第5讲一次方程及其应用
冀教版七年级上册数学第5章 一元一次方程 利用一元一次方程解积分问题和计费问题

14
胜场 10 10 9 9 7 7 4 0
负场 4 4 5 5 7 7 10 14
知1-导
积分 24 24 23 23 21 21 18 14
知1-导
(1)用式子表示总积分与胜、负场数之间的数量关系; (2)某队的胜场总积分能等于它的负场总积分吗?
知1-导
分析:观察积分榜,从最下面一行数据可以看出: 负一场积1分.设胜一场积x分,从表中其他任何一 行可以列方程,求出x的值.例如,从第一行得方 程10x+1×4=24.由此得x=2.用积分榜中其他行可 以验证,得出结论:负一场积1分,胜一场积2分.
被叫
免费 免费
知2-导
考虑知下识列点问题:
(1)设一个月内用移动电话主叫为tmin (t是正整数). 根据上表,列表说明:当t在不同时间范围内取值时, 按方式一和方式二如何计费. (2)观察你的列表,你能从中发现如何根据 主叫时间选择省钱的计费方式吗?通过计算验证你的看法.
月使用费固定收;主叫不超限定 时间不再收费,主叫超时部分加 收超时费;被叫免费.
14 .
3
知1-导
想一想:x表示什么量?它可以是分数吗?
由此你能得出什么结论?
解决实际问题时,要考虑得到的结果是不是符合实际.
x (所胜的场数)的值必须是整数,所以x= 14 3
不符合实际,由此可以判定没有哪个队的胜
场总积分等于负场总积分.
这个问题说明:利 用方程不仅能求具 体数值,而且可以
上面的问题说明,用方程解决实际问题时, 进行推理判断.
当t大于350时,按方式一 的计费58+0.25(t-150) 可变形为108+0.25(t-350).
选一些具体数字,通过计算验证你的 对比按方式二的计费,你
中考数学知识点复习 第二章 方程(组)与不等式(组)

中考数学知识点复习 第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·杭州)设x ,y ,c 是实数,(B )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c,则2x =3y 2.(2017·深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程(D )A .10%x =330B .(1-10%)x =330C .(1-10%)2x =330D .(1+10%)x =3303.若关于x 的方程2x -m =x -2的解为x =3,则m 的值为(B )A .-5B .5C .-7D .7 4.(2017·天津)方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D ) A.⎩⎪⎨⎪⎧x =2y =3 B.⎩⎪⎨⎪⎧x =4y =3C.⎩⎪⎨⎪⎧x =4y =8D.⎩⎪⎨⎪⎧x =3y =65.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8C.12x -3=8D.12x +3=8 6.(2017·随州)小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组(B )A.⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B.⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C.⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D.⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 7.已知方程|x |=2,那么方程的解是(C )A .x =2B .x =-2C .x 1=2,x 2=-2D .x =48.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =3m -5,x -y =m -1,若x +y >3,则m 的取值范围是(D )A .m >1B .m <2C .m >3D .m >5二、填空题(本大题共7小题 ,每小题3分,共21分)9.(2017·金华)若a b =23,则a +b b =__53__. 10.(2017·南宁)已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧x -2y =0,2x +y =5的解,则3a -b =__5__.11.我们规定一种运算:a *b =2a -3b ,则方程x *2=3*x 的解为__x =125__. 12.(2017·宁夏)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为__4__元.13.若(a -1)x 2-|a |-3=0是关于x 的一元一次方程,则a 的值为__-1__.14.若x ,y 互为相反数,且(x +y +3)(x -y -2)=6,则x =__2__.15.(2017·荆门)已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为__12__岁.三、解答题(本大题共6小题 ,共42分)16.(5分)(2017·武汉)解方程:4x -3=2(x -1).解:4x -3=2(x -1),4x -3 =2x -2,4x -2x =-2+3,2x =1,x =12.17.(5分)解方程:6x +1=3(x +1)+4.解:去括号得:6x +1=3x +3+4,移项合并得:3x =6,解得:x =2.18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得:x =4,把x =4代入①得:y =1,则方程组的解为⎩⎪⎨⎪⎧x =5,y =1.19.