夹逼定理

合集下载

三大收敛定理

三大收敛定理

三大收敛定理引言在数学领域,收敛是一个重要的概念。

当一个数列或函数的值越来越接近一个确定的极限值时,我们称之为收敛。

收敛定理是指一系列定理,用于判断数列或函数是否收敛以及极限的性质。

本文将介绍三大收敛定理,分别是柯西收敛准则、夹逼定理和单调有界数列定理。

这些定理是数学分析中最重要的基本定理之一。

一、柯西收敛准则柯西收敛准则是判断数列是否收敛的一种重要方法。

柯西收敛准则的基本思想是:如果对于任意给定的正数ε,存在一个自然数N,使得当n和m大于等于N时,数列的前n个元素和前m个元素之差的绝对值小于ε,则该数列是收敛的。

表达式表示如下:对于任意给定的ε>0,存在自然数N,对于任意n,m>N,有|an - am| < ε。

二、夹逼定理夹逼定理是用来判断函数极限的一种重要方法。

夹逼定理的基本思想是:如果一个函数在某个区间上的两个函数夹住,且两个函数的极限相等,则这个函数的极限也相等。

具体的说:假设函数f(x)、g(x)和h(x)在区间[a, b]内定义,并且当x在这个区间上时,有g(x) ≤ f(x) ≤ h(x)。

如果当x趋于某个值c时,有lim(g(x)) = lim(h(x)) = L,则lim(f(x))也等于L。

三、单调有界数列定理单调有界数列定理是判断数列是否收敛的一种常用方法。

该定理分为两部分:单调有上界的数列必有极限,以及单调有下界的数列必有极限。

单调有上界的数列必有极限可以表述为:如果一个实数数列递增且有上界,那么这个数列是收敛的。

同理,单调有下界的数列必有极限可以表述为:如果一个实数数列递减且有下界,那么这个数列也是收敛的。

实例应用下面我们通过一个实例来应用上述三大收敛定理。

例:判断数列{(-1)^n/n}是否收敛。

首先,我们可以通过柯西收敛准则来判断数列是否收敛。

对于任意给定的ε>0,我们有:|an - am| = |(-1)^n/n - (-1)^m/m| ≤ 2/n ≤ ε。

迫敛性定理

迫敛性定理

迫敛性定理
迫敛性定理的运用?
答:迫敛性定理:迫敛定理(迫敛性定理),又名夹逼定理。

函数的夹逼定理F(x)与G(x)在连续且存在相同的极限A,即x→时,limF(x)=limG(x)=A则若有函数f(x)在的某邻域内恒有F(x)≤f(x)≤G(x)则当X趋近,有limF(x)≤limf(x)≤limG(x)即A≤limf(x)≤A故limf()=A简单的说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X,那么函数B的极限就一定是X,这个就是夹逼定理。

利用迫敛性定理求数列极限的关键在于寻找到合适的上下界数列,使得原数列被控制在这两个新数列之间的同时,两个新数列趋于同一个值。

因此,由迫敛性定理即可求得原始数列的极限。

值得注意的是,这两个上下界数列的产生需要依据原始数列的特征进行放缩得到,一般会有一个方向比较容易得到,而另一个方向需要一定的代数变形。

不过,归根究底,使用分析的基本语言而不是寻找上下限数列会是个更好的替代办法。

一般来说,极限问题中困难的部分在于证明极限的存在性,而不是求得这个极限。

迫敛性定理首先给出的是数列极限的形式,利用归结原则可得到函数极限的形式,
给出迫敛性定理的一些直接应用,再对迫敛性定理的条件适当地减弱后并将其推广,拓宽了应用的范围。

数列极限的迫敛性定理既能判断数列的收敛性,也给出其极限值通过对数列极限迫敛性定理的条件加以改进。

夹逼定理

夹逼定理

第六节 夹逼定理 无穷小的比较一. 夹逼定理定理1:如果数列{}n x 、{}n y 及{}n z 满足下列条件:(1)n n n z x y ≤≤,(Λ,3,2,1=n )。

