陕西中考数学24题汇总

合集下载

2024年陕西中考数学试卷及其答案

2024年陕西中考数学试卷及其答案

2024年陕西中考数学试卷及其答案一、选择题1.首先,我们来看看第一题。

小明在购物网站上购买了一双鞋子,原价为120元,打了8折。

请问小明购买这双鞋子时需要支付多少钱?A)100元 B)108元 C)112元 D)120元答案:B)108元解析:根据题意,小明购买时可以享受8折优惠,也就是原价的80%。

所以,所需支付的金额为120元乘以80%,即120\*0.8=96元,即108元。

2.接下来,我们看看第二题。

某班有60名学生,其中男生占总人数的40%,女生人数是男生人数的一半,那么女生的人数是多少?A)12人 B)16人 C)20人 D)24人答案:D)24人解析:根据题意,男生人数占总人数的40%,即0.4\*60=24人。

女生人数是男生人数的一半,所以女生人数为24人的一半,即12人。

3.下面是第三题。

某数的12倍减去3等于27,这个数是多少?A)2 B)3 C)4 D)5答案:B)3解析:设这个数为x,根据题意可以得到12x-3=27,将等式两边加上3,则有12x=30,再将等式两边除以12,可以得到x=2.5。

所以,这个数是3。

二、填空题1.请计算下面各式的结果:(1)16÷4×(2+4)=?答案:24解析:根据运算法则,先进行括号内的运算2+4=6,然后再进行除法运算16÷4=4,最后再进行乘法运算4×6=24。

(2)3\*5÷3+2=?答案:7解析:根据运算法则,先进行乘法运算3\*5=15,然后进行除法运算15÷3=5,最后进行加法运算5+2=7。

2.某公司现有员工300人,其中男员工占总人数的40%,女员工和其他员工人数的比值为2:3,那么女员工人数是多少?答案:120人解析:根据题意,男员工人数占总人数的40%,即0.4\*300=120人。

女员工和其他员工人数的比值为2:3,即女员工人数为总人数的2/5乘以300,即(2/5)×300=120人。

2015陕西中考数学典题专练系列:中考第24题之二次函数典型题精选(pdf版)

2015陕西中考数学典题专练系列:中考第24题之二次函数典型题精选(pdf版)

中考数学24题之二次函数精练(2015•工大3模)如图,抛物线经过A (4,0)、B (1,0)、C (0,﹣2)三点.(1)求此抛物线的解析式;(2)P 是第一象限内抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.(2015•铁一1模)如图所示,已知平面直角坐标系xOy ,抛物线y=﹣x 2+bx+c 过点A (4,0)、B (1,3).(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(2015•高新2模)如图,在平面直角坐标系中,△ABC 是直角三角形,且∠BAC =90°,∠ACB =30°,点A 的坐标为(0,3).(1)求点B 和点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的表达式;(3)设点M 是(2)中抛物线的顶点,P 、Q 是抛物线上的两点,要使△MPQ 为等边三角形,求点P 、Q 的坐标.(2015•师大4模)如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,).(1)求抛物线的函数表达式;(2)设抛物线的对称轴与x 轴交于点D ,试在对称轴上找出点P ,使△CDP 为等腰三角形,请直接写出满足条件的所有点P 的坐标;(3)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由.(2015•工大5模)如图,在平面直角坐标系中,抛物线y=ax 2+bx+3与x 轴交于点A (﹣4,0),B (﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D .①如图(1),若四边形ODAE 是以OA 为对角线的平行四边形,当平行四边形ODAE 的面积为6时,请判断平行四边形ODAE 是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q 、C 两点,过点D 作直线DF ⊥x 轴于点H ,交QC 于点F .请问是否存在这样的点D ,使点D 到直线CQ 的距离与点C 到直线DF 的距离之比为:2?若存在,请求出点D 的坐标;若不存在,请说明理由.(2015•师大2模)如图,抛物线y=ax 2+bx+c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 和点B ,其中点A 的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D ,与直线BC 交于点E .(1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F 使四边形ABFC 的面积为17,若存在,求出点F 的坐标;若不存在,请说明理由;(3)平行于DE 的一条动直线l 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.中考数学24题之二次函数答案(2015•工大3模)如图,抛物线经过A (4,0)、B (1,0)、C (0,﹣2)三点.(1)求此抛物线的解析式;(2)P 是第一象限内抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.m m )代入得,(x x 点纵坐标为:m m ==时,(﹣m m ==时,(﹣m m(2015•铁一1模)如图所示,已知平面直角坐标系xOy ,抛物线y=﹣x 2+bx+c 过点A (4,0)、B (1,3).(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.(2015•高新2模)如图,在平面直角坐标系中,△ABC 是直角三角形,且∠BAC =90°,∠ACB =30°,点A 的坐标为(0,3).(1)求点B 和点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的表达式;(3)设点M 是(2)中抛物线的顶点,P 、Q 是抛物线上的两点,要使△MPQ 为等边三角形,求点P 、Q 的坐标.【分析】(1)根据在Rt △AOC 中,∠ACB 的正切值求出OC 的值,在Rt △ABO 中,∠ACB 的正切值求出OB 的值即可求解;(2)设该抛物线的表达式为y=ax2+bx+c ,将A ,B ,C 三点的坐标代入解析式可得方程组,解方程组即可求解;(3)由(2)可得),要使△MPQ 为等边三角形,只要PQ ,设NQ =m ,则NP =m ,MN =3m ,将点P 或点Q 的坐标代入抛物线解析式求得m 即可求解.【解析】解:(1).在Rt △AOC 中,OC= OA/tan30°= 在Rt △ABO 中,OB=OA tan30°, ∴B(,C((2).设该抛物线的表达式为y=ax2+bx+c 根据题意得,c=327a+3a 解得:a=13-,,c=3 ∴所求抛物线的表达式为y=13-x 2x+3. (3).由(2)可得,如图,要使△MPQ 为等边三角形,只要PQ , 设NQ =m ,则NP =m ,MN,∴,;∴13-2-m)+3. 解得m=m=0(不符合题意舍去),∴,【点评】本题主要考查了二次函数的综合应用.熟练掌握和理解二次函数的综合应用,二次函数解析式的求法,等边三角形的性质,直角三角形中三角函数值的求法等知识,这是解答此题的关键所在.(2015•师大4模)如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,).(1)求抛物线的函数表达式;(2)设抛物线的对称轴与x 轴交于点D ,试在对称轴上找出点P ,使△CDP 为等腰三角形,请直接写出满足条件的所有点P 的坐标;(3)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由.,然后将与,﹣)x x+,配方后即可求得最大值,从而求得)=4()),(=0(与= ×EBMF= = ﹣ x x+=(<(2015•工大5模)如图,在平面直角坐标系中,抛物线y=ax 2+bx+3与x 轴交于点A (﹣4,0),B (﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D .①如图(1),若四边形ODAE 是以OA 为对角线的平行四边形,当平行四边形ODAE 的面积为6时,请判断平行四边形ODAE 是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.,解得x x+3OA.x x+3=,,﹣)或(﹣))时,)时,CN=m m+3m+3m﹣mm m=m﹣(m m+3m﹣mm m=m或m m+3=﹣(﹣,﹣)的坐标为(﹣,﹣)(2015•师大2模)如图,抛物线y=ax 2+bx+c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 和点B ,其中点A 的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D ,与直线BC 交于点E .(1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F 使四边形ABFC 的面积为17,若存在,求出点F 的坐标;若不存在,请说明理由;(3)平行于DE 的一条动直线l 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.﹣﹣,x ,﹣t t OB OC﹣)﹣.若以m(﹣m,解方程﹣m,求出)﹣(﹣m m m,2+﹣2+=1,x,﹣ttOB×(﹣tOC×,x(,,)﹣.,﹣mm﹣mm,解得:)﹣(﹣=m±,经检验适合题意,﹣2+2+﹣,。

陕西中考数学第24题二次函数专题整理

陕西中考数学第24题二次函数专题整理

24.(本题满分10分)(2007陕西)如图,在直角梯形OBCD 中,8110OB BC CD ===,,. (1)求C D ,两点的坐标;(2)若线段OB 上存在点P ,使PD PC ⊥,求过D P C ,, 三点的抛物线的表达式.24.(本题满分10分)(2008陕西副题)如图,在Rt △ABC 中,∠A=90°,∠ABC=60°,OB=1,OC=5. (1)求经过B 、A 、C 三点的抛物线的表达式; (2)作出△ABC 关于y 轴对称的△C B A ''';(3)经过B '、A '、C '三点的抛物线能否由(1)中的抛物线平移得到?若能,怎样得到?若不能,请说明理由.DCB P O yx(第24题图)24、(本题满分10分)(2008陕西) 如图,矩形ABCD 的长、宽分别为32和1,且OB =1,点E (32,2),连接AE 、ED 。