(7分)已知二元一次方程组⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,求a +b 的值. 解:∵⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21,解得 ⎩⎪⎨⎪⎧x =1,y =12, ∴a =1,b =12,∴a +b =13.20.(9分)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?解:该店有客房8间,房客63人.21.(10分)(2018·原创)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)解:(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请甲组需要的费用:300×12=3600元,单独请乙组需要的费用:24×140=3360元,答:单独请乙组需要的费用少;(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲、乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;∵5120<6000<8160,∴甲、乙合作损失费用最少.答:甲、乙合作施工更有利于商店.第6讲 一元二次方程(时间60分钟 满分95分)一、选择题(本大题共8小题 ,每小题4分,共32分)1.(2017·嘉兴)用配方法解方程x 2+2x -1=0时,配方结果正确的是(B )A .(x +2)2=2B .(x +1)2=2C .(x +2)2=3D .(x +1)2=32.(2017·广东)如果2是方程x 2-3x +k =0的一个根,则常数k 的值为(B )A .1B .2C .-1D .-23.(2017·苏州)关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为(A )A .1B .-1C .2D .-24.(2017·绵阳)关于x 的方程2x 2+mx +n =0的两个根是-2和1,则n m 的值为(C )A .-8B .8C .16D .-165.(2017·江西)已知一元二次方程2x 2-5x +1=0的两个根为x 1,x 2,下列结论正确的是(D )A .x 1+x 2=-52B .x 1·x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数6.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是(A )A .(2-3x )(1-2x )=1B.12(2-3x )(1-2x )=1 C.14(2-3x )(1-2x )=1 D.14(2-3x )(1-2x )=2 7.下列关于x 的一元二次方程中,有两个相等实数根的是(D )A .x 2+1=0B .x 2+x -1=0C .x 2+2x -3=0D .4x 2-4x +1=08.(2017·烟台)若x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为(D )A .-1或2B .1或-2C .-2D .1二、填空题(本大题共5小题 ,每小题3分,共15分)9.方程(x -2)2=3x (x -2)的解为__x =2或x =-1__.10.(2017·大连)关于x 的方程x 2+2x +c =0有两个不相等的实数根,则c 的取值范围为__c <1__.11.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是__k >-1且k ≠0__.12.(2017·菏泽)关于x 的一元二次方程(k -1)x 2+6x +k 2-k =0的一个根是0,则k 的值是__0__.13.(2017·成都)已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 12-x 22=10,则a =__214__. 三、解答题(本大题共7小题 ,共48分)14.(5分)(2017·丽水)解方程:(x -3)(x -1)=3.解:方程化为x 2-4x =0,x (x -4)=0,∴x 1=0,x 2=4.15.(5分)解方程:3x 2+5(2x +1)=0.解:3x 2+5(2x +1)=0,整理得:3x 2+10x +5=0,∵a =3,b =10,c =5,∴b 2-4ac =100-60=40>0,∴x =-10±2106=-5±103, 则原方程的解为x 1=-5+103,x 2=-5-103. 16.(5分)解方程:x 2-6x -4=0.解:移项得x2-6x=4,配方得x2-6x+9=4+9,即(x-3)2=13,开方得x-3=±13,∴x1=3+13,x2=3-13.17.(7分)(2017·玉林)已知关于x的一元二次方程:x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.(1)证明:在方程x2-(t-1)x+t-2=0中,b2-4ac=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:设方程的两根分别为m、n,∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.18.(8分)(2017·绥化)已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.解:(1)∵方程x 2+(2m +1)x +m 2-4=0有两个不相等的实数根, ∴b 2-4ac =(2m +1)2-4(m 2-4)=4m +17>0, 解得m >-174.∴当m >-174时,方程有两个不相等的实数根;(2)设方程的两根分别为a 、b ,根据题意得:a +b =-2m -1,ab =m 2-4. ∵2a 、2b 为边长为5的菱形的两条对角线的长,∴a 2+b 2=(a +b )2-2ab =(-2m -1)2-2(m 2-4)=2m 2+4m +9=52=25, 解得m =-4或m =2.