(2) a y n n =∞→lim ,a z n n =∞→lim 。

则数列{}n x 的极限存在,且a x n n =∞→lim 定理2:设函数)(x f 在点a 的的某一去心邻域),(δ∧a U 内(或X x ≥时) 满足条件:(1))()()(x h x f x g ≤≤。

(2) A x g a x =→)(lim ,A x h a x =→)(lim (或A x g x =∞→)(lim ,A x h x =∞→)(lim )。

则)(lim x f a x →存在,且A x f a x =→)(lim ((或)(lim x f x ∞→存在,且A x f x =∞→)(lim )。

注:(1)夹逼定理不仅说明了极限存在,而且给出了求极限的方法。

(2) 定理1中的条件(1)改为:n n n z x y ≤≤,(Λ,3,2,1=n ),结论仍然成立。

例1: 求下列极限(1)n n n 11lim +∞→ (2))1...2111(lim 222nn n n n ++++++∞→ 二.两个重要极限(1)1sin lim 0=→xx x 。

(2)e x x x =+∞→)11(lim ,(e x x x =+→10)1(lim ,e nn n =+∞→)11(lim )。

例2:求下列极限(1) x x x tan lim 0→ (2) 30sin tan lim xx x x -→(3)203cos cos lim x x x x -→ 例3:求下列极限(1) x x x 2)21(lim -∞→ (2) 212)2(lim -→x x x (3)x x x x )55(lim -+∞→三. 无穷小的比较在极限的运算法则中,我们讨论了两个基本点无穷小的和、差及乘积仍是无穷小。

夹逼定理

夹逼定理

第六节 夹逼定理 无穷小的比较一. 夹逼定理定理1:如果数列{}n x 、{}n y 及{}n z 满足下列条件:(1)n n n z x y ≤≤,(Λ,3,2,1=n )。

(2) a y n n =∞→lim ,a z n n =∞→lim 。

则数列{}n x 的极限存在,且a x n n =∞→lim 定理2:设函数)(x f 在点a 的的某一去心邻域),(δ∧a U 内(或X x ≥时) 满足条件:(1))()()(x h x f x g ≤≤。

(2) A x g a x =→)(lim ,A x h a x =→)(lim (或A x g x =∞→)(lim ,A x h x =∞→)(lim )。

则)(lim x f a x →存在,且A x f a x =→)(lim ((或)(lim x f x ∞→存在,且A x f x =∞→)(lim )。

注:(1)夹逼定理不仅说明了极限存在,而且给出了求极限的方法。

(2) 定理1中的条件(1)改为:n n n z x y ≤≤,(Λ,3,2,1=n ),结论仍然成立。

例1: 求下列极限(1)n n n 11lim +∞→ (2))1...2111(lim 222nn n n n ++++++∞→ 二.两个重要极限(1)1sin lim 0=→xx x 。

(2)e x x x =+∞→)11(lim ,(e x x x =+→10)1(lim ,e n n n =+∞→)11(lim )。

例2:求下列极限(1) x x x tan lim 0→ (2) 30sin tan lim xx x x -→ (3)203cos cos lim x x x x -→ 例3:求下列极限(1) x x x 2)21(lim -∞→ (2) 212)2(lim -→x x x (3)x x x x )55(lim -+∞→三. 无穷小的比较在极限的运算法则中,我们讨论了两个基本点无穷小的和、差及乘积仍是无穷小。

