夹逼定理教学内容
夹逼定理:一个数学分析中的神奇工具

夹逼定理:一个数学分析中的神奇工具数学分析是高等数学的基础和核心,它主要研究函数、极限、微积分等概念。
在数学分析中,有一个非常重要而又有趣的定理,叫做夹逼定理(英文:Squeeze Theorem、Sandwich Theorem),也称两边夹定理、夹逼准则、夹挤定理、迫敛定理、三明治定理。
这个定理由法国数学家、物理学家拉格朗日于1835年提出,它可以用来求解一些看似复杂或难以直接计算的极限问题。
夹逼定理的内容如下:一个函数(设它为f)被夹在另外两个函数(设它们分别为g和h,其中g≤h)之间,即g≤f≤h。
如果当自变量x趋于某个值a时,g和h都趋于同一个值A,则f也必然趋于A。
用数学符号表示就是:如果g(x)≤f(x)≤h(x),且lim_{x→a} g(x)=lim_{x→a} h(x)=A,则lim_{x→a} f(x)=A这个定理的直观意义就是:如果你大哥和你弟弟是同一天出生的,那么可以证明你们仨是三胞胎,你也是那天出生的!夹逼定理有什么用呢?它可以帮助我们求解一些看似复杂或难以直接计算的极限问题。
例如:1.求lim_{n→∞} (1+1/n)^n 的值。
这个极限问题很经典,它其实就是自然对数e的定义之一。
但如果直接用定义来计算它,会非常麻烦。
我们可以利用夹逼定理来简化计算过程。
首先我们观察到(1+1/n)^n 是一个单调增加的函数(因为当n增大时,括号内大于1的部分增大),而(1+1/(n+1))^(n+1) 是一个单调减少的函数(因为当n增大时,括号内小于1的部分减小)。
所以对任意正整数n都有:(1+1/n)^n ≤ (1+1/(n+1))^(n+1)同时我们还知道当n趋于无穷大时,lim_{n→∞} (1+1/n)^n = lim_{n→∞} (1+1/(n+1))^(n+1)因为两者只相差了一个无穷小量。
所以根据夹逼定理,我们可以找到一个介于两者之间且易于计算极限的函数f(n),使得(1+1/n)^n ≤ f(n) ≤ ( 0.5 + 0.5 * sqrt(4 + 4 / n) ) ^ n其中最后一项是利用二次方程求根公式得到的,并且可以证明当n 趋近无穷大时lim_{n→∞} ( 0.5 + 0.5 * sqrt(4 + 4 / n) ) ^ n = e 因此我们得到lim_{n→∞} (1+1/n)^n = e这就是夹逼定理的一个应用例子。
考研数学单侧极限和夹逼定理的知识点

考研数学单侧极限和夹逼定理的知识点考研数学单侧极限和夹逼定理的知识点1为什么会有单侧极限这种极限计算方法,是因为在x→∞,x→a包括x→+∞和x→-∞,x→a+和x→a-,而不同的趋近,极限趋近值也不相同,因此需要分别计算左右极限,根据极限的充要条件来判断极限是否存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢?第一:e∞,arctan∞,因为x趋近于+∞,e∞→+∞,arctan∞→π/2,x趋近于-∞,e∞→0,arctan∞→-π/2;第二:绝对值;第三:分段函数在分段点处的极限。
有个这几条我们就可以在计算极限时知道什么情况下分左右极限计算,什么时候正常计算。
夹逼定理分为函数极限的夹逼定理和数列极限的夹逼定理。
要明确夹逼定理是将极限计算出来的方法,而不是用来判断极限是不是存在,以数列极限为例,即n→∞,yn→?,若存在n>0,当n>n时,找到xn,zn,且xn→a,zn→b,a≠b,则不能说明yn极限不存在,函数极限也是一样的。
这一点一定要注意,防止理解偏差。
单调有界收敛定理主要应用是解决数列极限计算问题,一般情况下,题目的类型是固定的,例如:已知x1=a,xn=f(xn-1),n=1,2,.....,求数列{xn}的极限。