(1)求经过A 、E 、D 三点的抛物线的表达式;(2)若以原点为位似中心,将五边形AEDCB 放大,使放大后的五边形的边长是原五边形对应边长的3倍,请在下图网格中画出放大后的五边形A ′E ′D ′C ′B ′;(3)经过A ′、E ′、D ′三点的抛物线能否由(1)中的抛物线平移得到?请说明理由。

24.(本题满分10分)(2009陕西副)如图,一条抛物线经过原点,且顶点B 的坐标(1,-1). (1)求这个抛物线的解析式;(2)设该抛物线与x 轴正半轴的交点为A ,求证:△OBA 为等腰直角三角形;(3)设该抛物线的对称轴与x 轴的交点为C ,请你在抛物线位于x 轴上方的图象上求两点E 、F ,使△ECF 为等腰直角三角形,且∠EOF=90°1 2 3 4 5 6 7AB CE DOxy16 4 2 3 57 (第24题图)24.(本题满分10分)(2009陕西)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标; (2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△.24.(本题满分10分)(2010陕西副)如图,在平面直角坐标系中,△ABC 是直角三角形,且∠BAC=90°,∠ACB=30°,点A 的坐标为(0,3).(1)求点B 和点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的表达式;(3)设点M 是(2)中抛物线的顶点,P 、Q 是抛物线上的两点,要使△MPQ 为等边三角形,求点P 、Q 的坐标.yOB Ax1 1(第24题图)(第24题图)24.(本题满分10分)(2009陕西)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标; (2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△.24.(本题满分10分)(2010陕西副)如图,在平面直角坐标系中,△ABC 是直角三角形,且∠BAC=90°,∠ACB=30°,点A 的坐标为(0,3).(1)求点B 和点C 的坐标;(2)求经过A 、B 、C 三点的抛物线的表达式;(3)设点M 是(2)中抛物线的顶点,P 、Q 是抛物线上的两点,要使△MPQ 为等边三角形,求点P 、Q 的坐标.yOB Ax1 1(第24题图)(第24题图)(2010陕西)24.如图,在平面直角坐标系中,抛物线A (-1,0),B (3,0)C (0,-1)三点。

2023年陕西省中考数学真题及参考答案

2023年陕西省中考数学真题及参考答案

2023年陕西省中考数学真题及参考答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项时符合题意的)1.计算:=-53()A .2B .2-C .8D .8-2.下列图形中,既是轴对称,又是中心对称图形的是()3.如图,AB l ∥,B A ∠=∠2.若︒=∠1081,则2∠的度数为()A .︒36B .︒46C .︒72D .︒824.计算:=⎪⎭⎫⎝⎛-⋅332216y x xy A .543y x B .543y x -C .633y x D .633y x -5.在同一平面直角坐标系中,函数ax y =和a x y +=(a 为常数,0<a )的图象可能是()6.如图,DE 是ABC ∆的中位线,点F 在DB 上,BF DF 2=.连接EF 并延长,与CB 的延长线相交于点M .若6=BC ,则线段CM 的长为()A .213B .7C .215D .87.陕西饮食文化源远流长,“老碗面”是山西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.弧AB 是☉O 的一部分,D 是弧AB 的中点,连接OD ,与弦AB 交于点C ,连接OB OA ,.已知cm AB 24=,碗深cm CD 8=,则☉O 的半径OA 为()A .cm13B .cm 16C .cm 17D .cm268.在平面直角坐标系中,二次函数m m mx x y -++=22(m 为常数)的图象经过点()60,,其对称轴在y 轴左侧,则该二次函数有()A .最大值5B .最大值415C .最小值5D .最小值415二、填空题(本大题共5小题,共15分)9.如图,在数轴上,点A 表示3,点B 与点A 位于原点的两侧,且与原点的距离相等.则点B 表示的数是.10.如图,正八边形的边长为2,对角线CD AB 、相交于点E .则线段BE 的长为.11.点E 是菱形ABCD 的对称中心,︒=∠56B ,连接AE ,则BAE ∠的度数为.12.如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点F C ,均在x 轴正半轴上,点D 在边BC 上,CD BC 2=,3=AB .若点E B ,在同一反比例函数的图象上,则这个反比例函数的表达式是.13.如图,在矩形ABCD 中,43==BC AB ,.点E 在边AD上,且3=ED ,N M 、分别是边BC AB 、上的动点,且BN BM =,P 是线段CE 上的动点,连接PN PM ,.若4=+PN PM .则线段PC 的长为.三、解答题(本大题共13小题,共81分.解答应写出文字说明,证明过程或演算步骤)14.(5分)解不等式:x x 2253>-.15.(5分)计算:()31271105-+⎪⎭⎫ ⎝⎛--⨯-.16.(5分)化简:11211132+-÷⎪⎭⎫⎝⎛---a a a a a .17.(5分)如图,已知ABC ∆,︒=∠48B ,请用尺规作图法,在ABC ∆内部求作一点P 使PC PB =,且︒=∠24PBC .(保留作图痕迹,不写作法)18.(5分)如图,在ABC ∆中,︒=∠50B ,︒=∠20C .过点A 作BC AE ⊥,垂足为E ,延长EA 至点D .使AC AD =.在边AC 上截取AB AF =,连接DF .求证:CB DF =.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法,求摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,公用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得cm DF 4.2=;当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为︒6.26.已知爸爸的身高m CD 8.1=,小明眼睛到底面的距离m EF 6.1=,点BD F 、、在同一条直线上,FB AB FB CD FB EF ⊥⊥⊥,,.求该景观灯的高AB .(参考数据:45.06.26sin ≈︒,89.06.26cos ≈︒,50.06.26tan ≈︒)22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在底面以上m 3.1处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高()m y 是其胸径()m x 的一次函数.已知这种树的胸径为m 2.0时,树高为m 20;这种树的胸径为m 28.0时,树高为m 22.(1)求y 与x 之间的函数表达式;(2)当这种树的胸径为m 3.0时,其树高是多少?23.(7分)某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是;(2)求这20个数据的平均数.分组频数组内小西红柿的总个数3525<≤x 1284535<≤x n1545545<≤x 94526555<≤x 636624.(8分)如图,ABC ∆内接于☉O ,︒=∠45BAC ,过点B 作BC 的垂线,交☉O 于点D ,并与CA 的延长线交于点E ,作AC BF ⊥,垂足为M ,交☉O 于点F .(1)求证:BC BD =;(2)若☉O 的半径3=r ,6=BE ,求线段BF 的长.25.(8分)某校想将新建图书馆的正门设计为一个抛物线型拱门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方、和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一:抛物线型拱门的跨度m ON 12=,拱高m PE 4=.其中,点N 在x 轴上,ON PE ⊥,EN OE =.方案二:抛物线型拱门的跨度m N O 8=',拱高m E P 6=''.其中,点N '在x 轴上,N O E P '⊥'',N E E O ''='.要在拱门中设置高为m 3的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD 的面积为1S ,点D A 、在抛物线上,边BC 在ON 上;方案二中,矩形框架D C B A ''''的面积为2S ,点D A ''、在抛物线上,边C B ''在N O '上.现知,小华已正确求出方案二中,当m B A 3=''时,22212m S =.请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一种,当m AB 3=时,求矩形框架ABCD 的面积1S ,并比较21S S ,的大小.26.(10分)(1)如图①,在OAB ∆中,OB OA =,︒=∠120AOB ,24=AB .若☉O 的半径为4,点P 在☉O 上,点M 在AB 上,连接PM ,求线段PM 的最小值.(2)如图②所示,五边形ABCDE 是某市工业新区的外环路,新区管委会在点B 处,点E 处是该市的一个交通枢纽.已知:︒=∠=∠=∠90AED ABC A ,m AE AB 10000==.m DE BC 6000==.根据新区的自然环境及实际需求,现要在矩形AFDE 区域内(含边界)修一个半径为m 30的圆形环道☉O ,过圆心O ,作AB OM ⊥,垂足为M ,与☉O 交于点N ,连接BN ,点P 在☉O 上,连接EP .其中,线段EP BN ,及MN 是要修的三条道路,要在所修道路EP BN ,之和最短的情况下,使所修道路MN 最短,试求此时环道☉O 的圆心O 到AB 的距离OM 的长.参考答案一、选择题题号12345678答案BCABDCAD二、填空题9.3-;10.22+;11.︒62;12.xy 18=;13.22三、解答题14.解:x x 453>-,543>-x x ,5>-x ,5-<x .15.解:原式12587258725+-=+--=-+--=.16.解:原式()()()()()()()111211121211113121111113-=-⋅--=-+⋅-++-=-+⋅⎦⎤⎢⎣⎡-++--+=a a a a a a a a a a a a a a a a a a 17.解:如图,点P 即为所求.18.证明:∵在ABC ∆中,︒=∠︒=∠2050C B ,,∴︒=∠-∠-︒=∠110180C B CAB ∵BC AE ⊥,∴︒=∠90AEC ,∴︒=∠+∠=∠110C AEC DAF .∴CABDAF ∠=∠又∵AB AF AC AD ==,,∴CAB DAF ∆≅∆∴CB DF =.19.解:(1)21(2)列表如下:由上表可知,共有16种等可能的结果,其中摸出的这两个小球上标有的数字之积是偶数的结果有7种.∴167=P .20.解:设该文具店中这种大笔记本的单价是x 元,根据题意得()62364=-+x x .解得8=x .∴该文具店中这种大笔记本的单价为8元.21.解:如图,∵FB AB FB CD ⊥⊥,,∴ABCD ∥∴FBFDAB CD =,∴AB AB CD AB FD FB 348.14.2==⋅=.过点E 作AB EF ⊥,垂足为H ,得矩形EFBH .∴6.16.1-=-====AB HB AB AH EF HB FB EH ,,.在AEH Rt ∆中,()6.125.06.16.26tan -=-=︒=AB AB AH EH .∴()6.1234-=AB AB ,∴8.4=AB .∴该景观灯的高AB 为m 8.4.22.解:(1)设()0≠+=k b kx y ,根据题意得⎩⎨⎧=+=+2228.0202.0b k b k ,解得⎩⎨⎧==1525b k .∴1525+=x y .(2)当3.0=x 时,5.22153.025=+⨯=y .∴当这种树的胸径为m 3.0时,其树高为m 5.22.23.解:(1)补全频数分布直方图如图所示;这20个数的众数为54.(2)()5036645215428201=+++⨯=x ∴这20个数的平均数是50.(3)所求总个数:1500030050=⨯.∴估计这300棵西红柿植株上小西红柿的总个数是15000个.24.(1)证明:如图,连接DC ,则︒=∠=∠45BAC BDC ∵BC BD ⊥,∴︒=∠-︒=∠4590BDC BCD ∴BDC BCD ∠=∠,∴BC BD =.(2)解:如图,∵︒=∠90DBC ,∴CD 为☉O 的直径,∴62==r CD ∴2345sin 6sin =︒=∠⋅=BDC CD BC .∴()632362222=+=+=BC BE EC ∵︒=∠=∠90EBC BMC ,BCM BCM ∠=∠,∴ECB BCM ∆∆~,∴CBCMEB BM EC BC ==.∴()()66323326362322====⨯=⋅=EC BC CM EC EB BC BM ,.连接CF ,则︒=∠=∠45BAC F ,∴︒=∠45MCF ,∴6==MC MF .∴632+=+=MF BM BF .25.解:(1)由题意知,方案一种抛物线的顶点()4,6P ,设()462+-=x a y 依题意得91-=a .∴()46912+--=x y .(2)令3=y ,则()346912=+--x ,解得9321==x x ,,∴6=BC .∴18631=⨯=⋅=BC AB S ∵2122=S ,而21218>,∴21S S >.26.解:(1)如图①,连接OM OP ,,过点O 作AB M O ⊥',垂足为M ',则OM PM OP ≥+.∵☉O 半径为4,∴44-'≥-≥M O OM PM .∵OB OA =,︒=∠120AOB ,∴︒=∠30A .∴3430tan 1230tan =︒=︒'='M A M O .∴4344-=-'≥M O PM ,∴线段PM 的最小值为434-.(2)如图②,分别在AE BC ,上作()m r A A B B 30=='='.连接E B OE OP O B B A '''',,,,.∵B B ON AB B B AB OM '=⊥'⊥,,,∴四边形ON B B '是平行四边形,∴O B BN '=.∵E B OE O B PE OP O B '≥+'≥++',∴r E B PE BN -'≥+.∴当点O 在E B '上时,PE BN +取得最小值.作☉O ',使圆心O '在E B '上,半径()m r 30=,作AB M O ⊥'',垂足为M ',并与B A ''交于点H 易证,A E B H O B ''∆''∆~∴A B HB A E H O '''=''∵☉O '在矩形AFDE 区域内(含边界),∴当☉O '与FD 相切时,H B '最短,即403030600010000=+-='H B .此时,H O '也最短.∵H O N M '='',∴N M ''也最短.()91.40171000040303010000=⨯-='''⋅'='A B H B A E H O .∴91.404730=+'=''H O M O ∴此时环道☉O 的圆心O 到AB 的距离OM 的长为m 91.4047.。