两边夹定理

两边夹定理

两边夹定理夹逼定理:又称两边夹定理、夹逼准则、夹挤定理,是判定极限存在的两个准则之一,是函数极限的定理。

简单的说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个就是夹逼定理。

英文原名Squeeze Theorem,也称夹逼准则、夹挤定理、挟挤定理、三明治定理,是判定极限存在的两个准则之一。

夹逼定理应用1、设{Xn},{Zn}为收敛数列,且:当n趋于无穷大时,数列{Xn},{Zn}的极限均为:a。

若存在N,使得当n>N时,都有Xn≤Yn≤Zn,则数列{Yn}收敛,且极限为。

2、夹逼准则适用于求解无法直接用极限运算法则求极限的函数极限,间接通过求得F(x)和G(x)的极限来确定f(x)的极限。

1、如果数列{Xn},{Yn}及{Zn}满足下列条件:当n>N0时,其中N0∈N*,有Yn≤Xn≤Zn,{Yn}、{Zn}有相同的极限a,设-∞<a<+∞则,数列{Xn}的极限存在,且当n→+∞,limXn =a。

证明:因为limYn=a,limZn=a,所以根据数列极限的定义,对于任意给定的正数ε,存在正整数N1、N2,当n>N1时,有〡Yn-a∣﹤ε,当n>N2时,有∣Zn-a∣﹤ε,现在取N=max{No,N1,N2},则当n>N 时,∣Yn-a∣<ε、∣Zn-a∣<ε同时成立,且Yn≤Xn≤Zn,即a-ε<Yn<a+ε,a-ε<Zn<a+ε,又因为a-ε<Yn≤Xn≤Zn<a+ε,即∣Xn-a∣<ε成立。

也就是说limXn=a2、两边同趋向取极限结果等于A由夹逼准则可知,中间的极限值也为A如果两边极限值不相等,一个A,另外一个B这是夹逼定理么?极限值有且只有一个(唯一性)因此两边极限值相等都是A导致中间极限值只能是A高中数学的二项式定理是多项式乘法的特例,是同学们在初中所学过的多项式乘法的延伸。

数学教案:左右夹逼定理的证明

数学教案:左右夹逼定理的证明

数学教案:左右夹逼定理的证明左右夹逼定理是数学中经典的定理之一,它在高等数学、微积分和数学分析课程中都有应用。

本文将就左右夹逼定理进行阐述及证明。

一、左右夹逼定理的定义左右夹逼定理是指:如果对于两个函数 f(x)和g(x),它们同时满足以下条件:1.存在 a 和 b,使得 a ≤ x ≤ b。

2.对于 a ≤ x ≤ b,f(x) ≤ g(x)。

3.lim(f(x))= lim(g(x))= l(l为常数),则 lim(f(x))=l。

也就是说,如果 f(x)和g(x)在[a,b]上夹逼一个定值l,那么当x趋近于a或b时,f(x)和g(x)的极限都趋近于l。

二、左右夹逼定理的应用左右夹逼定理的应用很广泛,其中最重要的应用是求解极限问题。

如果已知两个函数 f(x)和g(x),它们满足左右夹逼定理的条件,那么就可以直接使用左右夹逼定理来求解极限。

例如,我们可以使用左右夹逼定理来求解 1/x 的极限。

我们知道,当 x 趋近于正无穷时,1/x 的值趋近于0。

而当 x 趋近于负无穷时,1/x 的值趋近于0。

因此,我们可以构造两个函数 f(x)=0 和 g(x)=1/x,它们在[-1,1]上夹逼一个定值0。

根据左右夹逼定理,我们可以得出极限lim(1/x) =0。

三、左右夹逼定理的证明为了证明左右夹逼定理,我们需要使用两个重要的定理:单调有界准则和夹逼准则。

1.单调有界准则:如果一个函数在一个区间内单调递增(或递减),并且在该区间内有上下界,那么该函数就是收敛的。

2.夹逼准则:如果一个函数 f(x)是在区间(I,+∞)或(-∞,I)内定义的,并且满足以下条件:1)存在一个函数 g(x)和 h(x),它们在区间(I,+∞)或(-∞,I)内定义。

