25.2.2用列举法求概率(第二课时)

合集下载

九年级数学 第25章 概率初步 25.2 用列举法求概率 第2课时 用列举法求概率(2)

九年级数学 第25章 概率初步 25.2 用列举法求概率 第2课时 用列举法求概率(2)
结果; (2)求选手A晋级的概率.
12/7/2021
第十二页,共二十页。
总结梳理(shūlǐ) 内化目 标
1.本节课学习后我们共学会了三种列举(lièjǔ)方法求概率:一
是直接列举法;二是列表法;三是画树形图法.
2.你认为表格列举与画树形图法哪种方法使用范围更大些? 为什么?
12/7/2021
第十三页,共二十页。
(1)取出的 3 个小球上恰好有 1 个、2 个和3 个元 音字母的概率分别是多少?
(2)取出的 3 个小球上全是辅音字母的概率是多 少?
12/7/2021
第五页,共二十页。
解:根据(gēnjù)题意,可以画出如下树状图:

A
B

C
DE
C
D
E

H IH IH I H I H I H I
12/7/2021
第六页,共二十页。
由树状图可以看出,所有可能出现(chūxiàn)的结果共有 12
种,即
AAAAAABBBBBB C C DD E ECCDDE E HI HIHIHIHIHI
这些结果(jiē guǒ)的可能性相等.
12/7/2021
第七页,共二十页。
由树状图可以看出,所有(suǒyǒu)可能出现的结果共有 12
概率( )
C
1
A.
2
1
B.
C. 1
3
4
3
D.
8
12/7/2021
第十五页,共二十页。
12/7/2021Fra bibliotek第十六页,共二十页。
12/7/2021
第十七页,共二十页。
12/7/2021
第十八页,共二十页。

九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)

九年级数学上册 25.2.2 用列举法求概率(树状图)教案 新人教版(2021-2022学年)
三、教学目标
知识与
技能
能通过树状图法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果.
过程与
方法
通过自主探究,合作交流的过ห้องสมุดไป่ตู้,感悟数形结合的思想,提高思维的条理性,提高分析问题和解决问题的能力。
通过画树状图求概率的过程提高学习兴趣,感受数学的简捷美,以及数学应用的广泛性。

情感态度与价值观
1。用列举法求概率的基本步骤是什么?
2。列举一次试验的所有可能结果时,学过哪些方法?
3。同时抛掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是多少?
4。随机掷一枚均匀的硬币两次,一枚硬币正面向上,一枚硬币反面向上的概率是多少?
抢答题:
小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形。游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。问:游戏者获胜的概率是多少?
四、巩固提高,完善新知
1。抛掷三枚质地均匀的硬币,三枚正面朝上的概率是多少?为什么?
2。将分别标有数字1,2,3的三张质地、规格和背面均相同的卡片洗匀后,背面朝上放在桌子上。随机地抽取一张作为十位数字,不放回,再抽取一张作为个位数字,试用树状图探究:组成的两位数恰好是偶数的概率为多少?
3.箱子中装有3个只有颜色不同的球,其中2个是白球、1个是红球,3个人依次从箱子中任意摸出1个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是多少?
25。2.2用列举法求概率
课标依据
能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果。

25.2用列举法求概率(2)-2024-2025九年级数学人教版课件(上)

25.2用列举法求概率(2)-2024-2025九年级数学人教版课件(上)