∵a >0,b >0,∴a +b =-2m -1>0, ∴m =-4.∴若边长为5的菱形的两条对角线的长分别为方程两根的2倍,则m 的值为-4.19.(9分 )新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?解:每件玩具的售价定为32元时,月销售利润恰为2520元.20.(9分)(2017·襄阳)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?解:(1)这两年该企业年利润平均增长率为20%;(2)该企业2017年的利润能超过3.4亿元.第7讲分式方程(时间50分钟满分80分)一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·哈尔滨)方程2x+3=1x-1的解为(C)A.x=3 B.x=4 C.x=5 D.x=-52.解分式方程2x-1+x+21-x=3时,去分母后变形正确的是(D)A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D .2-(x +2)=3(x -1)3.(2017·成都)已知x =3是分式方程kxx -1-2k -1x =2的解,那么实数k 的值为(D )A .-1B .0C .1D .24.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为(B )A.420x -420x -0.5=20B.420x -0.5-420x =20C.420x -420x -20=0.5D.420x -20-420x =0.55.(2017·聊城)如果解关于x 的分式方程mx -2-2x 2-x=1时出现增根,那么m 的值为(D )A .-2B .2C .4D .-4 6.(2016·十堰)用换元法解方程x 2-12x-4xx 2-12=3时,设x 2-12x=y ,则原方程可化为(B )A .y -1y -3=0B .y -4y-3=0C .y -1y +3=0D .y -4y+3=07.(2017·龙东地区)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是(C )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4二、填空题(本大题共4小题 ,每小题3分,共12分) 8.(2017·南京)方程2x +2-1x =0的解是__x =2__.9.(2017·泸州)若关于x 的分式方程x +mx -2+2m2-x=3的解为正实数,则实数m 的取值范围是__m <6且m ≠2__.10.(2017·温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x 米,根据题意可列出方程:__160x =200x +5__.11.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12000步与小博步行9000步消耗的能量相同.若每消耗1千卡能量小琼行走的步数比小博多10步,则小博每消耗1千卡能量需要行走__30__步.三、解答题(本大题共6小题 ,共40分) 12.(5分)解方程:x -3x -2+1=32-x.解:方程两边同乘以(x -2), 得:x -3+(x -2)=-3, 解得x =1,检验:x =1时,x -2≠0, ∴x =1是原分式方程的解.13.(5分)(2017·宁夏)解方程:x +3x -3-4x +3=1.解:去分母得(x +3)2-4(x -3)=(x -3)(x +3), 去括号得x 2+6x +9-4x +12=x 2-9, 合并同类项得2x =-30, 系数化为1得x =-15, 当x =-15时,(x -3)(x +3)≠0, ∴原分式方程的解为x =-15.14.(5分)(2017·上海)解方程:3x 2-3x -1x -3=1.解:方程两边同乘x (x -3)得3-x =x 2-3x , ∴x 2-2x -3=0, ∴(x -3)(x +1)=0, 解得x =3或x =-1, 经检验x =3是原方程的增根, ∴原方程的解为x =-1.15.(7分)(2017·广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里. 解:(1)60×43=80(公里).答:乙队筑路的总公里数为80公里;(2)设乙队平均每天筑路8x 公里,则甲队平均每天筑路5x 公里, 根据题意得:605x -808x =20,解得:x =0.1,经检验,x =0.1是原方程的解, ∴8x =8×0.1=0.8.答:乙队平均每天筑路0.8公里.16.(8分)(2017·通化)一汽车从甲地出发开往相距240 km 的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快14,比原计划提前24 min 到达乙地,求汽车出发后第1小时内的行驶速度.解:汽车出发后第1小时内的行驶速度是80千米/小时.17.(10分)某公司计划对面积为1800 m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成的绿化面积是乙队每天能完成的绿化面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天时间.(1)求甲、乙两工程队每天能完成的绿化面积;(2)若公司每天需付给甲队的绿化费用为0.4万元,付给乙队的绿化费用为0.25万元,要使这次的绿化总费用不超过8万元,则至少应安排甲队工作多少天?解:(1)甲、乙两工程队每天能完成绿化的面积分别是100 m2、50 m2;(2)至少应安排甲队工作10天.