之间可积性的关系.解 )(),(),(2x f x f x f 三者之间可积性的关系是:若)(x f 可积,则)(x f 与)(2x f 均可积,反之不然;)(x f 可积与)(2x f 可积等价.下面给出证明:(1)先由)(x f 可积推导)(x f 可积.由)(x f 可积知0lim1=∆∑=→ni ii xωλ,而对于任一所讨论区间],[1i i x x -中的任意两点x x ''',,都有)()()()(x f x f x f x f ''-'≤''-',即i i ωω≤*(其中*i ω是)(x f 在[]i i x x ,1-上的振幅),因而)0(0011*→→∆≤∆≤∑∑==λωωni ni i i i ix x ,即)(x f 可积.再由)(x f 可积推导)(2x f 可积.由)(x f 可积知)(x f 有界,即存在0>M ,对定义域中的任意x ,都有M x f <)(,而且0lim1=∆∑=→ni ii xωλ.对任一区间[]i i x x ,1-中的任意两点x x ''',,由于(设i ω'是)(2x f 在[]i i x x ,1-上的振幅))()(2)()()()()()(22x f x f M x f x f x f x f x f x f ''-'≤''-'⋅''+'=''-',故)0(02011→→∆≤∆'≤∑∑==λωωni ni i i ii x M x,从而)(2x f 可积.(2)再说明)(x f 与)(2x f 可积不能推出)(x f 可积,例如令函数⎩⎨⎧∈∈-∈∈=,且,且,Q R x x Q x x x f \],10[,1,],10[,1)( 则任意]1,0[∈x 时,1)()(2==x f x f ,故在]1,0[上)(x f 与)(2x f 均可积,但对于函数)(x f 而言,在],[b a 的任一子区间上,振幅2=i ω,故021≠=∆∑=ni i i x ω,于是)(x f 在],[b a 上不可积.(3)最后证明)(x f 可积与)(2x f 可积等价. 先由)(x f 可积推导)(2x f 可积. 由于x f x f x f x f x f x f ''-'⋅''+'=''-'()(()()()(22()x f x f x f x f ''-'⋅''+'=()(()( x f x f M ''-'⋅≤()(2,因而由)(x f 可积知)(2x f 可积.再由)(2x f 可积推导)(x f 可积.不妨令)0()(2>≥c c x f ,否则考虑函数c x f x g +=)()(2,则)(x g 与)(2x f 有同样的可积性.对任一区间[]i i x x ,1-中的任意两点x x ''',,由于)()()()()()(22x f x f x f x f x f x f ''-'=''+'⋅''-',故 )()(21)()()()()()(2222x f x f cx f x f x f x f x f x f ''-'≤''+'''-'=''-',从而由)(2x f 可积可得)(x f 可积. 因此)(x f 可积与)(2x f 可积等价.3.设)(x f ,)(x g 都在],[b a 上可积,证明:))(),(min()()),(),(max()(x g x f x m x g x f x M ==在],[b a 上也是可积的.证明 由于)()(212)()()(x g x f x g x f x M -++=,而)(x f ,)(x g 都在],[b a 上可积,故由积分的可加性和上题结果知)(x M 可积;同理,)()(212)()()(x g x f x g x f x m --+=,因而)(x m 可积.4.设)(x f 在],[b a 上可积,且0)(>≥r x f ,求证:(1))(1x f 在],[b a 可积; (2))(ln x f 在],[b a 可积.证明 由于)(x f 在],[b a 上可积,故0lim1=∆∑=→ni ii xωλ,即对0,0>∃>∀δε,对区间],[b a 的任意δλ<∆=)max(i x 的分法,都有εω<∆∑=ni i i x 1.(1)对上述],[b a 的任意δλ<的分法,设*i ω为函数)(1x f 在区间[]i i x x ,1-上的振幅,并设)(1)(1*x f x f i ''-'=ω,由于。
数学分析简明教程答案(尹小玲 邓东皋)第11章

x x x 2 0 , 而 lim x 1 , 无 穷 积 分 2 x 1 x 2 1 x sin x x 1 x x 发散,由比较判别法知 dx 0 x 2 1 0 1 x 2 sin 2 x dx 发散.
