陕西中考数学十年压轴题汇总

合集下载

陕西中考数学十年压轴题汇总

陕西中考数学十年压轴题汇总

25.(本题满分12分)已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点。

(1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM =QN 。

之间的两条线段相等。

(2条“曲线段相等” (3)化地,=n ,且m <种花草种植在S 1、S 2、S 3、S 425.(本题满分12分)板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。

他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。

(1)求FC 的长;到BC 边的距离)(cm x 为多少时,矩形的面 如图,O 的半径均为)请在图①中画出弦①为轴对称图形而不是..中心对称图形;请在图O 中,(02)AB m m R <<,且AB 与CD 交于点E ,夹角为锐角α.求面积(用含;O 的两条弦,且AB CD ==,你认为在以点A B C D ,,,为顶点的四边形中,是否存在面积最大的四边形?请利用图④说明理由. 由供水站直接铺设管道到另外两处。

a b第25题图M N 第25题图) (第25题图③) (第25题图④)如图,甲、乙两村坐落在夹角为30°的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学。

点B 在点M 的北偏西30°的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60°的处。

为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段图①中,画出铺设到点A 和点M 方案三:供水站建在甲村(线段处和点M25.(本题满分12分) 问题探究(1)请在图①的正方形ABCD (2)请在图②的正方形ABCD 由. 问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).25.(本题满分12分)问题探究..分成面积相等的两部分; (2)如图②点M 是矩形ABCD 内一点,请你在图②中过点M 作一条直线,使它将矩形ABCD 分成面积相等的两部分。

2023陕西省十年中考数学考点

2023陕西省十年中考数学考点

2023陕西省十年中考数学考点陕西省十年中考数学考点一、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a 0时,开口方向向上,a 0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI 越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二、二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线] 注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a三、二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

四、抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a 0时,抛物线向上开口;当a 0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab 0),对称轴在y轴左;当a与b异号时(即ab 0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b^2-4ac 0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac 0时,抛物线与x轴没有交点。

04-2010陕西中考函数压轴题含答案

04-2010陕西中考函数压轴题含答案

04-09陕西中考函数压轴题24. (04陕西)如图,在Rt △ABC 中,∠ACB =90°,BC>AC ,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA 2+OB 2=17,且线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根.(1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E ,求过A 、B 、E三点的抛物线的解析式,并画出此抛物线的草图;(3)在抛物线上是否存在点P ,使△ABP 与△ABC 全等?若存在,求出符合条件的P 点的坐标;若不存在,说明理由.解:(1)∵线段OA 、OB 的长度是关于x 的一元二次方程x 2-mx +2(m -3)=0的两个根, ∴,(1)2(3).(2)OA OB m OA OB m +=⎧⎨=-⎩又∵OA 2+OB 2=17,∴(OA+O B )2-2·OA ·OB =17.(3) ∴把(1)(2)代入(3),得m 2-4(m-3)=17. ∴m 2-4m -5=0.解之,得m =-1或m =5. 又知OA+OB =m >0, ∴m =-1应舍去.∴当m =5时,得方程x 2-5x +4=0. 解之,得x =1或x =4. ∵BC>AC, ∴OB>OA . ∴OA =1,OB =4.在Rt △ABC 中,∠ACB =90°,CO ⊥AB , ∴OC 2=OA ·OB =1×4=4. ∴OC =2.∴C (0,2).(2)∵OA =1,OB =4,C 、E 两点关于x 轴对称, ∴A (-1,0),B (4,0),E (0,-2).设经过A 、B 、E 三点的抛物线的解析式为y=ax 2+bx+c ,则1,20,31640,,,22. 2.a b c a b c b c c ⎧⎪-+=⎧⎪⎪⎪++==-⎨⎨⎪⎪=-⎩=-⎪⎪⎩a=解之得 ∴所求抛物线解析式为2132.22y x x =--(第24题图)(3)存在.∵点E是抛物线与圆的交点,∴Rt△ACB≌△AEB.∴E(0,-2)符合条件.∵圆心的坐标(32,0)在抛物线的对称轴上,∴这个圆和这条抛物线均关于抛物线的对称轴对称.∴点E关于抛物线对称轴的对称点E′也符合题意.∴可求得E′(3,-2).∴抛物线上存在点P符合题意,它们的坐标是(0,-2)和(3,-2). 24.(05陕西)如图,在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,。

陕西省榆林市中考数学压轴题总复习(附答案解析)

陕西省榆林市中考数学压轴题总复习(附答案解析)

2021年陕西省榆林市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图1,直线y=−3
4x+6与y轴交于点A,与x轴交于点D,直线AB交x轴于点B,△
AOB沿直线AB折叠,点O恰好落在直线AD上的点C处.
(1)求OB的长;
(2)如图2,F,G是直线AB上的两点,若△DFG是以FG为斜边的等腰直角三角形,求点F的坐标;
(3)如图3,点P是直线AB上一点,点Q是直线AD上一点,且P,Q均在第四象限,点E是x轴上一点,若四边形PQDE为菱形,求点E的坐标.
2.如图,平面直角坐标系中,一次函数y=−1
2x+4的图象l1分别与x,y轴交于A,B两点,
正比例函数的图象l2与l1交于点C(m,3).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.。

