瓶盖注塑模具设计说明

合集下载

开水瓶盖塑料模具设计说明书

开水瓶盖塑料模具设计说明书

开水瓶盖塑料模具设计说明书一、拟定模具的结构形式1、塑件的成型工艺性分析该塑件属于薄壁塑件,生产批量不大,材料选用聚已烯(PE),成型工艺性好,可以采用注射成型。

2、分型面的选择根椐塑件的结构形式(如下图所示),分型面选在塑件的底平面。

3、确定型腔的数量和排列方式1)型腔数量的确定该塑件的精度要求不高,属于中小批量生产,而且该塑件的体积比较大,再考虑到模具的制造成本,可以初定为一模两腔的模具形式。

2)型腔排列形式的确定由于是一模两腔的形式,因此本设计采用并排的形式。

4、模具结构形式的确定根据以上的分析可知,本设计采用一模两腔的形式,并列排列的形式,由于该塑件的壁比较的薄,因此采用推件板推出的形式,流道采用平衡式,浇口采用点浇口的形式,动模部分需要一块垫块和一块型芯固定板,因此可以初步的确定模具的结构形式为A4型带推件板的双分型面模具。

5、注射机型号的选定1)注射量的计算由该塑件图可知,该塑件的体积V=V1-V2=45310.2。

因此该塑件的质量为m1=41.2(g)。

由于流道凝料的质量m2未知,根据经验,可以按照该塑件的质量60%来进行计算,因此注射量为m=m1+m2=1.6nm=132g。

2)塑件和流道在分型面上的投影面积及所需的脱模力流道凝料(包括浇口)在分型面上的投影面积A2,在模具设计前是个未知数,根据多型腔模的统计分析可得,A2是每个塑件在分型面上的投影面积A1的0.2-0.5倍,因此可以用0.35倍的A1来进行估算,所以A=nA1+A2=nA1+0.35nA1=1.35nA1=21195m㎡.脱模力F=A×P型=635.850KN其中,P型=30Pa3)注射机的选择根据每一生产周期的注射量和所需要的锁模力的计算值,可选用SZ-300/160卧式注射机,该注射机的有关参数见下表结构类型卧拉杆内向距450×450理论注射容量300开模行程380螺杆的直径45最大模具厚度450注射压力150最小模具厚度380注射速率145模具定位孔直径160塑化能力82喷嘴球半径20螺杆的转速0-80喷嘴口直径4锁模力16004)注射机有关参数的校核1)由注射机的料筒的塑化能力来核模具的型腔的数量n。