( 5 ) x 0 , 有
2
xn (6)因为 lim 1 ,所以, x 1 x n
第十一章 广义积分
§11.1 1. 求下列无穷积分的值: (1) 无穷限广义积分
2
1 dx ; x 1
2
(2)
2
1 dx ; x(1 x 2 )
xe ax dx (a 0) ; e
ax
2
(3) (4) . (5)
0
0
sin bxdx (a 0) ;
(2) lim x
2
(4) x 0 ,有
1 1 0 ,且 1 x sin x x 1
A dx dx lim lim ln(1 A) , 1 x A 0 1 x A
即
0
0
dx dx 发散,由比较判别法知 发散. 0 1 x 1 x sin x
y x
所以,
2 2 (1 2 x x) 2 ln [arctan( 2 x 1) arctan( 2 x 1)] C , 2 4 1 x 2
A
0
2 (1 2 A A) 2 x ln [arctan( 2 A 1) arctan( 2 A 1)] dx 2 2 4 2 1 x 1 A 2 2 ( ) 2 2 2 2 ( A ) ,
数学分析简明教程答案数分5_微分中值定理及其应用

壹第五章微分中值定理及其应用第一节微分中值定理331231.(1)30()[0,1];(2)0(,,),;(1)[0,1]30[0,1]()3nx x c c x px q n p q n n x x c x x f x x x c证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。
证明:设在区间内方程有两个实根,即有使得函数值为零012023(,)[0,1],'()0.'()33(0,1)(3,0)30()[0,1] (2)2220nx x x f x f x x x x c c n n k x px q x 。
那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。
因此有:方程为常数在区间内不可能有两个不同的实根。
当时,方程至多只可能有两个实根,满足所证。
当时,设方程有三个实根,即存在实数1230112022301021010110202()0(,),(,),'()'()0,'()0(*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p使得函数成立。
那么由罗尔定理可知存在使得即0010220000102),(,),''(0)0,''()(1)0,0,0,0.2(*).212n nx x x f f x n n x x x x n k p n n k x px q 再次利用罗尔定理可以知道,存在使得即显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。
当时,设方程1234111212231334111213111110()0(,),(,),(,)'()0,'()0,'()0,'()0'(nn x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x 有三个实根,即存在实数使得函数成立。
数学分析简明教程答案(尹小玲 邓东皋)

即
un vn un vn .
n 1 n 1 n 1
D
4.设级数 un 各项是正的, 把级数的项经过组合而得到的新级数 U n ,即
n 1 n 1
U n 1 ukn 1 ukn 2 ukn1 , n 0,1, 2, , 其中k0 0, k0 k1 k2 kn kn 1 . 若级数 U n收敛,证明原来的级数也收敛。
(2)
n 1
1 4n 2 1
1 1 1 2 n 1 2n 1 2n 1
1 1 1 1 1 1 1 1 lim 1 2 n 3 3 5 5 7 2n 1 2n 1 1 1 1 lim 1 . 2 n 2n 1 2
n
于是可得 Sn 由于 r 1,因此有
r
n 1
n
r cos x r 2 . 1 r 2 2r cos x
2.讨论下列级数的敛散性: (1) n ; n 1 2n 1
lim
n 1 0, 故原级数发散。 n 2n 1 2 由于级数 lim cos
第十章 数项级数
§1 级数问题的提出
1.证明:若微分方程xy '' y ' xy 0有多项式解 y a0 a1 x a2 x 2 an x n ; 则必有ai 0, i 1, 2, , n. 证明:若y a0 a1 x a2 x 2 an x n 微分方程的一个解, 那么 y ' a1 2a2 x 3a3 x 2 nan x n 1 y '' 2a2 6a3 x n(n 1)an x n 2 ; 于是可得 xy '' 2a2 x 6a3 x 2 n(n 1)an x n 1 xy a0 x a1 x 2 a2 x 3 an x n 1. 因此可知 xy '' y ' xy a1 (4a2 a0 ) x (9a3 a1 ) x 2 (n 2 an an 2 ) x n 1 an x n 0 那么由多项式相等可知有 a1 0 2 n an an 2 0 a 0 n 递推可知有ai 0, i 1, 2, , n成立。 