第一个因素 A
B
第二个因素1 2 3 1 2 3
新课讲解
知识点
例 1 甲口袋中有2个相同的小球,它们分别写有字母A和B;乙口
袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中
装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机
取出1个小球.
(1) 取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?
2. 有一箱子装有3张分别标示4、5、6的号码牌,已知小武 以每次取一张且取后不放回的方式,先后取出2张牌, 组成一个二位数,取出第1张牌的号码为十位数,第2张 牌的号码为个位数,若先后取出2张牌组成二位数的每 一种结果发生的机会都相同,则组成的二位数为6的倍 数的概率为( A )
1
1
1
1
A.
B.
C.
A1 B1 A2 B2
拓展与延伸
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1 B1 A2 B2
(2) 取出的3个小球上全是辅音字母的概率是多少?
分析:当一次试验是从三个口袋中取球时,列表法就不方便了, 为不重不漏地列出所有可能的结果,通常采用画树状图法.
新课讲解
解:根据题意,可以画出如下的树状图:
由树状图可以看出,所有可能出现的结果共有12种,即ACH, ACI,ADH,ADI,AEH,AEI,BCH,BCI,BDH,BDI, B这E些H,结B果E出I,现的可能性相等.
由树状图得,所有可能出现的结果有18个,它们出现的可
能性相等.选的包子全部是酸菜包有2个,所以选的包子全部是
酸菜包的概率是:

25.2.2 用列表法求概率(二)

25.2.2   用列表法求概率(二)

3、有100张卡片(从1号到100号), 从中任取1张,取到的卡号是7的倍数 的概率为( )。
4、一个口袋内装有大小相等的1个白球 和已编有不同号码的3个黑球,从中摸 出2个球. (1)共有多少种不同的结果? (2)摸出2个黑球有多种不同的结果? (3)摸出两个黑球的概率是多少?
5.一张圆桌旁有 四个座位,A先坐 在如图所示的座 位上,B.C.D三人 随机坐到其他三 个座位上.则A与 B不相邻而坐的 概率为___;
作业:
教科书P139—141习题25.2 第4、5、6题。
(第7、8、9题共同探讨
(2).什么时候使用”列表法”方便?
(3).什么时候使用”树形图法”方便?
(1)当试验在一个因素时,用枚举 答: 法方便; (2)当试验包含两个因素时,列表 法比较方便,当然,此时也可以用树 形图法;
(3)当试验在三个或三个以上因 素时,用树形图法方便.
学以至用:
1.小明是个小马虎,晚上睡觉时将 两双不同的袜子放在床头,早上 起床没看清随便穿了两只就去上 学,问小明正好穿的是相同的一 双袜子的概率是多少?
1. 有一对酷爱运动的年轻夫妇给他们12 个月大的婴儿拼排3块分别写有“20”, “08"和“北京”的字块,如果婴儿能够 排成"2008北京”或者“北京2008".则 他们就给婴儿奖励,假设婴儿能将字块 横着正排,那么这个婴儿能得到奖励的 概率是___________.
2、先后抛掷三枚均匀的硬币,至少出现 一次正面的概率是( )
(1)取出的3个小球上恰好有1个、2 个和3个元音字母的概率分别是多少?
(2)取出的3个小球上全是辅音字母 的概率是多少?
解:画树状图为
甲 乙 丙 A B

25.2.2 列举法求概率(二)三步概率

25.2.2  列举法求概率(二)三步概率

25.2.2列举法求概率(二)三步概率自主导学当一次试验涉及________________的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用________________.(1)使用条件:可能出现的结果较多、有限、各种结果出现的可能性________________.(2)适用范围:一次试验要涉及________________因素.(3)具体方法:先画出第一个因素产生的________________,再在第一步的每个可能结果的分支上画出________________产生的可能结果,以此类推.易错点晴一家医院准备接生3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴,2个女婴的概率是多少?A夯实基础1.同时投掷三枚均匀硬币,至少有两枚正面向上的概率是()A. 38B.58C.23D.122.某班同学同时到A,B两地开展数学活动,每位同学由抽签确定去其中一个地方,则甲、乙、丙三位同学中恰好有两位同学抽到去B地的概率是________________.3.三名同学同一天生日,她们做了一个游戏,买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张,则他们拿到的贺卡都不是自己所写的概率是________________.4.如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.5.小明、小刚和小红打算在各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩. (1)小明和小刚都在本周日上午去游玩的概率为________________.(2)求他们三个在同一个半天去游玩的概率.B综合运用6.甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有1个红球和2个白球;丙袋中装有2个白球,这些球除颜色外都相同.从这3个袋中各随机地取出1个球.(1)取出的3个球恰好是2个红球和1个白球的概率是多少?(2)取出的3个球全是白球的概率是多少?.7.甲、乙、丙三人打乒乓球,由哪两人先打呢?他们决定用“石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头”“剪刀”“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,问一次比赛能淘汰一人的概率是多少?C拓广探索8.经过某十字路口的汽车,它可能继续直行,也可能向左转向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时,(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率为310,目前在此路口,汽车左转、右转、直行的绿灯的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.。