小瓶盖塑料注塑模具设计说明书

小瓶盖塑料注塑模具设计说明书

小瓶盖塑料注塑模具设计说明书小瓶盖塑料注塑模具设计说明书一、引言本文档旨在详细说明小瓶盖塑料注塑模具的设计要求和技术规范,以确保设计和制造过程的准确性和可靠性。

二、设计需求1、尺寸要求:小瓶盖的外径为X毫米,内径为Y毫米,高度为Z毫米。

2、材料要求:模具材料为高强度工程塑料,具有耐磨、耐腐蚀和高温耐性能。

3、模具结构要求:采用分模式设计,包括模具外壳、进料系统、定位系统、冷却系统等。

三、模具结构设计1、模具外壳设计:a:外壳材料选择:选择耐腐蚀、耐磨性能好的工程塑料作为外壳材料,确保模具使用寿命长。

b:外壳尺寸:根据模具内部结构和小瓶盖尺寸确定外壳的高度、直径和厚度。

c:模具外壳装配:确保外壳的装配牢固,能够承受注塑过程中的压力和冲击。

2、进料系统设计:a:进料口位置:进料口位于模具外壳上方,方便塑料材料的注入和冷却。

b:进料系统结构:进料系统包括进料管道、进料阀门和喷嘴等组成,确保塑料均匀流动。

3、定位系统设计:a:定位杆:在模具内部设置定位杆,以确保小瓶盖注塑时的位置准确性。

b:定位孔:在小瓶盖上开设定位孔,使得小瓶盖能够准确地套在定位杆上。

4、冷却系统设计:a:冷却通道:在模具内部设置冷却通道,以降低注塑过程中的温度,提高生产效率和产品质量。

b:冷却介质:选择高效的冷却介质,如冷水或冷气等,快速降低模具温度。

四、模具制造要求1、加工工艺:采用先进的数控加工设备和工艺,确保模具的加工精度和表面光洁度。

2、查漏测试:在模具制造过程中进行查漏测试,确保模具没有任何渗漏。

五、附录本文档涉及以下附件:1、小瓶盖的详细尺寸图纸。

2、模具的3D设计图纸。

六、法律名词及注释1、注塑模具:指用于塑料注塑成型的模具,可分为热流道模具和冷流道模具。

2、工程塑料:指具有高强度、耐磨、耐腐蚀和高温耐性能的塑料材料。

3、渗漏:指模具在注塑过程中出现塑料渗漏的现象,对产品质量产生负面影响。

气压瓶盖注塑模设计说明

气压瓶盖注塑模设计说明

气压瓶盖注塑模毕业设计说明书第一章前言随着注射成型技术的不断发展,塑料制品已经深入到日常生活中的每—个角落。

由于塑料件具有重量轻,生产方便,价格便宜,放大到成人用品,小到儿童玩具,几乎全部采用塑料件生产。

塑料件的模具结构设计,应根据企业实际生产的具体要求来进行模具结构设计。

模具生产水平的高低,已成为衡量一个国家产品制造水平高低的重要标志,因为模具在很大程度上决定着产品成本质量、效益和新产品的开发能力。

注射成型在整个塑料制品生产行业占有非常重要的地位,目前,除少数几种塑料外,几乎所有的塑料品种都可以采用注射成形。

据统计,注射制品约占所有塑料制品总产量的30%,全世界每年生产的注射模数量约占所有塑料成型模具数量的50%。

早期的注射成型方法主要用于生产热塑性塑料制品,随着塑料工业的迅速发展以及塑料制品的应用范围不断扩大,目前的注射成形方法已经推广应用到热固性塑料制品和一些塑料复合材料制品的生产中。

例如,日本的酚醛(热固性塑料)制品生产过去基本上依靠压缩和压注方法生产,但目前已经有70%被注射成型所取代。

注射成型方法不仅广泛应用于通用塑料制品生产,而且就工程塑料而言,它也是一种最为重要的成型方法。

据统计,在当前的工程塑料制品中,80%以上都要采用注射成型的方法。

所以作为机械专业的学生,对模具设计的了解是必须的。

本设计是对气压瓶盖的注塑模进行设计,通过对塑件的分析,塑件体积不大,为了提高效率,采用的是一模两腔成型,并同时采用侧向抽芯机构。

设计中,依次对模具的浇注系统、成型零件、推出机构、侧向抽芯机构等各部分进行了设计及必要的计算,并利用绘图软件AutoCAD、Pro/e画出了整体装配图及主要零件图。

在说明书中适当加入了零件的插图以便详细说明。

本设计的研究目的:1、检验理论知识掌握情况,将理论与实践结合。

2、逐步掌握进行模具设计的方法、过程,为将来走向工作岗位打下基础。

3、培养自己的动手能力、创新能力、计算机运用能力。

模具毕业设计58瓶盖注射模设计说明书

模具毕业设计58瓶盖注射模设计说明书

塑料模设计说明书系别:机械工程系专业:模具设计与制造班级:姓名:学号:指导老师:12月13日一、塑件工艺特性1、塑件所使用的材料的种类及工艺特性的分析:聚苯乙烯是通用热塑性塑料。

聚苯乙烯树脂是无色、透明并有光泽的非结晶型线型结构的高聚物。

其原料来源广泛,石油工业的发展促进了聚苯乙烯大规模的生产。

目前,它的产量仅次于聚乙烯和聚氯乙烯,居于第三位。

2、塑件的成型特点分析:聚苯乙烯成型性能优良,其吸水性小,成型前可不进行干燥;收缩小,制品尺寸稳定;比热容小,可很快加热塑化,且塑化量较大,故成型速度快,生产周期短,可进行高速注射;流动性好,可采用注射、挤出、真空等各种成型方法。