陕西省中考数学试题(含答案解析)(共五则范文)

陕西省中考数学试题(含答案解析)(共五则范文)

陕西省中考数学试题(含答案解析)(共五则范文)第一篇:陕西省中考数学试题(含答案解析)2020年陕西省中考数学试卷(共25题,满分120)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C. D. 2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△A BC的高,则BD的长为()A.B.C.D.7.在平面直角坐标系中,O 为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3 D.2 9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)=. 12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:16.(5分)解分式方程:1.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B 处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN. 21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长. 24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l 上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y (m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.2020年陕西省中考数学试卷答案解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18 B.﹣18 C. D.【解答】解:﹣18的相反数是:18.故选:A.2.若∠A=23°,则∠A余角的大小是()A.57° B.67° C.77° D.157° 【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B. 3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105 B.9.9087×104 C.99.087×104 D.99.087×103 【解答】解:990870=9.9087×105,故选:A. 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃ B.8℃ C.12℃ D.16℃ 【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.5.计算:(x2y)3=()A.﹣2x6y3 B.x6y3 C.x6y3 D.x5y4 【解答】解:(x2y)3.故选:C. 6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【解答】解:由勾股定理得:AC,∵S△ABC=3×33.5,∴,∴,∴BD,故选:D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.6 【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积3×2=3,故选:B.8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A. B. C.3 D.2 【解答】解:∵E是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EFBC=4,∵EF∥AB,AB∥C G,E是边BC的中点,∴F 是AG的中点,∴EF是梯形ABCG的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D.9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55° B.65° C.60° D.75° 【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC 的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODCBDC=65°,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m >1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y=x2﹣(m﹣1)x+m=(x)2+m,∴该抛物线顶点坐标是(,m),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m3),∵m>1,∴m﹣1>0,∴0,∵m31<0,∴点(,m3)在第四象限;故选:D.二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)= 1 .【解答】解:原式=22﹣()2 =4﹣3 =1.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是144°.【解答】解:因为五边形ABCDE是正五边形,所以∠C108°,BC=DC,所以∠BDC36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为﹣1 .【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y (k≠0)的图象经过其中两点,∴反比例函数y(k≠0)的图象经过B (3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD 上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 2 .【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF2.故答案为:2.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3. 16.(5分)解分式方程:1.【解答】解:方程1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x,经检验x是分式方程的解.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【解答】解:如图,点P即为所求.18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.【解答】证明:∵DE=DC,∴∠DEC=∠C.∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形.∴AD=BE. 19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg,众数是1.5kg .(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2)1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元. 20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M 的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C 三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.【解答】解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m).答:商业大厦的高MN为80m.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k,∴y;当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y,∴;(2)当y=80时,80,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果. 22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率;(2)画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠A DB,∴AD8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF,∴EFAF =12,∴CE=CF+EF=12+4.24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l 上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x ﹣3;(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x =0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P (m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P (﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是CF、DE、DF .问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C 在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m 时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,2,∴∠APB=90°,∠AOP180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=84,在Rt△CFB中,BFCF,∵PB=PF+BF,∴PB=CF+BF,即:4CFCF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△PAE+S△PBF=S△PA′BPA′•PBx(70﹣x),在Rt△ACB中,AC=BCAB70=35,∴S△ACBAC2(35)2=1225,∴y =S△PA′B+S△ACBx(70﹣x)+1225x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B50,∵S△A′PBA′B•PFPB•A′P,∴50×PF40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.第二篇:2019年陕西省中考数学试题(含解析)2019年中考数学真题(陕西省)一、选择题(共10小题,每小题3分,共30分)1.计算:()A.1B.0C.3D.2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为()3.如图,OC是∠AOB的角平分线,l//OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°4.若正比例函数的图象经过点O(a-1,4),则a的值为()A.-1B.0C.1D.25.下列计算正确的是()A.B.C.D.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。

2020年陕西省中考数学试题(含答案解析)

2020年陕西省中考数学试题(含答案解析)