人教版九年级数学上册25.2 用列举法求概率(第2课时) 课件

人教版九年级数学上册25.2 用列举法求概率(第2课时) 课件

演示结束!
THANK YOU FOR WATCHING!
倍 速 课 时 学 练
感谢聆听!
分析:第二步应该怎样走取决于踩在哪部分遇到地雷 的概率小,只要分别计算在两区域的任一方格内踩中 地雷的概率并加以比较就可以了.
倍 速 课 时 学 练
游戏开始时,随机地踩中一 个小方格,如果这个方格 下有地雷,地雷就会爆炸; 如果没有地雷,方格上就会 出现一个标号,该标号表示 与这个方格相临的方格(绿 线部分)内有与标号相同个 数的地雷.
h
3 颗地雷.因此,踩A区域的任一方格,遇到地雷的概率是 8
(2)B区域中共有 9×9-9=72 个小方格,其中有10-3=7
解:(1)A区域的方格共有8个,标号3表示在这8个方格中有3个方B区域的任一方
倍 速 课 时 学 练
7 格,遇到地雷的概率是 72
倍 速 课 时 学 练
小明的棋子现在第1格,距离“汽车”所在的位置还有7格,而骰子最 大的数字为6,抛掷一次骰子不可能得到数字7,因此小明不可能一次就 得到“汽车”;只要小明和小红两人抛掷的骰子点数和为7,小红即可 得到“汽车”,因此小红下一次抛掷可能得到“汽车”;其中共有36种 的概率等于
1 等可能的情形,而点数和为7 的有6种,因此小红下一次得到“汽车” 6
由于
雷的可能性,因而第二步应该踩B区域.
3 7 8 72
,所以踩A区域遇到地雷的可能性大于踩B区域遇到地
3. 如图,小明和小红正在玩一个游戏:每人先抛掷骰子,骰子朝上 的数字是几,就将棋子前进几格,并获得格子中的相应物品.现在 轮到小明掷,棋子在标有数字“1”的那一格,小明能一次就获得 “汽车”吗?小红下一次抛掷可能得到“汽车”吗?她下一次得到 “汽车”的概率是多少? 1 7 6 5 4 3 2

人教版初三数学上册25.2用列举法求概率(第二课时)教案 新人教版九年级上

25.2 用列举法求概率(第二课时)教学目标:1.理解“包含两步,并且每一步的结果为有限多个情形”的意义。

2.会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果。

3.体验数学方法的多样性灵活性,提高解题能力。

教学重点:正确理解和区分一次试验中包含两步的试验。

教学难点:当可能出现的结果很多时,简洁地用列表法求出所有可能结果。

一、比较,区别出示两个问题:1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?要求学生讨论上述两个问题的区别,区别在于这两个问题的每次试验(摸球)中的元素不一样。

二、问题解决1.例1 教科书第150页例4。

要求学生思考掷两枚硬币产生的所有可能结果。

学生可能会认为结果只有:两个都为正面,一个正面一个反面和两个都是反面这样3种情形,要讲清这种想法的错误原因。

列出了所有可能结果后,问题容易解决。

或采用列表的方法,如:让学生初步感悟列表法的优越性。

2.问题:“同时掷两枚硬币”,与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?同时掷两枚硬币与先后两次掷一枚硬币有时候是有区别的。