当看到这种类型的题目,我们要先知道可以应用于单调有界收敛定理来证明,也就是要证明两点,第一:证明数列有界;第二:证明数列单调。
综合以上两点就可以依据该定理证明数列极限存在,再将xn=f(xn-1)两边同时取极限,即可以得到数列极限的值。
上述几种方法原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,拓宽自己的解题能力。
很多同学都会有这样的感觉,为什么我就是想不到这样解题呢?像这样的'问题在现阶段出现是正常的,因为我们要通过复习来解决问题,所以我们只要认真对待就可以了,首先接受这种方法,然后理解这种方法,最后看看这个解题思路跟题目中的哪个条件是紧密联系在一起的,弄清楚并记住,下次如果做题时遇到了这个条件,我们是不是就可以尝试的做做,时间久了自然而然的就有了自己的解题思路。
高等数学第一章第6节夹逼准则

x0 x0 2 x0 2 x0 x0 1 x0 x0 1
-2-
x
第六节
极限存在准则
x x0
两个重要极限
x x0
证
0,
lim g( x ) A, lim h( x ) A,
第 一 章 函 数 极 限 连 续
所以 1 , 2 0, 使当 0 | x x0 | 1 时, 恒有 | g( x ) A | 即 A g ( x ) A 当 0 | x x0 | 2 时, 恒有
0
(2)
x x0
g ( x ) f ( x ) h( x ), lim g( x ) A, lim h( x ) A,
x x0
那末当 x x0 时, f ( x ) 的极限存在, 且 lim f ( x ) A.
y
x x0
A A A
o
y h( x ) y f ( x) y g( x )
- 11 -
第六节
极限存在准则
两个重要极限
1 x ) e 二 重要极限 lim(1 x x 在第二节中,利用单调有界原理证明了重要极限
第 一 章 函 数 极 限 连 续
1 n lim(1 ) e n n 现在说明 n 换成连续变量 x , 在 x , x , x
所以
第 一 章 函 数 极 限 连 续
sin x lim 1 x 0 x sin x sin( x ) sin t lim lim lim 1 x 0 x 0 t 0 x x t
而
所以
sin x lim 1 x 0 x
-9-
函数极限存在的夹逼准则

•定义 •设函数
•在 •的某邻域内有定义 ,•且
:
•则称函数
•可见 , 函数 •在 •连续必须具备下列条件:
•(1)
•在点 点•有定义 ,•即
•存在 ;
•(2) 极限
•存在 ;
•(3)
•2、f (x) 在区间上连续 •称 f (x) 在x0 点处左连续
•称 f (x) 在x0 点处右连续
•若 •在某区间上每一点都连续 ,•则称它在该区间上 •连续 , •或称它为该区间上的连续函数 .
函数极限存在的夹逼准则
证明
•证: 当 •时, 设
•则
•当
•时, 令
•则
•从而有
•故
• 也可写为
•用于1 型
例: 1、求 •原式
•公式:
•证: 当
•时
,
•即
例. 1、求 •解: 原式
•2、 求
•解: 原式 =
•3、 求
•解: 令
•则
•原式
•因此
•令
第七节 •无穷小的比较• 第一章
•引例 .
•2、设函 数
•于是
例4. 求 •解: •原式
第十节 •闭区间上连续函数的性质
•一、最值定理 •二、零点定理、介值定理
一、最值定理
•定理1.闭区间上连续的函数 •在该区间上必有最大(小)值
•即
•使
:
•注意: 若函数在开区间上连续,•或在闭区间内有间断 •点 , •结论不一定成立 .
•例如, •无最大值和最小 值
•在闭区间上的连续函数•必取得介于最小值与最
•大值之间的任何值 .