2020年陕西省中考数学试卷(共25题,满分120)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18B.﹣18C.D.2.若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105B.9.9087×104C.99.087×104D.99.087×1034.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃5.计算:(x2y)3=()A.﹣2x6y3B.x6y3C.x6y3D.x5y46.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x 交于点A、B,则△AOB的面积为()A.2B.3C.4D.68.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.29.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)=.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF 的长为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:16.(5分)解分式方程:1.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O 于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.2020年陕西省中考数学试卷答案解析一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.﹣18的相反数是()A.18B.﹣18C.D.【解答】解:﹣18的相反数是:18.故选:A.2.若∠A=23°,则∠A余角的大小是()A.57°B.67°C.77°D.157°【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B.3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为()A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103【解答】解:990870=9.9087×105,故选:A.4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.5.计算:(x2y)3=()A.﹣2x6y3B.x6y3C.x6y3D.x5y4【解答】解:(x2y)3.故选:C.6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A.B.C.D.【解答】解:由勾股定理得:AC,∵S△ABC=3×3 3.5,∴,∴,∴BD,故选:D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x 交于点A、B,则△AOB的面积为()A.2B.3C.4D.6【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积3×2=3,故选:B.8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A.B.C.3D.2【解答】解:∵E是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EF BC=4,∵EF∥AB,AB∥CG,E是边BC的中点,∴F是AG的中点,∴EF是梯形ABCG的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D.9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC BDC=65°,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵y=x2﹣(m﹣1)x+m=(x)2+m,∴该抛物线顶点坐标是(,m),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m3),∵m>1,∴m﹣1>0,∴0,∵m31<0,∴点(,m3)在第四象限;故选:D.二、填空题(共4小题,每小题3分,计12分)11.计算:(2)(2)=1.【解答】解:原式=22﹣()2=4﹣3=1.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是144°.【解答】解:因为五边形ABCDE是正五边形,所以∠C108°,BC=DC,所以∠BDC36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y(k≠0)的图象经过其中两点,则m的值为﹣1.【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y(k≠0)的图象经过其中两点,∴反比例函数y(k≠0)的图象经过B(3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF 的长为2.【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF2.故答案为:2.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)解不等式组:【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3.16.(5分)解分式方程:1.【解答】解:方程1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x,经检验x是分式方程的解.17.(5分)如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【解答】解:如图,点P即为所求.18.(5分)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.【解答】证明:∵DE=DC,∴∠DEC=∠C.∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形.∴AD=BE.19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg,众数是 1.5kg.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是 1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2) 1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.【解答】解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m).答:商业大厦的高MN为80m.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k,∴y;当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y,∴;(2)当y=80时,80,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率;(2)画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率.23.(8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB,∴AD8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF,∴EF AF=12,∴CE=CF+EF=12+4.24.(10分)如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m =2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).25.(12分)问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是CF、DE、DF.问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O 于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,2,∴∠APB=90°,∠AOP180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=84,在Rt△CFB中,BF CF,∵PB=PF+BF,∴PB=CF+BF,即:4CF CF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,P A′=P A,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△P AE+S△PBF=S△P A′B P A′•PB x(70﹣x),在Rt△ACB中,AC=BC AB70=35,∴S△ACB AC2(35)2=1225,∴y=S△P A′B+S△ACB x(70﹣x)+1225x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B50,∵S△A′PB A′B•PF PB•A′P,∴50×PF40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.。