但注射成型时应防止淌料;应控制成型温度、压力和时间等工艺条件,以减少内应力。

3、塑件结构分析:从塑件外型看,总体为一个圆形阶梯壳体零件,表面要求光滑,并带圆弧,有较细长的排气孔和装配孔。

二、塑件的体积与质量的计算该产品材料为ps,查资料得知其密度为1.054 g/cm3,收缩率为0.6%~0.8%。

利用PRO/E计算得塑件的体积V=4.894cm3塑件质量:M=Vρ=1.054g/cm3×4.894cm3≈5.158g三、注塑机的确定根据原材料和塑料制件的各种参数,初定注射机的型号为:G54-S200/400,其有关参数如下:(参照教材表4.2)注塑机的最大注塑量:200~400cm3;螺杆直径:55mm注射压力:109MPa ;注射行程:160mm注射方式:螺杆式;锁模力:2540KN最大成型面积:645 cm3;最大开合模行程:260cm最大模厚:406mm ;最小模厚:165mm喷嘴圆弧半径:R18mm ;喷嘴孔直径:Ф4mm注塑机拉杆空间:290×368mm 动、定模固定尺寸:532×634mm四、注射模设计1、型腔的确定该塑料结构简单,采用的是一模两腔,为了实现各型腔均匀进料和达到同时充满型腔的目的,采用平衡式布局。

塑料盖注射模具课程设计说明书

塑料盖注射模具课程设计说明书

目录1. 塑件的分析 (2)2. PC塑料的性能分析 (2)3. PC的注射成型过程及工艺参数 (3)1)注射成型过程 (3)2)注射工艺参数 (3)1. 分型面位置的确定 (4)2. 型腔数量和排位方式的确定 (4)3. 注射剂型号的确定 (4)1)注射量的计算 (4)2)浇注系统凝料体积的初步估算 (6)3)选择注塑机 (6)4)注射机的相关参数的校核 (6)1、主流道的设计 (7)1)主流道尺寸 (7)2)主流道的凝料体积 (8)3)主流道当量半径 (8)4)主流道浇口套的形式 (8)2、分流道设计 (9)1)分流道的布置形式 (9)2)分流道的长度 (9)3)分流道的当量直径 (9)4)分流道的截面形状 (9)5)分流道界面尺寸 (9)6)凝料体积 (10)7)校核剪切速率 (10)8)分流道的表面粗糙度和脱模斜度 (11)3、浇口的设计 (11)1)侧浇口尺寸的确定 (11)2)侧浇口的剪切速率的校核 (11)4、校核主流道的剪切速率 (12)1)计算主流道的体积流量 (12)2)计算主流道的剪切速率 (12)5、冷料穴的设计及计算 (12)1、成型零件的机构设计 (12)2、成型零件钢材选用 (12)3、成型零件工作尺寸的计算 (12)4、成型零件尺寸及动模垫板厚度的计算 (15)1、脱模力的计算 (16)2、推出方式的确定 (17)1)采用推杆推出 (17)2)采用推件板推出时的推出面积 (17)1、各模板尺寸的确定 (17)2、模架各尺寸的校核 (18)1、冷却介质 (19)2、冷却系统的简单计算 (19)参考文献 (21)[1]伍先明,张蓉,杨军,周志冰. 塑料模具设计指导[M]. 国防工业出版社.2011. (21)[2]李德群,唐志玉. 塑料与橡胶模具设计[M]. 北京:电子工业出版社.2007. (21)[3]李建军,李德群. 模具设计基础及模具CAD[M]. 机械工业出版社.2005. (21)[4]叶久新,王群. 塑料成型工艺及模具设计[M]. 北京:机械工业出版社.2007. (21)一、塑料盖注射模设计本课程设计为一塑料盖,如图1所示。