2)对于所有在该区间内的x,f(x) ≤g(x) 且f(x)≥h(x)。

3)lim(g(x))= lim(h(x))=L,则 lim(f(x))=L。

下面,我们就使用单调有界准则和夹逼准则来证明左右夹逼定理。

极限存在两个准则

极限存在两个准则

极限存在两个准则
数列极限存在的两个定理
1、 夹逼定理:
若∃N ,当n>N 时,≤≤
n y n x n z 存在条件A y n n =∞→lim =A z n n =∞
→lim ,则:
A x
n n =∞→lim 2、 单调有界数列必收敛定理:
单调上升数列有上界
收敛
单调下降有下界
收敛
函数极限存在的两个定理:
1、 夹逼定理:
存在∃δ>0,在δ<−<0x x 0时,有
n y ≤≤,
n x n z 存在条件A y n x x =→0x x →0
x x → 则:
x lim =,则: A z n =lim A x
n x x =→lim 0
其他趋近过程也有类似结论 2、 单侧极限与双侧极限的关系: A x f =)(lim 0
A x f =−0
0 0 h(x)
0<x<0+δ 只能分别求两侧极限。

3、 一元函数极限不存在时常用的两种方法:
① 左右侧极限存在,但是不相等
)( x -δ<x<
x x x
求极限时,指数函数 y=
x a 反正切函数y=arctanx 反余切函数
y=arccotx 必须要求两侧的极限值。

② ⅰ、∃
→,≠; n x 0x n x 0x
不存在, )(lim n
n x f +∞→ⅱ、∃→,→,
n x 0x n y 0x 但是≠ )(lim n n x f +∞→)(lim n n y f +∞→。

夹逼定理适用条件

夹逼定理适用条件

夹逼定理适用条件夹逼定理是微积分中的重要定理之一,它常用于求解极限问题,被广泛应用于实际问题的数学建模和物理学等领域。

本文将介绍夹逼定理的概念、适用条件以及具体的应用实例。

一、夹逼定理的概念夹逼定理又称为挤压定理、夹缝定理等,是用来确定一个无穷小量的极限值的常用方法。

它具有非常普适的适用范围,是求解许多极限问题的重要工具。

夹逼定理的基本思想是用两个已知的函数逐步夹住待求解的函数,以求解出待求解函数的极限值。

在实际应用中,夹逼定理的常见形式为“设函数f(x)、g(x)、h(x)满足f(x) ≤ g(x) ≤ h(x),且f(x)和h(x)的极限值均为L,则当x趋于a时,g(x)的极限值也是L。

”夹逼定理的适用条件分为三个方面,即夹逼定理的条件、夹逼数列的条件和夹逼函数的条件。

1.三个函数的自变量相同,即存在一个数集{x},使得f(x)、g(x)和h(x)的值都可以表示为{x}中的某些元素;2.对于{x}中任意一个元素,f(x) ≤ g(x) ≤ h(x)都成立;3.在x = a的某个去心邻域内,f(x)、g(x)和h(x)都有定义。

(二)夹逼数列的条件1.数列{a(n)}、{b(n)}、{c(n)}满足a(n) ≤ b(n) ≤ c(n)对所有n都成立;2.当n趋近于正无穷时,a(n)和c(n)的极限值都为L,即lim a(n) = lim c(n) = L;3.存在正整数N,使得当n>N时,a(n) ≤ x ≤ c(n)都成立。

1.对于x在某个去心邻域内的所有取值,都满足f(x) ≤ g(x) ≤ h(x);2.当x趋近于a时,f(x)和h(x)的极限值均为L。

三、夹逼定理的应用实例实例1:求解sinx/x的极限这里我们用夹逼定理来求解sinx/x的极限。

我们可以将(x/2)cosx表示为夹逼函数的形式,即-x/2 ≤ (x/2)cosx ≤ x/2。

我们知道当x趋近于0时,-x/2和x/2的极限值都为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节 夹逼定理 无穷小的比较
一. 夹逼定理
定理1:如果数列{}n x 、{}n y 及{}n z 满足下列条件:
(1)n n n z x y ≤≤,( ,3,2,1=n )。