陕西中考数学24题汇总

中考数学24题:二次函数第四节最值问题、典型例题y 1 3 2.1. (2009省威海市)如图,在直角坐标系中,点A, B, C 的坐标分别为(1,0), (3 0) (0 3),过A B, C 三点的抛物线的对称轴为直线 l, D 为对称轴l 上一动点.(1) 求抛物线的解析式;(2) 求当AD CD 最小时点D 的坐标; (3) 以点A 为圆心,以AD 为半径作Q A .① 证明:当AD CD 最小时,直线BD 与0 A 相切. ② 写出直线BD 与0 A 相切时, D 点的另一个坐标:.解:(1)设抛物线的解析式为 y a(x 1)(x 3).将(0,3)代入上式,得a(0 1)(0 3) .抛物线的解析式为(x 1)(x 3).l 于点l 对称, (2)连接BC ,交直线 :点B 与点A 关于直线AD BD .AD CD BD CD BC.由“两点之间,线段最短”的原理可知: 此时AD CD 最小,点D 的位置即为所求. 设直线BC 的解析式为 y kx由直线BC 过点(3,0),(0,3),3k b, b.k解这个万程组,得b 1, 3.直线BC 的解析式为3.由(1)知:对称轴l 为x2 ( 1)点D 的坐标为(1, 2).说明:用相似三角形或三角函数求点D的坐标也可,答案正确给2分.(3)①连接AD .设直线l与x轴的交点记为点E .由(1)知:当AD CD最小时,点D的坐标为(1, 2).DE AE BE 2.DAB DBA 45°.ADB 90°.AD ± BD .BD与O A相切.②(1, 2) .2. (2009 广西贺州市)如图,抛物线y1 2-x x 2的顶点为A,与y轴父于点B.4(1)求点A、点B的坐标.(2)若点P是x轴上任意一点,求证: PA(3)当PA PB最大时,求点P的坐标.解:(1)抛物线y l x2x 2与y轴的交于点4令x= 0 得y= 2.••B (0, 2)1 2 1 2-y x2x 2 (x 2)2 34 4A (— 2, 3)(2) 当点P是AB的延长线与x轴交点时,PA PB AB.当点P在x轴上又异于AB的延长线与x轴的交点时, 在点P、A、B构成的三角形中,PA PB AB.综合上述:PA PB < AB(3)作直线AB交x轴于点P,由(2)可知:当PA—PB最大时,点P是所求的点作AH ±OP 于H.. • BO ± OP,. .△BOPs^ AHP.AH HPBO OP由(1)可知:AH= 3、OH=2、OB=2,. .OP=4,故P (4, 0)3. (2007省市)已知等腰三角形 ABC 的两个顶点分别是 A(0,1), B(0,3),第三个顶点C 在CA 是 BCO 的角平分线.直线BC 与x 轴关于直线AC 对称.点P 关于直线AC 的对称点在x 轴上,则符合条件的点P 就是直线BC 与抛物线1 2 …… y - x 1的父点. 3:点P 在直线BC : y J3x 3上,x 轴的正半轴上,关于2 .y 轴对称的抛物线y ax bxc 经过A, D(3, 2) , P 三点,且点P 关于直线 AC 的对称点在x 轴上.(1) 求直线BC 的解析式;2(2) 求抛物线y ax bx c 的解析式及点P 的坐标;(3)点M 是y 轴上一动点,求 PM CM 的取值围.解:(1) : A(01) , B(0,3),AB 2 ,v △ ABC 是等腰三角形,且点 C 在x 轴的正半轴上,OC J AC 2 OA 2 73.C(屁).AC AB 2,设直线BC 的解析式为y kx 3, J3k 3 0,直线BC 的解析式为y 扼x 3 .(2):抛物线y ax 2 bx c 关于y 轴对称,b 0.又抛物线yax 2 bx c 经过 A(0,1), D(3, 2)两点.c 1, 9a c解得2.3, 1.抛物线的解析式是y在 Rt △ AOC 中,OA 1, AC 2,易得 ACO 30::.在 RtA BOC 中,OB 3, OC扼,易得 BCO 60: .x故设点P 的坐标是(X, J3x 3). 又点P (x,J 3x 3)在抛物线y3x 21上,、、331 2』… —x 1 .解得x , 3,3, x 22焰.故所求的点 P 的坐标是日(右,0), P 2(2.3, 3).(3)要求 PM CM 的取值围,可先求 PMCM 的最小值I ) 当点P 的坐标是(也0)时,点P 与点C 重合,故PM CM 2CM .显然CM 的最小值就是点 C 到y 轴的距离为 J 3 , :点M 是y 轴上的动点,PM CM 无最大值,PM CM > 2龙.II ) 当点P 的坐标是(2J 3, 3)时,由点C 关于y 轴的对称点C (龙,0),故只要求PM MC 的最小值,显然线段 PC 最短.易求得PC 6. PM CM 的最小值是6. 同理PM CM 综上所述,当点没有最大值, PM P 的坐标是(焰,0)时,CM 的取值围是PM CM > 6.PM CM > 2焰,当点P 的坐标是 (2 足 3)时,PM CM > 6.二、自我检测1. (2007自治区市)如图,一元二次方程 2 x 2x 3 0的二根x 〔,x 2 (为 乂2)是抛物线2y ax bx c 与x 轴的两个交点B, C 的横坐标,且此抛物线过点 A (3,6).(1) 求此二次函数的解析式.(2) 设此抛物线的顶点为 P ,对称轴与线段 AC 相交于点Q,求点P 和点Q 的坐标.(3) 在x 轴上有一动点M ,当MQ MA 取得最小值时,求 M 点的坐标.碍 X i 3, X 2 1.••抛物线与x 轴的两个交点坐标为: C( 3,0), B(1,0) 设抛物线的解析式为 y a(x 3)(x 1) ••- A(3,6)在抛物线上 1 6 a(3 3) (3 1) a -2..•抛物线解析式为:y ^x 2 x -2 2(2)由 y lx 2 x - - (x 1)2 2 2 2 2二抛物线顶点P 的坐标为:(1, 2),对称轴方程为:x 1 设直线AC 的方程为:y kx b . • A(3,6) C( 3,0)在该直线上2x 2x 3与x 轴交A, B 两点(A 点在B 点左侧),直线l 与抛物线交于 A, C 两点,其中C 点的横坐标为2.(1) 求A, B 两点的坐标及直线 AC 的函数表达式;(2) P 是线段AC 上的一个动点,过 P 点作y 轴的平行线交抛 物线于E 点,求线段PE 长度的最大值;(3) 点G 抛物线上的动点, 在x 轴上是否存在点 F ,使A, C, F, G这样的四个点为顶点的四边形是平行四边形?如果存在,求 出所有满足条件的F 点坐标;如果不存在,请说明理由.. .A (-1 , 0) B (3, 0);3k b 6融/曰 解得 3k b 0b 3二直线AC 的方程为:k 1将x 1代入y x 3得y 2•.•Q 点坐标为(1,2)(3) 作A 关于x 轴的对称点A (3, 6),连接AQ; AQ 与x 轴交于点M 即为所求的点设直线 AQ 方程为y kx b3k b 6 …b 0解得k b 2 k 2 直线 A C : y 2x2. (2007省义乌市)如图,抛物线y解:(1)令y=0,解得x 1 1或x 2 3令x 0,贝U y 0M 点坐标为(0,0)将C 点的横坐标x=2代入y x 2 2x 3得y=-3, ...C (2, -3) 直线AC 的函数解析式是y=-x-1(2)设P 点的横坐标为x (-1叔V2)(注:x 的围不写不扣分) 则P, E 的坐标分别为:P (x, -x-1),,2E ( (x, x 2x 3). P 点在 E 点的上方,PE=( x 1) (x 2 2x 3) x 2 x 219 •••当x —时,PE 的最大值=一24(3)存在 4 个这样的点 F,分别是 F 1(1,0), F 2( 3,0), F 3(4, J7), F 4(4, J 7)3. (2009省市)已知:抛物线y 2ax bx c a 0的对称轴为x1,与x 轴交于A B两点,与y 轴交于点C,其中A(1)求这条抛物线的函数表达式.3,0 、C 0, 2 .(2) 已知在对称轴上存在一点 P,使得△ PBC 的周长最小.请求出点 P 的坐标.(3) 若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE // PC 交x 轴 于点E.连接PD 、PE .设CD 的长为m , △ PDE 的面积为S .求S 与m 之间的函数关 系式.试说明S是否存在最大值,若存在,请求出最大值;若不存在,请说明理由............. …,,2 2 4此抛物线的解析式为 y —x — x 23 3(2)连结 AC 、BC .因为BC 的长度一定,所以 △ PBC 周长最小,就是使PC PB 最小.B 点关于对称轴的对称点是 A 点,AC 与对称轴x 1的交点即为所求的 点P .解(1)由题意得_b_2a9a 1 3b c 0c22a —3解得b43c 2设直线AC 的表达式为y kx b3k b b 2 0, k —3 b 2解得 …八…,,, 2 ..•此直线的表达式为 y — x 2. 3 , ........ - 4 把x 1代入碍y - 3 4 •■- P 点的坐标为 1,- 3 (3) S 存在最大值 理由:DE // PC,即 DE // AC. △OED^A OAC. OD OE 协 2 m OE ••-——一,即------------ ------ . OC OA 23 3 3 OE 3 —m, AE 3, OE -m2 2方法一: 连结OP 1 -3 2 3 —m 24 3 122 m1 1 23 3 —m23 2 -m4 3 m 23 4 0当m 1时,S 最大3 4 3 2 3 4S S 四边形PDOE S A OED S A POE S A POD OED方法 2 m1 c C 1 3 32 m1 3 4 1 m 132 - -m— —m — — 2 222 23 23 233 2 3-m-m —m 1 —42 44S SA OACS/\OED SA AEPSA PCD43••当m 1时,S 最大—44. (2010省)如图,在平面直角坐标系中,直线y x 3与x轴、y 轴分别交于点B 、C ;抛物线y x bx c经过B 、C 两点,并与x轴交于另一点A .(1)求该抛物线所对应的函数关系式; (2)设P(x,y )是(1)所得抛物线上的一个动点,过点 P 作直线l x 轴于点M,交直线BC 于点N解得 b=2, c=32时,线段PN 的长度的最大值为4 .① 若点P 在第一象限.试问:线段 PN 的长度是否存在最大值 及此时x 的值;若不存在,请说明理由; ② 求以BC 为底边的等腰△ BPC 的面积.解:(1)由于直线y x 3经过B 、C 两点, 令y=0得x=3;令 . .B (3, 0), C (0, x=0, 3)得y=3 •••点B 、C 在抛物线bxc上,于是得9 3b+c=0c=3所求函数关系式为2x(2)①I •点P (x ,y )在抛物线 且PN±x 轴, 2x 2x设点P 的坐标为(x2x 3)同理可设点N 的坐标为( x,3)又点P 在第一象限, . .PN=PM-NM2x 3)-(3)= x 23x =?若存在,求出它的最大值②解法一:由题意知,点P 在线段BC 的垂直平分线上, 又由⑴知,OB=OC.••BC 的垂直平分线同时也是Z BOC 的平分线, 设点P 的坐标为(a,a )2又点P 在抛物线y X 2x 3上,于是有aa 2a 3 a a 3 0解法二:由题意知,点 P 在线段BC 的垂直平分线上, 又由①知,OB=OC•••BC 的中垂线同时也是/ BOC 的平分线,1.131 .13a1, a 2解得 22.,•点P 的坐标为:解得 --点 1 ..13ai ,a 22P 的坐标为: 13 1 13 若点P 的坐标为或113 2 113 1 13 , 2 21 .13 ,2MP OM第一象限,在 Rt △ OMP 和Rt △ BOC 中,1 132, OB=OC=3S BPC S 四边形 BOCP S BOC=2S BOP SBOC 1 1=2 — BO PM-—BO CO 2 2 11 13 9 =2 — 3 -------------------- —2 2 2 _3 13 6 2 若点P 的坐标为 113 1 132 , 2则 SBPCS BOP S COPS BOC,此时点P 在第三象限,.宿 1 c 93、i3 3 9 3,13--------- 2 — ---------------------- --------- 2 2 2 2设点P 的坐标为 a,a又点P 在抛物线y2x 2x 3上,于是有a22a 2a 3 • a a 3 01 13 1 .132若点P 的坐标为1 13MP OM ----------------- 21 .13 1 ■ 13,■ 21 13 1 .有 ~2, 2~,OB=OC=3s BPCS 梯形 COMP S BMP S BOC1OC 2MP -1MO BM2PM1-BO CO 21 3113 1 .. 13 1 31 . 131 13 1 c c _____ _332 2 2222 21 1 13 3 113 1 3.13 9 22 2 22当点P 在第一象限时,△ BPC 面积其它解法有:S BPCS 四边形 BOCP S BOC1 - 1-PN OM+上 PN MB 2 21 一 一 一、1PN (OM+MB ) 21 - -PN OB 2,此时点P 在第一象限,在 Rt △ OMP 和Rt △ BOC 中,= 3 3 13 9 =3 13 62若点P 的坐标为113 1 ■13 , 2 2此时点P 在第三象限,(与解法一相同)OP113也,BC=3^1-OP BC 2 1 1 、、13 2 2 3 13 621 -OB OC2 ■.-■23 2 — 2S PNC S PNBBPC。

西安中考数学试题及答案

西安中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. √2C. 0.33333...D. 5/8答案:B2. 一个三角形的两边长分别为3和4,第三边长为x,则x的取值范围是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 7答案:C3. 已知函数y=2x+3,当x=1时,y的值为?A. 5B. 6C. 7D. 8答案:A4. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 任意三角形答案:B5. 一个圆的半径为5,它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 计算下列表达式的值:(3x^2 - 2x + 1) - (x^2 - 4x + 3)。