n 2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 再论实数系§1 实数连续性的等价描述2211.{}({},{})1(1).1; sup 1,inf 0;(2)[2(2)]; sup ,inf ;1(3),1,(1,2,); sup ,inf 2;1(4)[1(1)]; n n n n n n n n n n k k n n n n x x x x x x nx n x x x k x k x x k n x n ++∞-∞=-===+-=+∞=-∞==+==+∞=+=+- 求数列的上下确界若无上下确界则称,是的上下确界: sup 3,inf 0;(5) sup 2,inf 1;12(6)cos ; sup 1,inf .132n n n n n n n n x x x x x n n x x x n π=====-===-+2.(),(1)sup{()}inf (); (2)inf{()}sup ().(1)sup{()},.,();.0,()..,();.x Dx Dx Dx Dx Df x D f x f x f x f x A f x i x D f x A ii x D f x A i x D f x A ii εεε∈∈∈∈∈-=--=-=-∀∈-≤∀>∃∈->-∀∈≥-∀>设在上定义求证:证明:设即有对有 对使得 于是有对有 对0,().inf (),inf (),sup{()}inf ()x Dx Dx Dx Dx D f x A A f x A f x f x f x ε∈∈∈∈∃∈<-+-==--=-使得 那么即因此有成立。
(2)inf{()},.,();.0,()..,();.0,().sup (),sup (),x Dx Dx DB f x i x D f x B ii x D f x B i x D f x B ii x D f x B B f x A f x εεεε∈∈∈=-∀∈-≥∀>∃∈-<+∀∈≤-∀>∃∈>---==-设即有对有 对使得 于是有对有 对使得 那么即因此有inf{()}sup ()x Dx Df x f x ∈∈-=- 成立。
111222223.sup ,,{},lim ;,.sup ,.,;.0,,.11,,;2211,,;22n n n n E E E x x x E i E i x E x ii x E x x E x x E x ββββββεεβεββεββ→∞=∉=∈<>=∀∈≤∀>∃∈+>=∃∈≥≥-=∃∈≥≥-设且试证从中可选取数列且互不相同使得又若则情况又如何?证明:由于那么可知对有成立对使得 那么取则使得 取则使得 333330011,,;2211,,;22{},lim {}(),;,,2,,lim n n n n n n n n n n n x E x x E x x E x x N n N x εββεβββαβααβεβαβε→∞=∃∈≥≥-=∃∈≥≥-∈=-=∃=∀>-=->取则使得 取则使得 我们得到数列且由夹迫性原理可知有成立。
如果有无限个数彼此相同设等于那么必有否则可知对有使得成立这与;,{},{}(;){}..,[1,2],{2,1,3,51}n n n n x E x x x ii E E E βββ→∞=∉<>∈==矛盾但是我们知道矛盾。
因此至多只有有限个数彼此相同我们只需要将中的相同的数剔除剔除到只余一个如果还有有限个彼此相同的数,继续剔除即可就可以得到满足条件的数列如果则可能找不见这样的数列。
对于我们可以找见满足条件的数列,但当的时候,我们找不见这样的数列。
124.,,.{}lim ,{},{} .{}lim ,100,,100min{,,,,100},n n n n n n n n n N i x x a x x ii x x N n N x m x x x →∞→∞+∞-∞==+∞>>= 试证收敛数列必有上下确界趋于的数列必有下确界趋于的数列必有上确界。
证明:对于数列如果有那么可知数列必有上下界那么可知数列必有上下确界。
若对于数列如果有那么对于存在当时,有成立。
那么我们取可以知道对{}{} .,n n x x x m x iii ∈>-∞于任意可知有成立,于是数列有下界,则由确界定理可以知道此数列必有下确界。
同理可证得趋于的数列必有上确界。