第8讲不等式(组)及其应用(时间60分钟满分100分)A卷一、选择题(本大题共10小题,每小题4分,共40分) 1.(2017·杭州)若x+5>0,则(D)A.x+1<0 B.x-1<0C.x5<-1 D.-2x<122.一元一次不等式x+1≥2的解在数轴上表示为(A)3.(2017·株洲)已知实数a,b满足a+1>b+1,则下列选项错误的为(D) A.a>b B.a+2>b+2C.-a<-b D.2a>3b4.(2017·西宁)不等式组⎩⎪⎨⎪⎧-2x +1<3,x ≤1的解集在数轴上表示正确的是(B )5.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A )A .16个B .17个C .33个D .34个6.(2017·恩施州)关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,3x -1>2(x -1)无解,那么m 的取值范围为(A )A .m ≤-1B .m <-1C .-1<m ≤0D .-1≤m <07.(2017·大庆)若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为(D )A .2B .3C .4D .58.不等式组⎩⎪⎨⎪⎧3(x +2)>2x +5,x -12≤x 3的最小整数解是(B )A .-1B .0C .1D .29.已知x >y ,若对任意实数a ,以下结论:甲:ax >ay ;乙:a 2-x >a 2-y ;丙:a 2+x ≤a 2+y ;丁:a 2x ≥a 2y .其中正确的是(D )A .甲B .乙C .丙D .丁10.(2017·金华)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解是x <5,则m 的取值范围是(A )A .m ≥5B .m >5C .m ≤5D .m <5二、填空题(本大题共7小题 ,每小题3分,共21分) 11.(2016·陕西)不等式-12x +3<0的解集是__x >6__.12.(2017·哈尔滨)不等式组⎩⎪⎨⎪⎧5-2x ≤1,x -3<0的解集是__2≤x <3__.13.已知关于x 的不等式(1-a )x >3的解集为x <31-a ,则a 的取值范围是__a >1__.14.(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为__10__元/千克.15.(2017·烟台)运行程序如图所示,从“输入实数x ”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是__x <8__.16.(2017·宜宾)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m +1x +3y =3的解满足x +y >0,则m 的取值范围是__m >-2__.17.定义一种法则“⊕”如下:a ⊕b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ),例如:1⊕2=2,若(-2m -5)⊕3=3,则m 的取值范围是__m ≥-4__.三、解答题(本大题共3小题,共19分)18.(6分)(2017·北京)解不等式组:⎩⎪⎨⎪⎧2(x +1)>5x -7,x +103>2x .解:⎩⎪⎨⎪⎧2(x +1)>5x -7①,x +103>2x ②,由①式得x <3,由②式得x <2, ∴不等式组的解集是x <2.19.(6分)解不等式组:⎩⎪⎨⎪⎧x +2>0,3(x -1)+2≥2x ,并判断-1,3这两个数是否为该不等式组的解.解:解不等式x +2>0,得x >-2, 解不等式3(x -1)+2≥2x ,得x ≥1, ∴不等式组的解集为x ≥1, ∵-1<1,3>1,∴3是该不等式组的解.20.(7分)(2017·常州)某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?解:(1)每个篮球和每个足球的售价分别为100元,120元; (2)最多可购买25个足球.B 卷1.(3分)(2017·百色)关于x 的不等式组⎩⎪⎨⎪⎧x -a ≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是(B )A .3B .2C .1 D.232.(3分)已知,关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,2-x >0的整数解共有两个,那么a 的取值范围是__-1≤a <0__.3.(5分)(2017·天津)解不等式组⎩⎪⎨⎪⎧x +1≥2 ①,5x ≤4x +3②,请结合题意填空,完成本题的解答. (1)解不等式①,得__x ≥1__; (2)解不等式②,得__x ≤3__;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为__1≤x≤3__.解:(3)把不等式①和②的解集在数轴上表示出来:4.(9分)(2017·聊城)在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A 乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生用电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的15少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?解:(1)该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元; (2)设能购进的学生用电脑m 台,则能购进的教师用笔记本电脑为(15m -90)台,依题意得:0.19m +0.3×(15m -90)≤438,解得m ≤1860.∴15m -90=15×1860-90=282(台). 