(2) a y n n =∞→lim ,a z n n =∞
→lim 。

则数列{}n x 的极限存在,且a x n n =∞
→lim 定理2:设函数)(x f 在点a 的的某一去心邻域),(δ∧a U 内(或X x ≥时) 满足条件:(1))()()(x h x f x g ≤≤。

(2) A x g a x =→)(lim ,A x h a x =→)(lim (或A x g x =∞→)(lim ,A x h x =∞→)(lim )。

则)(lim x f a x →存在,且A x f a x =→)(lim ((或)(lim x f x ∞→存在,且A x f x =∞→)(lim )。

注:(1)夹逼定理不仅说明了极限存在,而且给出了求极限的方法。

(2) 定理1中的条件(1)改为:n n n z x y ≤≤,( ,3,2,1=n ),结论仍然成立。

例1: 求下列极限
(1)n n n 11lim +∞→ (2))1...2111(lim 222n
n n n n ++++++∞→ 二.两个重要极限
(1)1sin lim 0=→x
x x 。

(2)e x x x =+∞→)11(lim ,(e x x x =+→1
0)1(lim ,e n n n =+∞→)11(lim )。

例2:求下列极限
(1) x x x tan lim 0→ (2) 30sin tan lim x
x x x -→ (3)2
03cos cos lim x x x x -→ 例3:求下列极限
(1) x x x 2)21(lim -∞→ (2) 21
2)2(lim -→x x x (3)x x x x )5
5(lim -+∞→
三. 无穷小的比较
在极限的运算法则中,我们讨论了两个基本点无穷小的和、差及乘积仍是无穷小。

那末两个无穷小的商的情况又如何呢?为此讨论下列极限。

尽管,3,1,,,2x Cosx Sinx x x -都是0→x 时的无穷小量,但是它们趋向于零的快慢程度不一样。

设)(x α,)(x β是当0x x →时的两个无穷小量,由极限的运算法则知:)()(x x βα+,)()(x x βα-,)()(x x βα⋅都是当0x x →时的无穷小量。

但)(/)(x x βα当0x x →时是否是无穷小量呢?
,)(x x =α,2)(x x =β,x x sin )(=γ,x x cos 1)(-=δ当0→x 时都是无穷小量,0)()(lim 0=→x x x αβ,1)()(lim 0=→x x x αγ,21)()(lim 0=→x x x βδ,∞=→)
()(lim 0x x x βα。

1.定义:
设0lim =α,0lim =β,
(1)如果0lim =α
β
,就说β是比α高阶的无穷小,记作)(αβo =; (2)如果∞=α
βlim ,就说β是比α低阶的无穷小; (3)如果0lim ≠=c α
β,就说β是与α同阶的无穷小; (4)如果1lim =αβ,就说β与α是等价无穷小,记作βα~。

2.等价无穷小的重要性质
定理3:设/~αα , /
~ββ,且//lim αβ存在,则αβlim =//lim αβ。

推论(1):设/~αα , /
~ββ,且//
)()(lim αβx g x f 存在,则αβ)()(lim x g x f 存在,且
αβ)()(lim x g x f =//
)()(lim α
βx g x f 。

注:在计算极限的过程中,可将分子或分母的的乘积因子换为与其等价的无穷小,这种替换有时可简化计算,但注意在加、减运算中不能用。

例4:求下列极限
(1) x
x x x x tan sin tan lim 20-→ (2) 1tan 1tan 1lim 0---+→x x e x x 例5:当0→x 时,试比较下列无穷小的阶
(1) 232x x +=α 2x =β (2)x x cos 2=α 2x =β
3.常用的等价无穷小替换
0→x :x x ~sin ,x x ~tan ,x x ~arcsin ,x x ~arctan ,x x ~)1ln(+,x e x ~1-;
2
~cos 12
x x -,x x μμ~)1(+。

上一节 下一节 返回。

相关文档
最新文档