高压瓶盖注塑模设计说明书

高压瓶盖注塑模设计说明书

目录摘要 (1)关键词 (1)1前言 (2)2选题背景 (2)2.1选题的目的及意义 (2)2.2国内的现状及发展趋势 (2)2.2.1国内的现状 (2)2.2.2发展趋势 (3)2.3国外的现状 (4)3注射成型工艺规程的编制 (4)3.1塑件的工艺性分析 (4)3.1.1塑件的原材料分析 (4)3.1.2 塑件的结构和尺寸精度及表面质量分析 (4)3.2计算塑件的体积和重量 (5)3.3塑件注射工艺参数的确定 (6)3.4塑料成型设备参数 (6)3.4.1注射量的校核 (7)3.4.2注射压力的校核 (7)3.4.3锁模力的校核 (7)4注射模的结构设计 (8)4.1分型面的选择 (8)4.2确定型腔的数目及排列方式 (9)4.2.1按注射机的塑化能力确定型腔的数量 (9)4.2.2按注射机的最大注射量确定型腔的数量 (10)4.3浇注系统的设计 (9)4.3.1主流道的设计 (10)4.3.2分流道的设计 (11)4.3.3浇口的设计 (11)4.3.4冷料井和拉料杆的设计 (12)4.4排气系统的设计 (13)4.5成型零部件结构设计 (13)4.5.1凹模结构设计 (13)4.5.2型芯结构设计 (14)4.6合模导向机构设计 (15)4.6.1导柱设计 (15)4.6.2导套设计 (15)4.7推出机构设计 (16)4.7.1脱模力的计算 (16)4.7.2推杆尺寸的计算及机构设计 (18)4.7.3复位机构设计 (19)4.8侧抽芯机构设计 (19)4.8.1抽芯机构的选择 (20)4.8.2塑件左侧小孔的抽芯 (20)4.8.3塑件右侧小孔的抽芯 (21)4.8.4凸筋处的抽芯机构 (21)4.8.5斜导柱的结构设计 (22)4.8.6滑块 (23)4.8.7滑块的导槽 (24)4.9温度调节系统的设计 (24)4.9.1加热系统的设计 (24)4.9.2冷却系统的设计 (24)5模具零件的计算 (25)5.1型腔工作尺寸的计算 (25)5.1.1型腔径向尺寸计算 (25)5.1.2型腔深度尺寸计算 (26)5.2型芯工作尺寸计算 (26)5.2.1型芯径向尺寸计算 (26)5.2.2型芯高度尺寸计算 (27)5.3型腔侧壁厚度和底板厚度计算 (27)5.3.1型腔侧壁厚度计算 (28)5.3.2型腔底板厚度计算 (28)5.4冷却系统的有关计算 (29)5.4.1冷却水体积流量的计算 (29)5.4.2冷却水孔直径的确定 (30)5.4.3冷却管道总传热面积的计算 (30)5.4.4冷却水孔数目的计算 (30)5.4.5冷却水路的分布 (30)5.5斜导柱侧分型与抽芯的有关计算 (31)5.5.1抽拔力的计算 (31)5.5.2抽芯距的计算 (32)5.5.3斜导柱倾角 的确定 (32)5.5.4斜导柱的长度计算 (32)5.5.5斜导柱直径的计算 (33)5.5.6最小开模行程的计算 (33)6注射机有关参数的校核 (34)6.1模具闭合厚度校核 (34)6.2喷嘴尺寸校核 (34)6.3模具安装尺寸校核 (34)6.4开模行程的校核 (34)7模具的工作原理 (35)8结论和总结 (35)8.1结论 (35)8.2总结 (35)参考文献 (36)致谢 (37)高压瓶盖注塑模具设计摘要:本设计详细介绍了高压瓶盖注塑模具设计,选用了ABS作为塑件的材料能够满足高压瓶盖的使用性能及注射模具的成性特点。

瓶盖注塑模具设计

瓶盖注塑模具设计

瓶盖注塑模具设计11 塑料的成型基础1.1 聚⼄烯的特征、性能分析及结构设计1.1.1 聚⼄烯的特征LDPE中⽂名:低密度聚⼄烯英⽂名:Low density polyethylene低密度聚⼄烯是⼀种⾼分⼦的直链烷烃,外观上是⽩⾊蜡状固体,微显⾓质状。