答:至多能购进的学生用电脑1860台,教师用笔记本电脑为282台.第二章 方程(组)与不等式(组)自我测试(时间60分钟 满分105分)一、选择题(本大题共10小题 ,每小题4分,共40分) 1.(2017·常州)若3x >-3y ,则下列不等式中一定成立的是(A ) A .x +y >0 B .x -y >0 C .x +y <0 D .x -y <02.(2017·安徽)不等式4-2x >0的解集在数轴上表示为(D )3.(2017·泰安)一元二次方程x 2-6x -6=0配方后化为(A ) A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=34.不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )5.(2017·岳阳)解分式方程2x -1-2xx -1=1,可知方程的解为(D )A .x =1B .x =3C .x =12D .无解6.(2017·宜宾)一元二次方程4x 2-2x +14=0的根的情况是(B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法判断7.(2017·安徽)一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足(D )A .16(1+2x )=25B .25(1-2x )=16C .16(1+x )2=25D .25(1-x )2=168.(2017·内江)不等式组⎩⎪⎨⎪⎧3x +7≥2,2x -9<1的非负整数解的个数是(B )A .4B .5C .6D .79.(2017·娄底)“珍爱生命,拒绝毒品”,学校举行的2017年禁毒知识竞赛共有60道题,曾浩同学答对了x 道题,答错了y 道题(不答视为答错),且答对题数比答错题数的7倍还多4道,那么下面列出的方程组中正确的是(A )A.⎩⎪⎨⎪⎧x +y =60x -7y =4B.⎩⎪⎨⎪⎧x +y =60y -7x =4C.⎩⎪⎨⎪⎧x =60-y x =7y -4D.⎩⎪⎨⎪⎧y =60-x y =7x -4 10.(2017·凉山州)若关于x 的方程x 2+2x -3=0与2x +3=1x -a有一个解相同,则a的值为(B )A .0B .-1C .2D .-3二、填空题(本大题共7小题 ,每小题3分,共21分) 11.方程(2a -1)x 2+3x +1=4是一元一次方程,则a =__12__.12.(2017·襄阳)不等式组⎩⎪⎨⎪⎧2x -1>x +1,x +8≥4x -1的解集为__2<x ≤3__.13.(2017·乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是__100__元.(导学号 35694137)14.(2017·枣庄)已知关于x 的一元二次方程ax 2-2x -1=0有两个不相等的实数根,则a 的取值范围是__a >-1且a ≠0__.15.(2017·包头)若关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎪⎨⎪⎧x =b ,y =1,则a b 的值为__1__.16.(2017·北京)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =34x +5y =435__.17.(2017·西宁)若x 1,x 2是一元二次方程x 2+3x -5=0的两个根,则x 12x 2+x 1x 22的值是__15__.三、解答题(本大题共6小题,共44分)18.(6分)(2017·广州)解方程组⎩⎪⎨⎪⎧x +y =5,2x +3y =11.解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =11 ②,①×3-②得x =4,把x =4代入①得y =1,则方程组的解为⎩⎪⎨⎪⎧x =4,y =1.19.(6分)解方程1-x x -2+1=x2x -4.解:方程两边同乘以2(x -2),得:2(1-x )+2x -4=x , 解得x =-2,把x =-2代入原分式方程中,方程两边相等, 经检验x =-2是分式方程的解.20.(7分)(2017·长沙)解不等式组⎩⎪⎨⎪⎧2x ≥-9-x5x -1>3(x +1),并把它的解集在数轴上表示出来.解:解不等式2x≥-9-x,得x≥-3,解不等式5x-1>3(x+1),得x>2,则不等式组的解集为x>2,将解集表示在数轴上如解图.21.(7分)(2017·广东)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?答:男生志愿者有12人,女生志愿者有16人.22.(9分)(2017·日照)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?解:(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.23.(9分)(2017·宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?解:(1)甲种商品的销售单价为900元,乙种商品的销售单价为600元;(2)至少销售甲种商品2万件.第31 页共31 页。
2014中考复习第5讲一次方程(组)及其应用课件

第5讲┃ 一次方程(组)及其应用
探究四 二元一次方程组的应用
例4
2013 年 4 月 20 日,四川省芦山县发生 7.0 级强
烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到 任务,须在规定时间内生产一批帐篷.如果按原来的生产速 度,每天生产 120 顶帐篷,那么在规定时间内只能完成任务 的 90%.为按时完成任务,该企业所有人员都支援到生产第 一线,这样,每天能生产 160 顶帐篷,刚好提前 1 天完成任 务.规定时间是多少天?生产任务是多少顶帐篷?