A. 2x^2 + 2x - 2B. 2x^2 - 2x + 2C. 2x^2 + 2x + 2D. 2x^2 - 2x - 2答案:A7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个等腰三角形的底角为45度,顶角为?A. 45度B. 60度C. 90度D. 120度答案:C9. 计算下列表达式的值:(2x + 3)(x - 1)。

A. 2x^2 - 2x + 3x - 3B. 2x^2 + 2x - 3x + 3C. 2x^2 - x - 3D. 2x^2 - x + 3答案:A10. 已知等差数列{an}的首项a1=2,公差d=3,第5项a5的值为?A. 17B. 14C. 11D. 8答案:B二、填空题(每题3分,共15分)11. 一个直角三角形的两直角边长分别为6和8,斜边长为______。

答案:1012. 一个数的平方根是2,这个数是______。

答案:413. 已知函数y=x^2 - 4x + 3,当x=2时,y的值为______。

2023年陕西省中考数学真题及参考答案

2023年陕西省中考数学真题及参考答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项时符合题意的)1.计算:=-53()A .2B .2-C .8D .8-2.下列图形中,既是轴对称,又是中心对称图形的是()3.如图,AB l ∥,B A ∠=∠2.若︒=∠1081,则2∠的度数为()A .︒36B .︒46C .︒72D .︒824.计算:=⎪⎭⎫⎝⎛-⋅332216y x xy A .543y x B .543y x -C .633y x D .633y x -5.在同一平面直角坐标系中,函数ax y =和a x y +=(a 为常数,0<a )的图象可能是()6.如图,DE 是ABC ∆的中位线,点F 在DB 上,BF DF 2=.连接EF 并延长,与CB 的延长线相交于点M .若6=BC ,则线段CM 的长为()A .213B .7C .215D .87.陕西饮食文化源远流长,“老碗面”是山西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.弧AB 是☉O 的一部分,D 是弧AB 的中点,连接OD ,与弦AB 交于点C ,连接OB OA ,.已知cm AB 24=,碗深cm CD 8=,则☉O 的半径OA 为()A .cm13B .cm 16C .cm 17D .cm268.在平面直角坐标系中,二次函数m m mx x y -++=22(m 为常数)的图象经过点()60,,其对称轴在y 轴左侧,则该二次函数有()A .最大值5B .最大值415C .最小值5D .最小值415二、填空题(本大题共5小题,共15分)9.如图,在数轴上,点A 表示3,点B 与点A 位于原点的两侧,且与原点的距离相等.则点B 表示的数是.10.如图,正八边形的边长为2,对角线CD AB 、相交于点E .则线段BE 的长为.11.点E 是菱形ABCD 的对称中心,︒=∠56B ,连接AE ,则BAE ∠的度数为.12.如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点F C ,均在x 轴正半轴上,点D 在边BC 上,CD BC 2=,3=AB .若点E B ,在同一反比例函数的图象上,则这个反比例函数的表达式是.13.如图,在矩形ABCD 中,43==BC AB ,.点E 在边AD上,且3=ED ,N M 、分别是边BC AB 、上的动点,且BN BM =,P 是线段CE 上的动点,连接PN PM ,.若4=+PN PM .则线段PC 的长为.三、解答题(本大题共13小题,共81分.解答应写出文字说明,证明过程或演算步骤)14.(5分)解不等式:x x 2253>-.15.(5分)计算:()31271105-+⎪⎭⎫ ⎝⎛--⨯-.16.(5分)化简:11211132+-÷⎪⎭⎫⎝⎛---a a a a a .17.(5分)如图,已知ABC ∆,︒=∠48B ,请用尺规作图法,在ABC ∆内部求作一点P 使PC PB =,且︒=∠24PBC .(保留作图痕迹,不写作法)18.(5分)如图,在ABC ∆中,︒=∠50B ,︒=∠20C .过点A 作BC AE ⊥,垂足为E ,延长EA 至点D .使AC AD =.在边AC 上截取AB AF =,连接DF .求证:CB DF =.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法,求摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,公用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB .如图所示,当小明爸爸站在点D 处时,他在该景观灯照射下的影子长为DF ,测得cm DF 4.2=;当小明站在爸爸影子的顶端F 处时,测得点A 的仰角α为︒6.26.已知爸爸的身高m CD 8.1=,小明眼睛到底面的距离m EF 6.1=,点BD F 、、在同一条直线上,FB AB FB CD FB EF ⊥⊥⊥,,.求该景观灯的高AB .(参考数据:45.06.26sin ≈︒,89.06.26cos ≈︒,50.06.26tan ≈︒)22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在底面以上m 3.1处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高()m y 是其胸径()m x 的一次函数.已知这种树的胸径为m 2.0时,树高为m 20;这种树的胸径为m 28.0时,树高为m 22.(1)求y 与x 之间的函数表达式;(2)当这种树的胸径为m 3.0时,其树高是多少?23.(7分)某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是;(2)求这20个数据的平均数.分组频数组内小西红柿的总个数3525<≤x 1284535<≤x n1545545<≤x 94526555<≤x 636624.(8分)如图,ABC ∆内接于☉O ,︒=∠45BAC ,过点B 作BC 的垂线,交☉O 于点D ,并与CA 的延长线交于点E ,作AC BF ⊥,垂足为M ,交☉O 于点F .(1)求证:BC BD =;(2)若☉O 的半径3=r ,6=BE ,求线段BF 的长.25.(8分)某校想将新建图书馆的正门设计为一个抛物线型拱门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方、和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一:抛物线型拱门的跨度m ON 12=,拱高m PE 4=.其中,点N 在x 轴上,ON PE ⊥,EN OE =.方案二:抛物线型拱门的跨度m N O 8=',拱高m E P 6=''.其中,点N '在x 轴上,N O E P '⊥'',N E E O ''='.要在拱门中设置高为m 3的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD 的面积为1S ,点D A 、在抛物线上,边BC 在ON 上;方案二中,矩形框架D C B A ''''的面积为2S ,点D A ''、在抛物线上,边C B ''在N O '上.现知,小华已正确求出方案二中,当m B A 3=''时,22212m S =.请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一种,当m AB 3=时,求矩形框架ABCD 的面积1S ,并比较21S S ,的大小.26.(10分)(1)如图①,在OAB ∆中,OB OA =,︒=∠120AOB ,24=AB .若☉O 的半径为4,点P 在☉O 上,点M 在AB 上,连接PM ,求线段PM 的最小值.(2)如图②所示,五边形ABCDE 是某市工业新区的外环路,新区管委会在点B 处,点E 处是该市的一个交通枢纽.已知:︒=∠=∠=∠90AED ABC A ,m AE AB 10000==.m DE BC 6000==.根据新区的自然环境及实际需求,现要在矩形AFDE 区域内(含边界)修一个半径为m 30的圆形环道☉O ,过圆心O ,作AB OM ⊥,垂足为M ,与☉O 交于点N ,连接BN ,点P 在☉O 上,连接EP .其中,线段EP BN ,及MN 是要修的三条道路,要在所修道路EP BN ,之和最短的情况下,使所修道路MN 最短,试求此时环道☉O 的圆心O 到AB 的距离OM 的长.参考答案一、选择题题号12345678答案BCABDCAD二、填空题9.3-;10.22+;11.︒62;12.xy 18=;13.22三、解答题14.解:x x 453>-,543>-x x ,5>-x ,5-<x .15.解:原式12587258725+-=+--=-+--=.16.解:原式()()()()()()()111211121211113121111113-=-⋅--=-+⋅-++-=-+⋅⎦⎤⎢⎣⎡-++--+=a a a a a a a a a a a a a a a a a a 17.解:如图,点P 即为所求.18.证明:∵在ABC ∆中,︒=∠︒=∠2050C B ,,∴︒=∠-∠-︒=∠110180C B CAB ∵BC AE ⊥,∴︒=∠90AEC ,∴︒=∠+∠=∠110C AEC DAF .∴CABDAF ∠=∠又∵AB AF AC AD ==,,∴CAB DAF ∆≅∆∴CB DF =.19.解:(1)21(2)列表如下:由上表可知,共有16种等可能的结果,其中摸出的这两个小球上标有的数字之积是偶数的结果有7种.∴167=P .20.解:设该文具店中这种大笔记本的单价是x 元,根据题意得()62364=-+x x .解得8=x .∴该文具店中这种大笔记本的单价为8元.21.解:如图,∵FB AB FB CD ⊥⊥,,∴ABCD ∥∴FBFDAB CD =,∴AB AB CD AB FD FB 348.14.2==⋅=.过点E 作AB EF ⊥,垂足为H ,得矩形EFBH .∴6.16.1-=-====AB HB AB AH EF HB FB EH ,,.在AEH Rt ∆中,()6.125.06.16.26tan -=-=︒=AB AB AH EH .∴()6.1234-=AB AB ,∴8.4=AB .∴该景观灯的高AB 为m 8.4.22.解:(1)设()0≠+=k b kx y ,根据题意得⎩⎨⎧=+=+2228.0202.0b k b k ,解得⎩⎨⎧==1525b k .∴1525+=x y .(2)当3.0=x 时,5.22153.025=+⨯=y .∴当这种树的胸径为m 3.0时,其树高为m 5.22.23.解:(1)补全频数分布直方图如图所示;这20个数的众数为54.(2)()5036645215428201=+++⨯=x ∴这20个数的平均数是50.(3)所求总个数:1500030050=⨯.∴估计这300棵西红柿植株上小西红柿的总个数是15000个.24.(1)证明:如图,连接DC ,则︒=∠=∠45BAC BDC ∵BC BD ⊥,∴︒=∠-︒=∠4590BDC BCD ∴BDC BCD ∠=∠,∴BC BD =.(2)解:如图,∵︒=∠90DBC ,∴CD 为☉O 的直径,∴62==r CD ∴2345sin 6sin =︒=∠⋅=BDC CD BC .∴()632362222=+=+=BC BE EC ∵︒=∠=∠90EBC BMC ,BCM BCM ∠=∠,∴ECB BCM ∆∆~,∴CBCMEB BM EC BC ==.∴()()66323326362322====⨯=⋅=EC BC CM EC EB BC BM ,.连接CF ,则︒=∠=∠45BAC F ,∴︒=∠45MCF ,∴6==MC MF .∴632+=+=MF BM BF .25.解:(1)由题意知,方案一种抛物线的顶点()4,6P ,设()462+-=x a y 依题意得91-=a .∴()46912+--=x y .(2)令3=y ,则()346912=+--x ,解得9321==x x ,,∴6=BC .∴18631=⨯=⋅=BC AB S ∵2122=S ,而21218>,∴21S S >.26.解:(1)如图①,连接OM OP ,,过点O 作AB M O ⊥',垂足为M ',则OM PM OP ≥+.∵☉O 半径为4,∴44-'≥-≥M O OM PM .∵OB OA =,︒=∠120AOB ,∴︒=∠30A .∴3430tan 1230tan =︒=︒'='M A M O .∴4344-=-'≥M O PM ,∴线段PM 的最小值为434-.(2)如图②,分别在AE BC ,上作()m r A A B B 30=='='.连接E B OE OP O B B A '''',,,,.∵B B ON AB B B AB OM '=⊥'⊥,,,∴四边形ON B B '是平行四边形,∴O B BN '=.∵E B OE O B PE OP O B '≥+'≥++',∴r E B PE BN -'≥+.∴当点O 在E B '上时,PE BN +取得最小值.作☉O ',使圆心O '在E B '上,半径()m r 30=,作AB M O ⊥'',垂足为M ',并与B A ''交于点H 易证,A E B H O B ''∆''∆~∴A B HB A E H O '''=''∵☉O '在矩形AFDE 区域内(含边界),∴当☉O '与FD 相切时,H B '最短,即403030600010000=+-='H B .此时,H O '也最短.∵H O N M '='',∴N M ''也最短.()91.40171000040303010000=⨯-='''⋅'='A B H B A E H O .∴91.404730=+'=''H O M O ∴此时环道☉O 的圆心O 到AB 的距离OM 的长为m 91.4047.。