⽆毒、⽆味、呈乳⽩⾊。

密度为0.94~0.965g/cm3,有⼀定的机械强度,具有较好的柔软性、耐冲击性及透明性,但和其他塑料相⽐机械强度低,表⾯硬度差。

聚⼄烯的绝缘性能优异,常温下聚⼄烯不溶于任何⼀种已知的溶剂,并耐稀硫酸、稀硝酸和任何浓度的其他酸以及各种浓度的碱、盐溶液。

聚⼄稀有⾼度的耐⽔性,长期与⽔接触其性能可保持不变。

其透⽔⽓性能较差,⽽透氧⽓和⼆氧化碳以及许多有机物质蒸⽓的性能好。

在热、光、氧⽓的作⽤下会产⽣⽼化和变脆。

⼀般使⽤温度约在80 o C左右。

能耐寒,在-60 o C时仍有较好的⼒学性能,-70 o C时仍有⼀定的柔软性。

它质轻,吸⽔性⼩,电绝缘性优良,延伸性、透明性好,适⽤于薄膜,⽇⽤品等。

表1-1 低密度聚⼄烯各项性能参数表⼒学、热性能成型条件1.1.2 聚⼄烯的成型特性结晶形塑料,吸湿性⼩,成型前可不预热,熔体粘度⼩,成型时不易分解,流动性极好,溢边2值为0.02mm左右,流动性对压⼒变化敏感,加热时间长则易发⽣分解。

冷却速度快,必须充分冷却,设计模具时要设冷料⽳和冷却系统。

收缩率⼤,⽅向性明显,易变形、翘曲,结晶度及模具冷却条件对收缩率影响⼤,应控制模温。

宜⽤⾼压注射,料温要均匀,填充速度应快,保压要充分。

不宜采⽤直接浇⼝注射,否则会增加内应⼒,使收缩不均匀和⽅向性明显。

应注意选择浇⼝位置。

质软易脱模,塑件有浅的侧凹时可强⾏脱模。

聚⼄烯的收缩率绝对值及其变化范围很⼤,在塑料材料中很突出,低密度聚⼄烯收缩率在之间,这是由其具有较⾼的结晶度及结晶度会在很⼤范围内变化所决定的。

聚⼄烯熔体容易氧化,成型加⼯中应尽可能避免熔体与氧直接接触。

矿泉水瓶盖注射模具设计说明书

矿泉水瓶盖注射模具设计说明书

毕业设计(论文)矿泉水瓶瓶盖注塑模设计系别:机械与电子工程系专业(班级):机械设计制造及其自动化11级升本作者(学号):任方成(51101090008)指导教师:王贤才完成日期:2013年5月16日目录中文摘要 (3)英文摘要 (4)1 前言 (5)1.1 本研究领域的现状和国内外的发展趋势 (5)1.1.1 概述 (5)1.1.2 国外的发展情况 (5)1.1.3 国内的发展情况 (6)1.2 本课题的研究内容、要求、目的及意义 (6)1.2.1 本课题的研究内容 (6)1.2.2 本课题的研究要求 (7)1.2.3 本课题的研究目的 (7)1.2.4 研究意义 (7)2 注塑模具设计部分 (8)2.1 塑件分析 (8)2.2 塑料材料的成型特性 (8)2.3 设备的选择 (9)2.3.1 塑件的体积 (9)2.3.2 锁模力的校核 (11)2.3.3 开模行程的校核 (12)2.4 浇注系统的设计 (12)2.4.1 主流道的设计 (12)2.4.2 分流道的设计 (12)2.4.3 冷料穴的设计 (14)2.4.4 设计所用的浇口形式 (14)2.4.5 分型面的设计 (15)2.4.6 排气槽的设计 (15)2.5 成型零部件的设计和计算 (15)2.5.1 成型零部件的设计 (15)2.5.2 成型零件工作尺寸的计算 (15)2.5.3 型腔壁厚计算 (18)2.6 脱模机构的设计和计算 (20)2.6.1 脱模阻力的计算 (20)2.6.2 脱模机构的设计 (21)2.7 脱螺纹机构的设计 (21)2.7.1 脱螺纹的形式 (21)2.7.2 旋转脱螺纹扭距的计算 (21)2.7.3 对主流道凝料能否脱出的校核 (22)2.7.4 止转装置的设计 (23)2.7.5 驱动装置和传动装置的设计和计算 (23)2.8 合模导向机构的设计 (27)2.8.1 顶出系统的导向 (27)2.8.2 成型零件的导向及定位 (28)2.9.1 冷却系统的设计 (28)2.9.2 模具冷却时间的计算 (29)2.9.3 冷却参数的计算 (30)2.10 支承与连接零件的设计与选择 (31)2.10.1 非标零件的设计 (31)2.10.2 标准零件的选取 (31)结论 (32)谢辞 (33)参考文献 (34)图2-1塑件2D图 (8)图2-2浇口套 (13)图2-3分流道的设计 (14)图2-4主流道冷料穴和拉料装置 (14)图2-5分流道浇口 (15)图2-6型芯与塑件 (16)图2-7支撑柱 (28)图2-8导柱和导套的设计 (28)图2-9冷却水道的设计 (29)表2-1聚丙烯的力学性能 (8)表2-2聚丙烯的热性能及电性能 (9)表2-3聚丙烯的物理性能 (9)表2-4聚丙烯的工艺参数 (9)表2-5一模两腔 (11)表2-6设计中所用螺钉 (31)表2-7设计中所用螺母 (31)矿泉水瓶盖注射模具设计摘要:本文详细介绍了矿泉水瓶盖注射模具的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 塑件成型分析1.1设计概述随着中国当前的经济形势的高速发展,在“实现中华民族的伟大复兴”口号的倡引下,中国的制造业也蓬勃发展;而模具技术已成为衡量一个国家制造业水平的重要标志之一,模具工业能促进工业产品生产的发展和质量提高,并能获得极大的经济效益,因而引起了各国的高度重视和赞赏。