例1. 证明方程
•一个根 . •证: 令
•在区间 •内至少有 •又
夹逼定理

第六节 夹逼定理 无穷小的比较一. 夹逼定理定理1:如果数列{}n x 、{}n y 及{}n z 满足下列条件:(1)n n n z x y ≤≤,(Λ,3,2,1=n )。
(2) a y n n =∞→lim ,a z n n =∞→lim 。
则数列{}n x 的极限存在,且a x n n =∞→lim 定理2:设函数)(x f 在点a 的的某一去心邻域),(δ∧a U 内(或X x ≥时) 满足条件:(1))()()(x h x f x g ≤≤。
(2) A x g a x =→)(lim ,A x h a x =→)(lim (或A x g x =∞→)(lim ,A x h x =∞→)(lim )。
则)(lim x f a x →存在,且A x f a x =→)(lim ((或)(lim x f x ∞→存在,且A x f x =∞→)(lim )。
注:(1)夹逼定理不仅说明了极限存在,而且给出了求极限的方法。
(2) 定理1中的条件(1)改为:n n n z x y ≤≤,(Λ,3,2,1=n ),结论仍然成立。
例1: 求下列极限(1)n n n 11lim +∞→ (2))1...2111(lim 222nn n n n ++++++∞→ 二.两个重要极限(1)1sin lim 0=→xx x 。
(2)e x x x =+∞→)11(lim ,(e x x x =+→10)1(lim ,e nn n =+∞→)11(lim )。
例2:求下列极限(1) x x x tan lim 0→ (2) 30sin tan lim xx x x -→(3)203cos cos lim x x x x -→ 例3:求下列极限(1) x x x 2)21(lim -∞→ (2) 212)2(lim -→x x x (3)x x x x )55(lim -+∞→三. 无穷小的比较在极限的运算法则中,我们讨论了两个基本点无穷小的和、差及乘积仍是无穷小。
夹逼定理word版

一、夹逼准则及第一个重要极限1、 准则I 如果数列{}n x ,{}n y ,{}n z 满足下列条件(1)n n n x y z ≤≤(1,2,....)n =(2)lim n n x a →∞=,lim n n z a →∞=则数列{}n y 的极限存在,且lim n n y a →∞= .证明 由lim n n x a →∞=⇒0ε∀>,1N ∃,当1n N >时,有 n x a ε-<⇒n a x ε-<又由lim n n z a →∞=⇒对上述ε,2N ∃,当2n N >时,有n z a ε-<⇒n z a ε+<取12{},N max N N =,则对上述0ε>,当n N >时,有 n n n x y z ≤≤, n a x ε-<, n z a ε+< 从而有n n n y z a x a εε≤≤<-+< 即 n y a ε-<,故 lim n n y a →∞=.上述极限存在准则可以推广到函数的极限情形,即:2、准则II 设函数()f x ,()g x ,()h x 满足(1) ()()()f x g x h x ≤≤ ( 当0,()U x x δ∈ (或x M >)时);(2)0()lim ()x xx f x A→∞→=,0()lim ()x xx h x A→∞→=.则 0()lim ()x x x g x →∞→存在且等于 A .上述两个准则都称为夹逼准则. 举例 例1 求2n n→∞++++解因为2111n nn≤+++≤+又因为 lim1,lim 1n n→∞→∞==所以 由夹逼准则得21111n n →∞+++=+.3、第一个重要极限: 0sin lim 1x xx→=证明:在单位圆中, 有 AOB AOD AOB S S S ∆∆<<扇形 (如图1-35)而 sin x CB =,x AB =,tan x AD =. 所以111sin tan 222x x x <<, 即 sin tan x x x <<,从而得 sin cos 1xx x <<.因为函数sin xx 与cos x 都是偶函数,所以在区间(,0)2π-内,sin cos 1xx x<<也成立.135图-故对于一切满足不等式 02x π<<的x 都有sin cos 1xx x<< 由 0limcos 1x x →= 及夹逼准则可得0sin lim 1x xx→=.特点与用法:分出两个“0因子”: “sin x ”和“x ”,而与“0因子”无关的极限分开求. 