陕西中考第24题二次函数专题--专题一--三角形存在性问题

题型十二次函数综合题专题一三角形存在性问题例1(扬州)已知抛物线c bx ax y ++=2经过A (-1,0)、B (3,0)、C (0,3)三点,直线l 是抛物线的对称轴。

(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当PAC ∆的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使MAC ∆为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由。

数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨数学丨可望也可即数学丨可望也可即数学丨可望也可即可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也数学丨可望也可即数学丨可望也可即数学丨可望也可数学丨可望也可即数学丨可望也可即数学丨可望也可即丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学数学丨可望也可即数学丨可望也可即数学丨可望也可即丨可望也可即学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可数学丨可望也数学丨可望也可即数学丨可望也可即数学丨可望也可即学丨可望也可即即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可数数学丨可望也可即数学丨可望也可即数学丨可望也可即学丨可望也可即丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即可望也可即数学丨可望也可即数学丨可望也可即数学丨可数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即数学丨可望也可即望也可即数学丨可望也可即数学丨数学丨可望也可即数学丨可望也可即数学丨可望也可即也可即数数学即方法突破数学丨可望也可即数学丨可望也可即可即数学丨可数学丨可望也可即数学丨可数学丨可学丨可望数学丨可望也可即数学可望也可即数学丨可望也望也可即数学丨数可望也可即数数学丨可望也可即数学丨可望也可数丨可望也可即数学丨可望也可可即可望也可即数学丨可望也可即学丨可望也可即数学数学丨可望也即学丨可望也可即即数学丨可望也可即数丨可望也可即学丨可望也可即丨可望也可即数学丨数学丨可望可即数学丨可望也可即数学丨可望也可即学丨可望也可即数学丨可望也可即可望也可即数学丨可数学丨可也可即数学丨可望也可即数学丨可望也可即望也数学丨可望也可即数学丨可望也可望也可即数学丨可望也可即数学丨数学丨可望也可即数学丨可望也可即数学丨可望也可即也可即数数学即陕西中考数学满分之路——题型十:二次函数之三角形存在性问题例2(攀枝花)如图,抛物线c bx ax y ++=2(0≠a )经过点A (-3,0),B (1,0),C (0,-3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西中考数学24题:二次函数第四节 最值问题一、典型例题1. (2009 山东省威海市) 如图,在直角坐标系中,点A B C ,,的坐标分别为(10)(30)(03)-,,,,,,过A B C ,,三点的抛物线的对称轴为直线l D ,为对称轴l 上一动点. (1) 求抛物线的解析式;(2) 求当AD CD +最小时点D 的坐标; (3) 以点A 为圆心,以AD 为半径作A .①证明:当AD CD +最小时,直线BD 与A 相切.②写出直线BD 与A 相切时,D 点的另一个坐标:___________.解:(1)设抛物线的解析式为(1)(3)y a x x =+-. 将(03),代入上式,得3(01)(03)a =+-. 解,得1a =-.∴抛物线的解析式为(1)(3)y x x =-+-.即223y x x =-++.(2)连接BC ,交直线l 于点D . 点B 与点A 关于直线 l 对称, AD BD ∴=.AD CD BD CD BC ∴+=+=.由“两点之间,线段最短”的原理可知: 此时AD CD +最小,点D 的位置即为所求. 设直线BC 的解析式为y kx b =+,由直线BC 过点(30),,(03),,得033.k b b =+⎧⎨=⎩,解这个方程组,得13.k b =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+.由(1)知:对称轴l 为212(1)x =-=⨯-,即1x =.将1x =代入3y x =-+,得132y =-+=.∴点D 的坐标为(1,2).说明:用相似三角形或三角函数求点D 的坐标也可,答案正确给2分. (3)①连接AD .设直线l 与x 轴的交点记为点E . 由(1)知:当AD CD +最小时,点D 的坐标为(1,2). 2DE AE BE ∴===. 45DAB DBA ∴∠=∠=°. 90ADB ∴∠=°. AD BD ∴⊥.BD ∴与A ⊙相切. ②(12)-,.2. (2009 广西贺州市) 如图,抛物线2124y x x =--+的顶点为A ,与y 轴交于点B . (1)求点A 、点B 的坐标.(2)若点P 是x 轴上任意一点,求证:PA-(3)当PB PA -最大时,求点P 的坐标.解:(1)抛物线2124y x x =--+与y 轴的交于点令x=0得y=2.∴B (0,2)∵22112(2)344y x x x =--+=-++∴A (—2,3) (2)当点P 是 AB 的延长线与x 轴交点时,AB PB PA =-.当点P 在x 轴上又异于AB 的延长线与x 轴的交点时, 在点P 、A 、B 构成的三角形中,AB PB PA <-. 综合上述:PA PB AB -≤(3)作直线AB 交x 轴于点P ,由(2)可知:当P A —PB 最大时,点P 是所求的点作AH ⊥OP 于H . ∵BO ⊥OP ,∴△BOP ∽△AHP ∴AH HPBO OP=由(1)可知:AH=3、OH=2、OB=2, ∴OP=4,故P (4,0)3. (2007 江苏省南通市) 已知等腰三角形ABC 的两个顶点分别是(01)A ,,(03)B ,,第三个顶点C 在x 轴的正半轴上,关于y 轴对称的抛物线2y ax bx c =++经过(32)A D -,,,P 三点,且点P 关于直线AC 的对称点在x 轴上. (1)求直线BC 的解析式;(2)求抛物线2y ax bx c =++的解析式及点P 的坐标; (3)点M 是y 轴上一动点,求PM CM +的取值范围.解:(1)(01)A ,,(03)B ,,∴2AB =,ABC △是等腰三角形,且点C 在x 轴的正半轴上,∴2AC AB ==,∴OC =∴C .设直线BC 的解析式为3y kx =+,∴30+=,k ∴=∴直线BC的解析式为3y =+.(2)抛物线2y ax bx c =++关于y 轴对称,0b ∴=.又抛物线2y ax bx c =++经过(01)A ,,(32)D -,两点.∴192c a c =⎧⎨+=-⎩,.解得131.a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式是2113y x =-+.在Rt AOC △中,12OA AC ==,,易得30ACO ∠=.在Rt BOC △中,3OB =,OC =,易得60BCO ∠=.∴CA 是BCO ∠的角平分线.∴直线BC 与x 轴关于直线AC 对称.点P 关于直线AC 的对称点在x 轴上,则符合条件的点P 就是直线BC 与抛物线2113y x =-+的交点.点P 在直线BC:3y =+上,故设点P的坐标是(3)x -+,. 又点P (3)x +,在抛物线2113y x =-+上,∴21313x =-+.解得1x2x =故所求的点P的坐标是1P,23)P -.(3)要求PM CM +的取值范围,可先求PM CM +的最小值.I )当点P的坐标是时,点P 与点C 重合,故2PM CM CM +=. 