在日本,模具被誉为“进入富裕的原动力”,德国则冠之为“金属加工业的帝王”,在罗马尼亚则更为直接:“模具就是黄金”。

可见模具工业在国民经济中重要地位。

我国对模具工业的发展也十分重视,早在1989年3月颁布的《关于当前国家产业政策要点的决定》中,就把模具技术的发展作为机械行业的首要任务。

近年来,塑料模具的产量和水平发展十分迅速,高效率、自动化、大型、长寿命、精密模具在模具产量中所战比例越来越大。

注塑成型模具就是将塑料先加在注塑机的加热料筒,塑料受热熔化后,在注塑机的螺杆或柱塞的推动下,经过喷嘴和模具的浇注系统进入模具型腔,塑料在其中固化成型。

本次课程设计的主要任务是塑料圆盖注塑模具的设计,也就是设计一副注塑模具来生产圆盖塑件产品,以实现自动化提高产量。

针对圆盖的具体结构,通过此次设计,使我对轮辐式浇口单分型面模具的设计有了较深刻的认识;同时,在设计过程中,通过查阅大量资料、手册、标准等,结合教材上的知识也对注塑模具的组成结构(成型零部件、浇注系统、导向部分、推出机构、侧抽机构、模温调节系统)有了系统的认识,拓宽了视野,丰富了知识,为将来独立完成模具设计积累了一定的经验。

1.2 塑件成型工艺性分析1.2.1 塑件分析塑件模型如图1-1所示(为计算需要仅标注几个重要尺寸本图见型中图)图1-1 塑料盖子1.2.2塑件的结构及成型工艺性分析结构分析:该塑件为瓶子罐盖子,其结构应尽可能的简单且维度和钢管应满足需要,塑件的顶部没有两个对称的孔,用于安装提手,部有简单的螺纹,用于和罐子连接紧密。

线性工艺性分析:1.精度等级:采用一班精度4级2.脱模斜度:改塑件件壁厚1.5mm,其脱模斜度查表得到塑件材料为聚丙烯pp ,其型腔脱横斜度为:25~45.其型蕊脱横斜度为:20~45.由于该塑件没有狭小部位,所以脱横斜度取1。

1.3 热塑型塑料(PP)能注射成型过程及工艺参数注射成型工艺进程包括:成型前的准确、注射成型过程以及塑件的最后处理三个阶段。

成型前的准确 1 分析检验成型物料质量:根据塑料工艺性能要求,检验其性能各种指标,如含水量等,对于该塑件材料pp 查表8-6-1的聚丙烯pp吸水率<0.03%,允许水含量为0.05%~0.20%,由于该塑料不易吸水,故可以不进行干燥处理。