12x+16y=30, C. x+y=400 16x+12y=30, D. x+y=400
第5讲┃ 一次方程(组)及其应用
【归纳总结】 工程问题 工作量=工作效率×______________ 工作时间 行程问题 路程=________ 速度 ×时间 利润 利 润 率 问 利润=售价- ________ 进价 ,利润率=进价×100%,利润 题 =进价×________. 利润率 1 高 , 长方形面积=长×宽,三角形面积= ×底×________ 2 面积问题 圆 的 面 积 = π r2 , 梯 形 的 面 积 = 1 (________ + 2 上底
考点2 二元一次方程组及其解法
3x+4y=2,(1) 1.代入法解方程组 比较合理的变形是 2x-y=5,(2)
( D ) 2-4y A.由(1)得 x= 3 5+y C.由(2)得 x= 2 2-3x B.由(1)得 y= 4 D.由(2)得 y=2x-5
第5讲┃ 一次方程(组)及其应用
第5讲┃ 一次方程(组)及其应用
1 7.若 2x-3 与- 互为倒数,则 x=________ . 0 3
ax+by=4, x=2, 8.若方程组 的解是 则 bx+ay=5 y=1,
第5讲含参数的一元“一次”方程

第5讲含参数的一元“一次”方程【讲义解析】1、含参数的方程的概念:当方程中的系数用字母表示时,这样的方程叫做含字母系数的方程,也叫参数方程,字母系数叫参数.2、一元“一次”参数方程的解法:关于x 的一元“一次”方程总可以化为ax b 的形式,方程的解由a 、b 确定.(1)当0a 时,原方程有唯一解,且b xa;(2)当0a 且0b时,原方程有无数个解,且原方程的解为全体数;(3)当0a且0b时,原方程无解.【专题精讲】一、一元“一次”参数方程的解法【例1】已知a 是有理数,下面的4个命题:(1)方程0ax 的解是0x ;(2)方程ax a 的解是1x ;(3)方程1ax的解是1xa;(4)方程(||1)||1a x a 的解是1x中,结论正确的个数是()A .0B .1C .2D .3【例2】(1)讨论关于x 的方程1axbx 的解的情况;(2)解关于x 的方程:2623mx mx m .【练习】(1)讨论关于x 的方程1mx nxp 的解的情况;(2)解关于x 的方程:15256m xmx .二、参数的确定1.根据方程解的具体数值来确定【例3】若3x是方程1|2|13x b 的一个解,求b 的值.【例4】已知关于x 的方程22()mx m x 的解满足方程1||02x,求m 的值.【练习】(1)已知方程24(1)2x ax 的解为3x,则a.(2)如果关于x 的方程(2)4||80m x m 的解是0x,则m.2.根据方程解的个数情况来确定【例5】关于x 的方程43mx x n ,分别求m 、n 为何值时,原方程:(1)有唯一解;(2)有无数多个解;(3)无解.【例6】若关于x 的方程(2)125a x b x 有无穷多个解,求a b 值.【练习】(1)已知关于x 的方程1(12)326x x mnx 有无数多个解,则m.(2)已知关于x 的方程2(1)()3a x b a x b 有唯一解,则a 、b 之间的关系为.(3)已知关于x 的方程3(2)(21)a xb xc 有无解,则432a b =.3.根据方程定解的情况来确定【例7】若a 、b 为定值,关于x 的方程22236x ka bx ,无论k 为何值时,它的解总有1x,求23a b 的值.【例8】若a 、b 为定值,关于x 的方程2236kx ax bk ,无论k 为何值时,它的解总有2x,求23a b 的值.【练习】(1)若a 、b 为定值,关于x 的方程12132ka x bx ,无论k 为何值时,它的解总有2x,则23ab =.(2)若a 、b 为定值,关于x 的方程2236kx a x bk ,无论k 为何值时,它的解总有1x,则23ab =.4.根据方程整数解的情况来确定【例9】m 为整数,关于x 的方程6x mx 的解为正整数,求m 的值.【例10】若关于x 的方程917x kx 的解为整数,求整数k 的值.【练习】(1)已知关于x 的方程315x kx 有整数解,求正整数k 的值.(2)已知关于x 的方程504152x kx 有整数解,求满足条件的所有整数k 的和.(3)已知a 是非零整数,并且关于x 的方程43223456axaaaa 有整数解,则满足条件的a 的值共有多少个.5.根据方程间解的关系来确定【例11】若()40km x 和(2)10k m x 是关于x 的同解方程,求2k m的值.【例12】已知关于x 的方程5x m 的解比方程231x m 的解大4,求m 的值.【练习】(1) 若4mxn 和0nx m是关于x 的同解方程,求224m nn 的值.(2) 已知关于x 的方程25x m 的解比方程31x m 的解的3倍大4,求m 的值.。