5.(1); ;1(2); 1;(3); (1);1(4), (1).n n n n nn x n x nx n x n=-=+=-+=-试分别给出满足下列条件的数列:有上确界无下确界的数列含有上确界但不含有下确界的数列既含有上确界又含有下确界的数列既不含有上确界又不含有下确界的数列其中上下确界都有限.[,][,]',''[,][,][,]6.()[,],[,]sup ()inf (),[,]sup(')('').sup (),inf (); .[,],(),f x a b x a b f x x a b x a b x a b f x a b a b f x f x a b f x f x f x f x i x a b f x f ωωαβα∈∈∈∈∈=-=-==∀∈≤设在上有界定义求证:证明:设那么可知对于有121122122112();.0,'[,],''[,]('),('').22,[,],(),();(),(),()(),()()()()x ii x a b x a b f x f x x x a b f x f x f x f x f x f x f x f x f x f x βεεεαβαβαβαβαβα≥∀>∃∈∈>-<+∀∈<><>-<--<--<成立对于使得 对于有于是 成立,即****1212**12**12',''[,].0,,[,],(),(),22()(),()().sup(')(''),[,x x a b f x x a b f x f x f x f x f x f x f x f x a b βεεεαβαβεαβεαβω∈-∀>∃∈>-<+->--->---=- 由于对于使得即成立故有 综上可知即',''[,]]sup(')('').x x a b f x f x ∈=-000000010107.(),11()lim ,.()()0.;()0,0,()()3f f n f f x x x x x n n f x x x f x x x x f x f x ωωωεδδε→∞⎛⎫=-+ ⎪⎝⎭=∀>∃>-<-<设在附近由定义且有界定义证明:在连续的充要条件为证明:必要性如果在连续,那么对于总当的时候有 成立。
1112001011020120021112lim0,,,.211,,,,()(),3()().3110,,,,()(n N n N n n nx x x x x x f x f x n n f x f x N n N x x x x n n f x f x δδεδεε→∞=∃><<⎛⎫∀∈-+-<-< ⎪⎝⎭-<⎛⎫∀>∃>∈-+ ⎪⎝⎭- 由于因此当的时候有即 那么对于由于因此同理我们可得 综上有对于当的时候,对于有20012)()()()(),333f x f x f x f x εεε≤-+-<+=12002111,,00000002sup()(),311()lim ,0.11;lim ,0,0,0,,11,,supx x x x n n f f n f n x f x f x x x x n n x x N n N n n x x x n n εεωωωε⎛⎫∈-+ ⎪⎝⎭→∞→∞-≤<⎛⎫=-+= ⎪⎝⎭⎛⎫-+=∀>∃>> ⎪⎝⎭⎛⎫∈-+ ⎪⎝⎭于是必有因此 充分性如果那么对于当的时候对于任意有00000011,001101()().0,,1()()sup()()()x x nn x x x n n f x f x x x n f x f x f x f x f x x εεδδε⎛⎫∈-+ ⎪⎝⎭⎛⎫∈-+ ⎪⎝⎭-<∀>=-<+-<-<那么对于取当的时候,有成立,因此函数在点连续。
8.(),(),0, inf ()inf ()inf{()()}inf ()sup ()sup ()sup ()sup{()()}.x Dx Dx Dx Dx Dx Dx Dx Df xg x D f x g x f x g x f x g x f x g x f x g x i ∈∈∈∈∈∈∈∈≤≤≤≤ 设在上有界且大于求证:证明:1212121212.inf (),inf ();inf{()()}.,(),().(),()0,,()();()()inf{()()},x Dx Dx Dx Df xg x f x g x x D f x g x D f x g x x D f x g x f x g x f x g x αααααααααααα∈∈∈∈===∈≥≥>∈≥=设那么对于任意有又由于在上有于是对于任意有因此是函数的一个下界,由于故有22,inf ()inf ()inf{()()}..sup ()sup ()sup{()()}..sup (),,()0,()()()inf x Dx Dx Dx Dx Dx Dx Dx f x g x f x g x ii f x g x f x g x iii g x x D f x f x g x f x αββ∈∈∈∈∈∈∈≤≤≤=∈>≤ 即同理可证得设于是对于任意由于因此总有成立。
于是有2{()()}inf{()}inf ()sup ()..inf ()sup ()sup ()sup ().Dx Dx Dx Dx Dx Dx Dx Df xg x f x f x g x iv f x g x f x g x β∈∈∈∈∈∈∈∈≤=≤ 同理可得 综上即知所证成立。
§2 实数闭区间的紧致性1.9.29.3.{},[,].{}[,],(,),{}{}(),0,,0;n n on n n n x x a b x x a b U x x x x n x x εεε∈∀∈∀>∃<-<利用有限覆盖定理证明紧致性定理证明:设数列有界令使用反证法证明:设有界数列不含有收敛子列,则存在去心邻域其中不含有数列中的项。