2 料筒的清洗在注射成型过程中,当改变产品、更换原料及颜色时均需清洗料筒。

通常,柱塞式料筒可拆卸清洗,而螺杆式料筒可采用对空注射清洗。

结构分析:该塑件为瓶子罐盖子,其结构应尽可能的简单且维度和钢管应满足需要,塑件的顶部没有两个对称的孔,用于安装提手,部有简单的螺纹,用于和罐子连接紧密。

线性工艺性分析:1.精度等级:采用一班精度4级(1)脱模斜度:改塑件件壁厚 1.5mm,其脱模斜度查表得到塑件材料为聚丙烯pp 其型腔脱横斜度为:25~45.其型蕊脱横斜度为:20~45.由于该塑件没有狭小部位,所以脱横斜度取1。

注射成型过程。

注射成型工艺进程包括:成型前的准确、注射成型过程以及塑件的最后处理三个阶段。

(2)成型前的准确 1 分析检验成型物料质量:根据塑料工艺性能要求,检验其性能各种指标,如含水量等,对于该塑件材料pp 查表8-6-1的聚丙烯pp 吸水率<0.03%,允许水含量为0.05%~0.20%,由于该塑料不易吸水,故可以不进行干燥处理。

2 料筒的清洗在注射成型过程中,当改变产品、更换原料及颜色时均需清洗料筒。

通常,柱塞式料筒可拆卸清洗,而螺杆式料筒可采用对空注射清洗。

(3)注射过程。

注射过程是塑料转变为塑件的主要阶段。

它包括加料、塑化、注射、保压、冷却定型、脱模等步骤。

(4)塑件后的处理。

塑件经注射成型后出去浇口凝料,修饰浇口处余料及飞边毛刺外,常需要进行适当的后处理借以改善和提高塑件的性能,塑件的后处理主要指退火和调湿处理。

通过查阅参考文献[1]得该塑件不需要任何后处理。

(5)聚丙烯(PP)的注射工艺参数①料筒温度:如图1-1所示括号的温度作为基本设定值。

表1-1料筒温度②熔料温度:2200~2500③料筒恒温:220c0④模具温度:80c0~90c0⑤注射压力:PP具有很好的流动性能,避免采用过高的注射压力,一般在80MPa~140MPa之间;一些薄壁包装容器除可达到180MPa⑥保压压力:避免制品产生缩壁,需要较长时间对制品进行保压(约为循环时间的30%);约为注射压力的30%~60%⑦背压:2MPa~5MPa⑧注射速度:对薄壁包装容器需要高的注射速度;中速比较适用其它⑨螺杆转速:高螺杆转速(线速度为1.3m/s)是允许的,只要满足冷却时间结束前完成塑化过程就可以。

⑩计量行程:0.5D~4D;4D失误计量行程为熔料提供足够长的驻留时间。

2 模具结构形式的确定2.1分型面位置的确定通过对塑件结构形式的分析,分型面应选在端盖截面积最大且利于开模取出塑件的底平面上,其位置如图2-1所示图2-1 分型面标示图2.2型腔数量和排列方式的确定此塑体为的子罐是子,因此需要与其它塑体进行组合,尺寸频度要求高,并且具有侧抽芯机构,故述用单型腔模具.2.3模具结构型式的确定此塑体模具为单型腔,在定模带有抽芯滑块,所以是用单型腔的分型面模具,因为塑体外观质量,对精度要求高而采用点洗D时,或带有抽芯且滑块在定模时可采用此结构.3 注射机型号的确定3.1模具所需塑料熔体注射量,注射压力.21m nm m +=(3-1)式中 m 一副模具所需塑料的质量或体积(y 或3cm );N 一 初步选定的型腔数量;1m 一 单个塑体的质量成体积(y 或3cm );2m 一 浇注系统的质量或体积(y 或3cm )。

首先2m 是个未知量,在设计时以0.6nm 作为预测估算即m=1.6nm,用VG 软件绘测塑件图分析后得,体积为333cm即:m=1.6*33=52.83cm3.2塑体和流道凝科包括浇口在分型面上的投影面积及所需锁模力21A nA A +=(3-2))(21A nA F m +=P 型(3-3)式中 A 一 塑体及频道凝料在分型面上的投影面积(2mm );1A 一 单个塑体在分型面上的投影面积(2mm );2A 一 流道凝料包括浇口在分型面上的投影面积2mm ;m F 一 模具所需的锁模为(N );P 型 一 塑料熔体对型腔的平均压力(M Pa )。