第5讲 一元一次方程 课件 2022—2023学年沪教版(上海)数学六年级第二学期

归纳
通过刚才的情景分析和思考,你觉得根据实 际问题列方程,大概要经历什么样的步骤呢?
设未知数,列方程
实际问题
方程
分析实际问题中的数量关系,找到其中的 等量关系。
如:y , 2.3 各是一项
不含未知数的项,称为常数项
(1)在方程4xy 5 0中,4xy项的系数是_4______,
次数是 __2____,常数项是 _-_5_____.
分析:
x
x+8 48-x
方法一: 男生人数 + 女生人数 = 全班人数
x + (x+8) =
48
方法二: 女生人数 - 男生人数 = 8 (48-x) - x = 8
x+(x+8)=48 x=20
x=19呢?
如果用20代替方程中的x时, 什么是方程的解?
左边=20+(20+8)=48, 如果未知数所取的某个
是,请简要说明理由。
(1)5x 0
是
(2)
x
2
y
56
不是,这个方程含有x,y两个未知 数
(3)3 5 8 不是,等式中不含未知数
(4)2y ( y 9) 15 是
x (5) 2 x 6 不是,未知数的次数是2次
(6)3x 23 3 是
x 练习:若 2 25m 1 0是关于x的一元一次方程,
练习1
6
x
1 2
10
x
1 2
如何求方程
7x 20
x 5
3的解呢?
根据等式的性质2,方程两边同乘以20,得
20 7x 20 x 203
20
5
即7x 4x 60
2013天津市中考夺分复习课件(第2单元方程组与不等式组)

一次方程(组)及其应用
第6讲 一元一次不等式(组)及其应用 第7讲 一元二次方程及其应用 第8讲 分式方程及其应用
第5讲
一次方程(组)及 其应用
第5讲┃ 一次方程(组)及其应用
┃考点自主梳理与热身反馈 ┃ 考点1 一元一次方程及其解法
一 一元一次方 含有________个未知数,并且未知数的最高次数是 ax+b=0 程的定义 ________的方程,其一般形式为________ 一 一元一次 能使一元一次方程左右两边________的未知数的值 相等 方程的解 解一元一次方程的一般步骤有 一般 去分母 去括号 移项 合并同类项 ________、________、________、________ 一元一 步骤 和系数化为 1 次方程 ①解一元一次方程的步骤不是一成不变的, 要 的解法 注意 根据方程的特点灵活把握; ②要注意每个步骤 事项 中容易出错的地方
第5讲┃ 一次方程(组)及其应用
将方程组中的一个方程的一个未知数用另 代入法 外一个未知数的代数式表示, 另一个方程 代入________ 消去一个未知数 二元一次 方程组的 将方程组的两个方程通过直接相加、 减或者 加减法 解法 变形后相加、减消去一个未知数 都是通过消元, 将二元一次方程组转化为一 相同点 元一次方程
第5讲┃ 一次方程(组)及其应用
11.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在 一起,如图 5-2,请你根据图中的信息,若小明把 100 个纸杯整 齐叠放在一起时,它的高度约是( A ) A.106 cm B.110 cm C.114 cm D.116 cm 图 5-2
[解析] 设每两个纸杯叠放在一起比单独的一个纸杯增高 x cm, 单独 一个纸杯的高度为 y cm,
2025年湖南中考数学一轮复习考点研析第二章 方程(组)与不等式(组)第5讲 一次方程(组)及其应用

1盒甲品牌月饼和3盒乙品牌月饼共需185元.求甲、乙两种品牌月饼每盒的
进价分别为多少元;
(2)该超市购进甲、乙两种品牌月饼若干盒进行销售,若乙品牌月饼每盒的
售价比甲品牌月饼每盒的售价的2倍少40元,且4盒甲品牌月饼和3盒乙品牌
性质2
同一个数(或式)(除数
或除式不能为0),所得
结果仍是等式
拓展
公式表达
如果a=b,那么ac=
______
bc
如果a=b,那么 =
(d≠0)
___________
对称性:如果a=b,那么b=a.