举例例1 求 0tan lim x xx →解 00tan sin 1lim lim()cos x x x x x x x →→=⋅00sin 1lim lim 1cos x x x x x→→=⋅=.例2 求201cos lim x xx →-解 201cos lim x x x →-2202sin 2lim x x x →=20sin 12lim 22x x x →⎛⎫ ⎪= ⎪ ⎪⎝⎭20sin 12lim 22x x x →⎛⎫ ⎪= ⎪⎪⎝⎭211122=⋅=.例3 求 1lim(1)tan 2x x x π→-解 设 1y x =-,即1x y =-,当1x →时,0y →,则1lim(1)tan2x x x π→-0(1)lim tan2y y y π→-=0lim cot2y yy π→=2lim coslim cos22sin sin222y y yyyyyy ππππππ→→=⋅=⋅2π=.(注:本资料素材和资料部分来自网络,仅供参考。
夹逼定理与单调有界收敛定理

夹逼定理与单调有界收敛定理目录1夹逼定理21.1定理内容及证明 (2)1.2典型例子 (2)2单调有界收敛定理62.1定理内容及证明 (6)2.2典型例子 (6)11夹逼定理21夹逼定理1.1定理内容及证明定理1.1若数列{a n},{b n},{c n}满足条件:(1)a n≤b n≤c n;(2)limn→∞a n=limn→∞c n=A则数列{b n}极限存在,且有limn→∞b n=A证明:∀ε>0,由于limn→∞a n=limn→∞c n=A,根据极限的定义有,∃N>0,使得当n>N时,总有|a n−A|<ε,|c n−A|<ε成立,再由a n≤b n≤c n,可得A−ε<a n≤b n≤c n<A+ε从而数列{b n}极限存在,且有limn→∞b n=A1.2典型例子例1:证明:limn→∞a nn!=0证明:对于常数a,∃N1>0,使得|a|≤N1,因此,当n>N1时,有0≤a nn!=|a|1|a|2···|a|N1|a|N1+1···|a|n≤|C|n成立,由于limn→∞|C|n=limn→∞0=0根据夹逼定理,可以得到limn→∞a nn!=01夹逼定理3从而有lim n →∞a n n !=0得证。
例2:证明:limn →∞n !n n =0证明:当n >2时,有0≤n !n n =1n 2n ···n n ≤1n由于limn →∞1n =lim n →∞0=0根据夹逼定理,可以得到limn →∞n !n n =0得证。
例3:证明:lim n →∞n k a n=0(k >0,a >1)证明:令a =1+b (b >0),当n >[k ]+1时,因为a n =(1+b )n >C [k ]+1nb [k ]+1所以0<n k a n <n k C [k ]+1n 1b [k ]+1<n k (n −[k ])[k ]+1([k ]+1)!b [k ]+1=n k −([k ]+1)(1−[k ]n )[k ]+1([k ]+1)!b [k ]+1由于lim n →∞(1−[k ]n)[k ]+1=1,lim n →∞n k −([k ]+1)=0从而有lim n →∞n k −([k ]+1)(1−[k ]n)[k ]+1([k ]+1)!b [k ]+1=0根据夹逼定理,可以得到limn →∞n ka n=0得证。
夹逼定理与单调有界收敛定理

则 lim bn 存在,且 lim bn a .
n n
例 1 求极限 lim ( x 1 x 2) .
x
解因为
0 x 1 x 2
3 x 1 x 2
≤
3 x
,
且 lim
3 x
x
0 ,所以 lim ( x 1 x 2)=0 .
【本讲总结与下讲预告】 本讲介绍了判断极限存在的夹逼定理, 如何做适当放大和适当缩小是正确运用夹逼定理 的关键。通过练习,要了解常用的放缩方式,逐步地掌握夹逼定理及其应用。下一讲将介绍 判断极限存在另一个重要方法,即单调有界收敛定理。
例 5 证明: lim
an 0. n n !
证对于实数 a ,存在正整数 N ,满足 N ≤ a ≤ N 1 . 当 n N 时,有
0≤ a a a a a a C an . n! 1 2 N N 1 n 1 n n
又 lim
an C an 0 ,即 lim 0 ,所以 lim 0. n n ! n n n n !
x
1
例 2 已知 0 a b ,求极限 lim(a n bn ) n .
n
解因为
a n a n (a b ) =(b ) ( )n 1) b ( )n 1) , b b
n 1 n n 1 n n 1 1
且0
a 1 ,所以 b
1 1
b (a n b n ) n b2 n .