比如在先后投掷的时候,就会有这样的问题:先出现正面后出现反面的概率是多少?这与先后顺序有关。

同时投掷两枚硬币时就不会出现这样的问题。

3.课内练习:书本P151的练习。

三、小结1.本节课的例题,每次试验有什么特点?2.用列表法求出所有可能的结果时,要注意表格的设计,做到使各种可能结果既不重复也不遗漏。

四、布置作业:教学反思:___________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________。

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计

人教版九年级数学上册25.2.2《用列举法求概率(2)》教学设计一. 教材分析人教版九年级数学上册第25.2.2节《用列举法求概率(2)》主要讲述了如何运用列举法求解概率问题。

这部分内容是学生在学习了概率的基本概念、列举法求概率的基础上,进一步深化对概率计算方法的理解和运用。

通过本节课的学习,学生将能够掌握列举法求概率的技巧,提高解决实际问题的能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和列举法求概率已有初步的认识。

但在运用列举法解决实际问题时,部分学生可能会存在列举不全面、思路不清晰等问题。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们建立正确的解题思路,提高他们运用概率知识解决实际问题的能力。

三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。

2.过程与方法:通过小组合作、讨论交流等方式,培养学生的合作意识和团队精神,提高他们运用概率知识解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神风貌。

四. 教学重难点1.重点:列举法求概率的方法及运用。

2.难点:如何引导学生运用列举法解决实际问题,避免列举不全面、思路不清晰等问题。

五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。

2.小组合作学习:引导学生分组讨论,培养学生的团队协作能力。

3.启发式教学:教师引导学生思考,让学生在探索中掌握知识。

4.反馈与评价:及时给予学生反馈,鼓励他们积极思考,不断提高。

六. 教学准备1.教学课件:制作课件,展示相关实例和练习题。

2.练习题:准备一些相关练习题,用于巩固所学知识。

3.教学素材:收集一些生活中的实例,用于引导学生在实际情境中运用概率知识。

七. 教学过程1.导入(5分钟)教师通过展示一个生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。

25.2用列举法求概率(第二课时)


7 P(至少有两车向左传) 27
1. 一张圆桌旁有四个座位, A 先坐在如图所 示的座位上, B 、 C 、 D 三人随机坐到其他三 个座位上。求A与B不相邻而坐的概率 为1
3

B
A
B B
甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定 用 “石头、剪刀、布”的游戏来决定,游戏时三人每次 做“石头” “剪刀”“布”三种手势中的一种,规定 “石头” 胜“剪刀”, “剪刀”胜“布”, “布”胜“石 头”. 问一次比赛能淘汰一人的概率是多少? 游戏开始



左 直

左 直

左直右 左直右 左直右 左直右 左直右 左直右 左直右 左直右 左直右
共有27种行驶方向
1 (1) P (全部继续直行) 27
3 1 (2) P(两车右转,一车左传) 27 9
(3)至少有两辆车向左传,有7种情况,即: 左左左,左左直,左左右,左直左, 左右左,直左左,右左左。
25.2
用列举法求概率
(第二课时)
一:等可能事件的两大特征:
1、可能出现的结果只有有限个; 2、各种结果出现的可能性相等。
二:概率计算公式:m P( Nhomakorabea)= n
三、什么是列举法? 就是把可能出现的对象一一列举出来分析 求解的方法.
当一次试验要涉及两个因素,并且可能出现 的结果数目较多时,为了不重不漏的列出所有可 能的结果,通常采用列表法.
列表法中表格构造特点: 一个因素所包含的可能情况 另一 个因素 两个因素所组合的 所包含 所有可能情况,即n 的可能 情况 在所有可能情况n中,再找到满足条件的事件的个 数m,最后代入公式计算. 当一次试 验中涉及3个 因素或更多 的因素时,怎 么办?