传递性:如果a=b,b=c,那么a=c
在解方程中的应用
去分母(此时c≠0)
系数化为1
根据等式的性质2变形时,需考虑等式两边同乘的数为0时,该等式是否仍成
共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数
为( B )
A.25
B.75
C.81
D.90
答案
1.[学科融合]在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻
R之间有以下关系:I= ,去分母得IR=U,那么其变形的依据是(
B )
A.等式的性质1
B.等式的性质2
C.分式的基本性质
解:(1)设参加此次研学活动的师生人数是x,原计划租用y辆45座客车.
= 600,
45+15 = ,
根据题意,得ቊ
解得ቊ
= 13.
60(-3) = ,
答:参加此次研学活动的师生人数是600,原计划租用13辆45座客车.
七年级数学上册第五章一元一次方程5-3实际问题与一元一次方程课件新版新人教版

量、工作效率、工作时间这三个量中,如果一个量已知, 那么就设另一个量,从第三个量找相等关系列方程.
知2-讲
特别解读 1. 当问题中总工作量未知而又不求总工作量时,通常把
总工作量看作整体1. 2. 常见的相等关系为:总工作量= 各部分工作量之和;
4. 列一元一次方程解决实际问题的图示
知1-讲
知1-讲
特别解读 1. 列方程解应用题的一般步骤:设→列→解→检→答. 2. 配套问题中的关键词语“刚好”与“最多”要认真区别.
知1-讲
特别解读 设未知数的方法有直接设未知数法、间接设未知数法、
设辅助未知数法. 列方程的本质就是“用两个不同的代数 式表示出同一个数量”,所以分析问题时,要多思考题中某 个数量能不能用两种方法来表示.
知识点 4 销售问题
在比赛积分问题中,基本相等关系有: 参赛场数= 胜场数+ 负场数+ 平场数; 比赛总积分= 胜场积分+ 负场积分+ 平场积分.
知4-讲
知4-讲
特别解读:(1)比赛中的积分与胜负场数有关,同时也 与比赛积分规则有关,需先弄清“胜一场积几分,平一场 积几分,负一场积几分”.
(2)在积分规则中,一般规律为:胜场积分> 平场积分 >负场积分,据此可粗略判断解题的结果是否正确.
知2-练
解:设甲队整治河道x m, 则乙队整治河道(1200 -x) m. 根据题意列方程,得2x4+120106-x= 60,解得x=720 . 则1200-x=480 . 答:甲队整治河道720m,乙队整治河道480 m.
知2-练
3-1.某地决定修建一条高速公路,其中一段长为146 m的山 体隧道贯穿工程由甲、乙两个工程队负责施工,甲工 程队独立工作2天后,乙工程队加入,两工程队又联合 工作了1天,这3天共掘进26 m,已知甲工程队每天比 乙工程队多掘进2 m,按此速度完成这项隧道贯穿工 程,甲、乙两个工程队还需要联合工作多少天?