显然CM 的最小值就是点C 到y点M 是y 轴上的动点,∴PM CM +无最大值,∴PM CM+≥II )当点P的坐标是3)-时,由点C 关于y轴的对称点(C ',故只要求PM MC '+的最小值,显然线段PC '最短.易求得6PC '=. ∴PM CM +的最小值是6.同理PM CM +没有最大值,∴PM CM +的取值范围是PM CM +6≥.综上所述,当点P的坐标是时,PM CM+≥, 当点P的坐标是3)-时, PM CM +6≥.二、自我检测1. (2007 内蒙古自治区赤峰市) 如图,一元二次方程2230x x +-=的二根12x x ,(12x x <)是抛物线2y ax bx c =++与x 轴的两个交点B C ,的横坐标,且此抛物线过点(36)A ,. (1)求此二次函数的解析式.(2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标. (3)在x 轴上有一动点M ,当MQ MA +取得最小值时,求M 点的坐标.解:(1)解方程2230x x +-=x )得1231x x =-=,∴抛物线与x 轴的两个交点坐标为:(30)(10)C B -,,, 设抛物线的解析式为(3)(1)y a x x =+-(36)A ∵,在抛物线上 6(33)(31)a =+-∴· 12a =∴ ∴抛物线解析式为:21322y x x =+-(2)由22131(1)2222y x x x =+-=+-∴抛物线顶点P 的坐标为:(12)--,,对称轴方程为:1x =-设直线AC 的方程为:y kx b =+ (36)(30)A C -∵,,,在该直线上 3630k b k b +=⎧⎨-+=⎩∴解得31b k =⎧⎨=⎩∴直线AC 的方程为:3y x =+将1x =-代入3y x =+得2y = Q ∴点坐标为(12)-,(3)作A 关于x 轴的对称点(36)A '-,,连接A Q ';A Q '与x 轴交于点M 即为所求的点设直线A Q '方程为y kx b =+362k b k b +=-⎧⎨-+=⎩∴解得02b k =⎧⎨=-⎩∴直线A C ':2y x =-令0x =,则0y =M ∴点坐标为(00),2. (2007 浙江省义乌市) 如图,抛物线223y x x =--与x 轴交A ,B 两点(A 点在B 点左侧),直线l 与抛物线交于A ,C 两点,其中C 点的横坐标为2. (1)求A ,B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 抛物线上的动点,在x 轴上是否存在点F ,使A ,C ,F ,G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.解:(1)令y =0,解得11x =-或23x = ∴A (-1,0)B (3,0);xyA (3,) Q C O BP(36)A -,将C 点的横坐标x =2代入223y x x =--得y =-3,∴C (2,-3)∴直线AC 的函数解析式是y =-x -1 (2)设P 点的横坐标为x (-1≤x ≤2)(注:x 的范围不写不扣分) 则P ,E 的坐标分别为:P (x ,-x -1), E (2(23)x x x --,∵P 点在E 点的上方,PE =22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F,分别是1234(10)(30)(4(4F F F F -,,,,,3. (2009 山东省济南市) 已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.解(1)由题意得129302ba abc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--.把1x =-代入得43y =-∴P 点的坐标为413⎛⎫-- ⎪⎝⎭,(3)S 存在最大值 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=.∴333322OE m AE OE m =-==,,方法一:连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ∵304-<∴当1m =时,333424S =-+=最大 方法二:OAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+∵304-< ∴当1m =时,34S =最大4. (2010 海南省) 如图,在平面直角坐标系中,直线3+-=x y 与x 轴、y 轴分别交于点B 、C ;抛物线c bx x y ++-=2经过B 、C 两点,并与x 轴交于另一点A . (1)求该抛物线所对应的函数关系式;(2)设)(y x P ,是(1)所得抛物线上的一个动点,过点P 作直线x l ⊥轴于点M ,交直线BC 于点N .① 若点P 在第一象限内.试问:线段PN 的长度是否存在最大值 ?若存在,求出它的最大值及此时x 的值;若不存在,请说明理由; ② 求以BC 为底边的等腰△BPC 的面积.解:(1)由于直线3+-=x y 经过B 、C 两点, 令y=0得x =3;令x =0,得y=3 ∴B (3,0),C (0,3)∵点B 、C 在抛物线c bx x y ++-=2上,于是得93b+c=0 c=3-+⎧⎨⎩解得b=2,c=3∴所求函数关系式为322++-=x x y (2)①∵点P (x ,y )在抛物线322++-=x x y 上, 且PN ⊥x 轴,∴设点P 的坐标为(x , 322++-x x ) 同理可设点N 的坐标为(x ,3+-x ) 又点P 在第一象限,∴PN=PM-NM=(322++-x x )-(3+-x )=x x 32+=49)23(2+--x ∴当23=x 时,线段PN 的长度的最大值为49.②解法一:由题意知,点P 在线段BC 的垂直平分线上, 又由(1)知,OB=OC∴BC 的垂直平分线同时也是∠BOC 的平分线,∴设点P 的坐标为),(a a 又点P 在抛物线322++-=x x y 上,于是有322++-=a a a ∴032=--a a 解得2131,213121-=+=a a∴点P 的坐标为:()2131,2131++ 或()2131,2131--若点P 的坐标为()2131,2131++ ,此时点P 在第一象限,在Rt △OMP 和Rt △BOC 中,MP OM ==,OB=OC=3BOCBOCP S ∆∆-=四边形S S BPCBOP BOC=2S S ∆∆-11=2BO PM-BO CO22⨯⋅⋅⋅19=2322⨯⨯若点P 的坐标为, 此时点P 在第三象限,则BOCCOP BOP BPC S S S S∆∆∆∆++=193222=⨯+==解法二:由题意知,点P 在线段BC 的垂直平分线上,又由①知,OB=OC∴BC 的中垂线同时也是∠BOC 的平分线, ∴设点P 的坐标为(),a a又点P 在抛物线322++-=x x y 上,于是有322++-=a a a ∴032=--a a 解得2131,213121-=+=a a∴点P 的坐标为:()2131,2131--()2131,2131++ 或()2131,2131--若点P 的坐标为(),此时点P 在第一象限,在Rt △OMP 和Rt △BOC 中,MP OM = ,OB=OC=3BOCBMP COMP S S ∆∆∆-+=梯形S S BPC()111222OC MP MO BM PM BO CO =+⋅+⋅-⋅= = = =若点P 的坐标为 ()2131,2131-- , 此时点P 在第三象限,(与解法一相同) 当点P 在第一象限时,△BPC 面积其它解法有: ①OP =2⋅,BC=23BOCBOCP S ∆∆-=四边形S S BPC2613333212322131212121-=⨯⨯-⋅⋅+⋅=⋅-⋅=OC OB BC OP②BPC PNC PNBS S S ∆∆∆=+11PN OM+PN MB22=⋅⋅⋅⋅1PN OB 2=⋅⋅33212131213132121312131321⨯⨯-+⋅⎪⎪⎭⎫ ⎝⎛+-++⋅⎪⎪⎭⎫ ⎝⎛++292131321313213121-⎪⎪⎭⎫ ⎝⎛+-++++⋅291333-+26133-1PN OM+MB 2=⋅()。

相关文档
最新文档