25.2用列举法求概率(第2课时)教学案

“因学施教、三三达标”九年级数学简明学案第二十五章概率初步25.2用列举法求概率(第2课时)【学习目标】1.理解“包含两步,并且每一步的结果为有限多个情形”的意义。

2.会用列表法求出上述试验出现的所有可能结果,再利用古典概型的定义求得概率。

【学习过程】一、问题引入:1、掷一枚质地均匀的硬币,有几种可能的结果?2、先后掷两枚硬币,又有几种可能的结果呢?结果是由几个因素确定的?3、“先后掷两枚硬币”与“同时掷两枚硬币”,这两种试验的所有可能结果一样吗?二、自主学习:自学课本150页例4,回答下列问题:1、“正反”与“反正”为什么是两种不同的结果?2、“两枚硬币至少有一枚正面朝上”的概率是多少?为什么?3.完成课本151页上面的练习。

三、经典例题:例5:同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子的点数的和是9;(3)至少有一个骰子的点数为2。

分析:影响事件发生可能性的因素有几个?每个因素可能出现的结果有几个?用什么样的办法才能不重不漏的列举出所有可能出现的结果?试把所有可能的结果列举在下面的表格中:上面表格中的每个单元格中的结果等可能吗?试以上表为工具解答本题:变式:如果本题中“同时掷两个骰子”改为“把一个骰子先后掷两次”,所得的结果有变化吗?拓展:在什么前提下可以象本例一样借助列表法求概率?应如何列表?四、练习:1、在6张卡片上分别写有1——6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?2、第155页第4题、第8题。

五、总结反思:【达标检测】1、两道单项选择题都含有A、B、C、D四个选项,若某学生不知道正确答案就瞎猜,则这两道题恰好全部被猜对的概率是。

2、如图,小明的奶奶家到学校有3条路可走,学校到小明的外婆家也有3条路可走,若小明要从奶奶家经学校到外婆家,不同的走法共有________种。

3、袋子中装有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球后放回,再随机摸出一个,求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球的标号的和等于4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (1)取出的3个小球上恰好有1个、2个、和3 个元音字母的概率分别是多少?
• (2)取出的3个小球上全是辅音字母的概率是 多少?
分析:当一次试验要涉及3个或更多的因素(例如 从3个口袋中取球)时,列方形表就不方便了,为 不重不漏地列出所有可能结果,通常采用树形图。
解:根据题意,画出如下的“树形图”
树形图的画法: 如一个试验
一个试验
中涉及3个因数,第
一个因数中有2种 第一个因数 A
B
可能情况;第二个
因数中有3种可能 第二个 的情况;第三个因
1
2
31
2
3
数中有2种可能的
情况,
第三个 a b a b a b a b a b a b
则其树形图如图.
n=2×3×2=12
• 例2:甲口袋中装有2个相同的小球,它们分别 写有字母A和B;乙口袋中装有3个相同的小球, 它们分别写有字母C、D和E;丙口袋中装有2个 相同的小球,它们分别写有字母H和I.从3个口 袋中各随机地抽取1个小球。
(1) 列表法和树形图法的优点是什么? (2)什么时候使用“列表法”方便?什么时候使 用“树形图法”方便?
利用树形图或表格可以清晰地表示出某个 事件发生的所有可能出现的结果;从而较方便 地求出某些事件发生的概率.
当试验包含两步时,列表法比较方便,当然, 此时也可以用树形图法;
当试验在三步或三步以上时,用树形图法方 便.
=
1 3
Hale Waihona Puke 经过某十字路口的汽车,它可能继续直行, 也可能向左转或向右转,如果这三种可能性 大小相同。三辆汽车经过这个十字路口,求 下列事件的概率: (1)三辆车全部继续直行; (2)两辆车向右转,一辆车向左转; (3)至少有两辆车向左传。
解:画树形图如下:






二左 直 右 左直 右

右 左直 右
IH
IH
I
H
IH
IH
I
A AA AA A B B B B B B
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) C C D D E E C C D D E E
6
H (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)
IH
IH
I
HI H I HI
当一次试验涉及两个因素时,且可能 当一次试验涉及3个因素或3个以上 出现的结果较多时,为不重复不遗漏地 的因素时,列表法就不方便了,为不
(1) 三枚硬币全部正面朝上;
(2) 两枚硬币正面朝上而一枚硬币反面朝上;
(3) 至少有两枚硬币正面朝上. 解: 由树形图可以看出,抛掷3枚
抛掷硬币试验
硬币的结果有8种,它们出现的
可能性相等.
第①枚