2010中考数学专题复习——压轴题

2010中考数学专题复习——压轴题

1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22)2. 已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围;(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.3. 如图,在R t ABC △中,90A ∠=,6A B =,8A C =,D E ,分别是边A B A C ,的中点,点P 从点D 出发沿D E 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交A C 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到B C 的距离D H 的长;y x OB CA Tyx O BC AT(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.4.在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?5、如图1,已知双曲线y=xk (k>0)与直线y=k ′x 交于A ,B 两点,点A 在第一象限.试解答下列问题:(1)若点A 的坐标为(4,2).则点B 的坐标为 ;若点A 的横坐标为m ,则点B 的坐标可表示为 ;(2)如图2,过原点O 作另一条直线l ,交双曲线y=xk (k>0)于P ,Q 两点,点P 在第一象限.①说明四边形APBQ 一定是平行四边形;②设点A.P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出mn 应满足的条件;若不可能,请说明理由.ABCMN P图 3OABC MND 图 2 OABCMNP图 1O A BCD ER P H QxyBA O 图1B AOPQ图26. 如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.7.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG 、线段DE 的长度关系及所在直线的位置关系;②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.(2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.(3)在第(2)题图5中,连结D G 、B E ,且a =3,b =2,k =12,求22BE DG +的值.8. 如图1所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E .(1)将直线l 向右平移,设平移距离CD 为t (t ≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图2所示, OM 为线段,MN 为抛物线的一部分,NQ 为射线,N 点横坐标为4.①求梯形上底AB 的长及直角梯形OABC 的面积; ②当42<<t 时,求S 关于t 的函数解析式;(2)在第(1)题的条件下,当直线l 向左或向右平移时(包括l 与直线BC 重合),在直线..AB ..上是否存在点P ,使PDE ∆为等腰直角三角形?若存在,请直接写出所有满足条件的点P 的坐标;若不存在,请说明理由.9.如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.10.如图,抛物线21:23L y x x =--+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.11.2008年5月1日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A 地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A 地准备开辟宁波方向的外运路线,即货物从A 地经杭州湾跨海大桥到宁波港,再从宁波港运到B 地.若有一批货物(不超过10车)从A 地按外运路线运到B 地的运费需8320元,其中从A 地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?12.如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸….已知标准纸...的短边长为a . (1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:第一步 将矩形的短边AB 与长边A D 对齐折叠,点B 落在A D 上的点B '处,铺平后得折痕AE ; 第二步 将长边A D 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF .则:A D A B 的值是 ,A D A B ,的长分别是 , .(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,直接写出这个比值;若不相等,请分别计算它们的比值.(3)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E F G H ,,,分别在“16开”纸的边A B B C C D D A ,,,上,求D G 的长.(4)已知梯形M NPQ 中,M N P Q ∥,90M =∠,2MN MQ PQ ==,且四个顶点M N P Q ,,,都在“4开”纸的边上,请直接写出2个符合条件且大小不同的直角梯形的面积.13.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .ABCD BCA D EGHF FE B '4开2开8开16开 图1图2 图3a①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸……都是矩形. ②本题中所求边长或面积都用含a 的代数式表示.(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.14.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xk y的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形, 试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为 .15.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线. 如图12,点A 、B 、C 、D 分别是“蛋圆”与坐标轴的交点,已知点D 的坐标为(0,-3),AB 为半圆的直径,半圆圆心M 的坐标为(1,0),半圆半径为2.(1) 请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围; (2)你能求出经过点C 的“蛋圆”切线的解析式吗?试试看;(3)开动脑筋想一想,相信你能求出经过点D 的“蛋圆”切线的解析式.C D A BE F NMxO yAB 友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.xOy1 2 31 Q P2 P 1Q 1AOBMDCyx16.将一矩形纸片O A B C 放在平面直角坐标系中,(00)O ,,(60)A ,,(03)C ,.动点Q 从点O 出发以每秒1个单位长的速度沿O C 向终点C 运动,运动23秒时,动点P 从点A 出发以相等的速度沿A O 向终点O 运动.当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒).(1)用含t 的代数式表示OP OQ ,;(2)当1t =时,如图1,将O P Q △沿PQ 翻折,点O 恰好落在C B 边上的点D 处,求点D 的坐标;(4) 连结A C ,将OPQ △沿PQ 翻折,得到EPQ △,如图2.问:PQ 与A C 能否平行?P E 与A C能否垂直?若能,求出相应的t 值;若不能,说明理由.17.如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点.(1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使A B P △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线A C 上是否存在一点M ,使得M B F △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.18.如图所示,在平面直角坐标系中,矩形A B O C 的边B O 在x 轴的负半轴上,边O C 在y 轴的正半轴上,且1AB =,3O B =,矩形A B O C 绕点O 按顺时针方向旋转60 后得到图1OP A xBDC Q y图2OPA x BC QyE A O xyBFC图16矩形E F O D .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形A B O C 面积的2倍,且点P在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由. 19.已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线B C 的解析式.(2)求A B C △的面积.(3)若点M 在线段A B 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线B C 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出M N B △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,M N B △的面积最大,最大面积是多少?20.如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB =35,sin ∠OAB=55.(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式; (2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△y xODECFABQNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.21.(2008年乐山市)在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若C 的坐标为(0,2),AB=5, A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n -++-=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11C MC N+的值是否为定值,若是,求出定值,若不是,请说明理由22.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22) ACO BNDML`23.已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; (Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.24.如图①,四边形A E F G 和A B C D 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在A D 上(以下问题的结果均可用a b ,的代数式表示). (1)求D BF S △;(2)把正方形A E F G 绕点A 按逆时针方向旋转45°得图②,求图②中的D BF S △; (3)把正方形A E F G 绕点A 旋转一周,在旋转的过程中,D BF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由. .25. 已知24A B A D ==,,90DAB ∠=,AD BC ∥(如图13).E 是射线B C 上的动点(点E 与点B 不重合),M 是线段D E 的中点.(1)设BE x =,A B M △的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (2)如果以线段A B 为直径的圆与以线段D E 为直径的圆外切,求线段B E 的长;(3)联结B D ,交线段A M 于点N ,如果以A N D ,,为顶点的三角形与B M E △相似,求线段B E 的长.DCBAE F GGF EABCD ①②BADMECBADC26. 某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站.由供水站直接铺设管道到另外两处. 如图,甲,乙两村坐落在夹角为30 的两条公路的A B 段和C D 段(村子和公路的宽均不计),点M 表示这所中学.点B 在点M 的北偏西30 的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60 的23km 处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段C D 某处),甲村要求管道建设到A 处,请你在图①中,画出铺设到点A 和点M 处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段A B 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?27. 已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.MAEC D BF30乙村 甲村 东北图①MAEC D BF30乙村 甲村图②OO28. 已知双曲线k y x=与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A点左侧)是双曲线k y x=上的动点.过点B 作BD ∥y 轴于点D.过N(0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.29. 一种电讯信号转发装置的发射直径为31km .现要求:在一边长为30km 的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求? (2)至少需要选择多少个安装点,才能使这些点安装了这种转发装置后达到预设的要求? 答题要求:请你在解答时,画出必要的示意图,并用必要的计算、推理和文字来说明你的理由.(下面给出了几个边长为30km 的正方形城区示意图,供解题时选用)P '图②A Q CPB图①AQCPB图1 图2 图 3 图4D BCE NO A Myx。