又因为 lim b b , lim b2 n b ,所以
n
n
1
lim(a n bn ) n b .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
夹逼定理
第六节 夹逼定理 无穷小的比较
一. 夹逼定理
定理1:如果数列{}n x 、{}n y 及{}n z 满足下列条件:
(1)n n n z x y ≤≤,( ,3,2,1=n )。
(2) a y n n =∞→lim ,a z n n =∞
→lim 。
则数列{}n x 的极限存在,且a x n n =∞
→lim 定理2:设函数)(x f 在点a 的的某一去心邻域),(δ∧
a U 内(或X x ≥时) 满足条件:(1))()()(x h x f x g ≤≤。
(2) A x g a x =→)(lim ,A x h a x =→)(lim (或A x g x =∞→)(lim ,A x h x =∞→)(lim )。
则)(lim x f a x →存在,且A x f a x =→)(lim ((或)(lim x f x ∞→存在,且A x f x =∞
→)(lim )。
注:(1)夹逼定理不仅说明了极限存在,而且给出了求极限的方法。
(2) 定理1中的条件(1)改为:n n n z x y ≤≤,( ,3,2,1=n ),结论仍然成立。
例1: 求下列极限
(1)n n n 11lim +∞→ (2))1...2111(lim 222n
n n n n ++++++∞→ 二.两个重要极限
(1)1sin lim 0=→x
x x 。
(2)e x x x =+∞→)11(lim ,(e x x x =+→10)1(lim ,e n
n n =+∞→)11(lim )。
例2:求下列极限
(1) x x x tan lim
0→ (2) 3
0sin tan lim x x x x -→ (3)203cos cos lim x x x x -→ 例3:求下列极限
(1) x x x 2)21(lim -∞→ (2) 21
2)2(lim -→x x x (3)x x x x )5
5(lim -+∞→
三. 无穷小的比较
在极限的运算法则中,我们讨论了两个基本点无穷小的和、差及乘积仍是无穷小。
那末两个无穷小的商的情况又如何呢?为此讨论下列极限。
尽管
,3,1,,,2x Cosx Sinx x x -都是0→x 时的无穷小量,但是它们趋向于零的快慢程度不一样。
设)(x α,)(x β是当0x x →时的两个无穷小量,由极限的运算法则知:
)()(x x βα+,)()(x x βα-,)()(x x βα⋅都是当0x x →时的无穷小量。
但)(/)(x x βα当0x x →时是否是无穷小量呢?
,)(x x =α,2)(x x =β,x x sin )(=γ,x x cos 1)(-=δ当0→x 时都是无穷小量,0)()(lim 0=→x x x αβ,1)()(lim 0=→x x x αγ,21)()(lim 0=→x x x βδ,∞=→)
()(lim 0x x x βα。
1.定义:
设0lim =α,0lim =β,
(1)如果0lim
=α
β,就说β是比α高阶的无穷小,记作)(αβo =; (2)如果∞=α
βlim ,就说β是比α低阶的无穷小; (3)如果0lim ≠=c αβ,就说β是与α同阶的无穷小;
(4)如果1lim
=α
β,就说β与α是等价无穷小,记作βα~。
2.等价无穷小的重要性质
定理3:设/~αα , /
~ββ,且//lim αβ存在,则αβlim =//lim αβ。
推论(1):设/~αα , /
~ββ,且//
)()(lim αβx g x f 存在,则αβ)()(lim x g x f 存在,且αβ)()(lim x g x f =/
/
)()(lim αβx g x f 。
注:在计算极限的过程中,可将分子或分母的的乘积因子换为与其等价的无穷小,这种替换有时可简化计算,但注意在加、减运算中不能用。
例4:求下列极限
(1) x
x x x x tan sin tan lim 20-→ (2) 1tan 1tan 1lim 0---+→x x e x x 例5:当0→x 时,试比较下列无穷小的阶
(1) 232x x +=α 2x =β (2)x x cos 2=α 2x =β
3.常用的等价无穷小替换
0→x :x x ~sin ,x x ~tan ,x x ~arcsin ,x x ~arctan ,x x ~)1ln(+,x e x ~1-; 2
~cos 12
x x -,x x μμ~)1(+。
上一节 下一节 返回。