首先2A 在模具设计前是未知值,根据多型腔模的统计分析,大致是每个塑体在分型面上投影面积1A 的0.2倍~0.5倍,因此可用0.35nA 来估算,P 型可查表得到为2.5MPa 。

2222152735.6235.05.62mm A nA A =⨯+=+=KN N P A nA F m 8.131131825255237)(21==⨯=+=型3.3选择注射机型号根据m 与Fm 值来选择注射机,注射机最大注射量(额定注射量G )应满足:KN F F m 8.131=>。

查塑料成型加工与模具书中附录6可选取XS-ZY-125型热塑性塑料注射机。

表3-1 XS-ZY-125型热塑性塑料注射机主要技术规格3.4 校核注射机技术参数(1) 注射压力的校核校核所选注塑机的额定压力p 能否满足塑件成型时所需要的注射压力p 0,设计中要求:p k p '≥式中'k --注射压力安全系数,常取'k =1.25 a a Mp Mp p k 1195.1129025.10'≤=⨯=(3-4)即注射压力适合。

(2) 锁模力的校核锁模力是指注射机的锁模机构对模具所施加的最大夹紧力。

因此,注射机的锁模力必须大于该模的胀型力。

即AP k F0≥型 式中 型p —型腔的平均计算压力0k —锁模力安全系数通常取0k =1.1~1.2型=kN kN 9002.1582552732.1≤=⨯⨯(3-5)即锁模力合适。

(3) 注射机安装模具部分相关尺寸的校核由于模具模架未确定,结构尺寸还未涉及,因此,对于其他安装尺寸的校核要等到模架选定,结构尺寸确定后方可进行。

4 浇注系统的设计浇注系统的作用,是将塑料熔体顺利地充满到型腔各处,以便获得外形轮廓清晰,在质量优良的塑件。

浇注系统一般由主流道、分流道、浇口和冷料穴组成。

4.1主流道的设计主流道通常位于模具中心塑料熔体的入口处,它将注射机喷嘴注射出的熔体导入分流道或型腔中。

主流道的形状为圆锥形,以便熔体的流动和开模时主流道凝料的顺利拔出。

主流道的尺寸直接影响到熔体的流动速度和充模时间。

另外,由于主流道与高温塑料熔体及注射机喷嘴反复接触,因此设计中常设计成可拆卸更换的浇口套。

(1)主流道的尺寸主流道的长度。

一般由模具结构确定,对于小型模具L应尽量小于60mm,本次设计中初取45mm进行计算。

主流道小端直径。

d=注射机喷嘴尺寸+(0.5~1)mm=5mm。

(4-1)tanα=8mm,式中α=4°。

主流道大端直径。

D=d+L主(4-2)主流道球面半径。

SR=注射机喷嘴球头半径+(1~2)mm=12+2=14mm。

(4-3)球面的配合高度。

h=3~5mm,取h=3mm。

(4-4)浇口套总长。

L=L 主+h=45+3=48mm 。

(4-5)(2) 主流道的剪切速率的校核主流道的凝料体积V主=L 主(R 主2+r 主2+R 主r 主)π/3=1518.975mm 3(4-6)主流道当量半径 mm Rn 25.32/)45.2(=+= 主流道的剪切速率 303.3n R q r π=(4-7) 其中 r —主流道剪切速率,可在r=132)105~105(-⨯⨯s 围取较大值;-nR 主流道平均半径(cm) -v q 模具的体积流量t s cm v /v q ),/(3=而-v 通过主流道熔体体积)(3cm-t 最短注射时间(S )。

(查表得t=1.6s) s v v t v q v /mm 215726.11684.32996975.15186.13=+=+==塑主 (4-8) 13366025.314.3/215723.33.3-=⨯⨯==s R q r nv π (4-9)主流道的剪切速率处于浇口与分流道的最佳剪切速率500~50001-s 之间 所以,主流道的剪切速率合格。

4.2 浇口的设计浇口亦称进料口,是连接分流道与型腔的通道,除直接浇口外,它是浇注系统中截面最小的部分,但却是浇柱系统中的关键部分,浇口的位置、形状及尺寸对塑件性能和质量的影响很大。

相关文档
最新文档