(1)满足三枚硬币全部正面朝 ②正 反 正 反 上(记为事件A)的结果只有1种
∴ P(A)
=
1 8
P(一个元音) 5 12
有两个元音的字母的结果(绿色)有4种,
P(两个元音) 4 1 12 3
有三个元音的字母的结果(蓝色)有1种, P(三个元音) 1 12
(2)全是辅音字母的结果(黑色)有2种,
P(三个辅音) 2 1 12 6
用列举法求概率
想一想,什么时候用“列表法”方便,什么时候用“树形图”方便?
用列举法求概率
课堂小结:1.这节课我们学习了哪些内容? 2.通过学习你有什么收获?
1、当一次试验涉及两个因素时,且可 能出现的结果较多时,为不重复不遗漏地 列出所有可能的结果,通常用列表法
2、当一次试验涉及3个因素或3个以上 的因素时,列表法就不方便了,为了不重 复不遗漏地列出所有可能的结果,通常用 树形图
1 第第二一个个 2 3 4 5 6
A
B
1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) C
DE
C
DE
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
4
H (1,4) (2,4) (3,4) (4,4) (5,4) (6,4)
列出所有可能的结果,通常用列表法 重复不遗漏地列出所有可能的结果, 通常用树形图
例3.甲、乙、丙三人打乒乓球.由哪两人先打呢?他们 决定用 “石头、剪刀、布”的游戏来决定,游戏时三人 每次做“石头” “剪刀”“布”三种手势中的一种,规 定“石头” 胜“剪刀”, “剪刀”胜“布”, “布”胜 “石头”. 问一次比赛能淘游汰戏一开人始的概率是多少?
人教版九年级数学上册
用列举法求概率
复习1:什么时候用“直接列举法”?
当一次试验只涉及到一个因素时,且可能出现的 结果较少时,通常用直接列举法。
复习2:什么时候用“列表法”?
当一次试验涉及到两个因素时,且可能出现的 结果较多时,为了不重不漏地列出所有可能的结 果,通常用列表法。
例1 同时抛掷三枚硬币,求下列事件的概率:
③正 反 正 反正 反正 反
(2)满足两枚硬币正面朝上而一枚硬 币反面朝上(记为事件B)的结果有3种

P(B)
=
3 8
(3)满足至少有两枚硬币正面朝 上(记为事件C)的结果有4种
∴ P(C)
=
4 8
=
1 2
当一次试验中涉及3个因素或更多的因素时,用列 表法就不方便了.为了不重不漏地列出所有可能的结果, 通常采用“树形图”.
第 三 左直右左直右左直右 左直右左直右 左直右 左直右左直右 左直右 辆
共有27种行驶方向 (1) P(全部继续直行) 1 27
(2) P(两车右转,一车左传) 3 1 27 9
(3)至少有两辆车向左传,有7种情况,即:
左左左,左左直,左左右,左直左, 左右左,直左左,右左左。
P(至少有两车向左传) 7 27

A
B
乙C DE
C DE
丙H I H I H I H I H I H I
从树形图看出,所有可能出现的结果共有12个 A A A AA A B B B B B B C C D DE E C C D D E E H I H IH I H I H I H I
(1)只有一个元音的字母的结果(红色)有5种,




乙石 剪 布 石 剪 布 石 剪 布
丙 石剪布石剪布石剪布石剪布石剪布石剪布石剪布石剪布石剪布
解: 由规则可知,一次能淘汰一人的结果应是:“石石剪”
“剪剪布” “布由布树石形”图三可类以. 看出,游戏的结果有27种,
它们出现的可能性相等.
而满足条件(记为事件A)的结果有9种
∴ P(A)=
9 27
相关文档
最新文档