陕西省西安市中考数学压轴题总复习(附答案解析)

陕西省西安市中考数学压轴题总复习(附答案解析)

2021年陕西省西安市中考数学压轴题总复习中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.定义:点P(a,b)关于原点的对称点为P',以PP'为边作等边△PP'C,则称点C为P 的“等边对称点”;
(1)若P(1,√3),求点P的“等边对称点”的坐标.
(2)若P点是双曲线y=2
x(x>0)上一动点,当点P的“等边对称点”点C在第四象
限时,
①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.
②如图(2),已知点A(1,2),B(2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标y c的取值范围.
2.如图,抛物线y=ax2+9
4x+c交x轴于A,B两点,交y轴于点C.直线y=−
3
4x+3经过
点B,C.
(1)求抛物线的解析式;
(2)点P从点O出发以每秒2个单位的速度沿OB向点B匀速运动,同时点E从点B 出发以每秒1个单位的速度沿BO向终点O匀速运动,当点E到达终点O时,点P停止运动,设点P运动的时间为t秒,过点P作x轴的垂线交直线BC于点H,交抛物线于点Q,过点E作EF⊥BC于点F.
①当PQ=5EF时,求出t值;
②连接CQ,当S△CBQ:S△BHQ=5:2时,请直接写出点Q的坐标.。

陕西中考压轴题

陕西中考压轴题

陕西中考压轴题(2002—2012)1.(2002•陕西)阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?2.(2003•陕西)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下﹣丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:(2)如图,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形;(3)正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.3.(2004•陕西)李大爷有一个边长为a的正方形鱼塘如图10-1所示,鱼塘四个角的顶点A、B、C、D上各有一棵大树,现在李大爷想把原来的鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大),又不想把树挖掉(四棵大树要在新建鱼塘的边沿上)。

陕西中考压轴题汇总

陕西中考压轴题汇总

陕西中考压轴题汇总陕西2012年中考陕西2011年中考陕西2010年中考陕西2009年中考陕西2008年中考陕西2007年中考陕西2006年中考25.(本题满分12分)李大爷有一个边长为a的正方形鱼塘(图-1),鱼塘四个角的顶点A、B、C、D上各有一棵大树.现在李大爷想把原来的鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大),又不想把树挖掉(四棵大树要在新建鱼塘的边沿上).(1)若按圆形设计,利用(图-1)画出你所设计的圆形鱼塘示意图,并求出网形鱼塘的面积;(2)若按正方形设计,利用(图-2)画出你所设计的正方形鱼塘示意图;(3)你在(2)所设计的正方形鱼塘中,有无最大面积?为什么?(4)李大爷想使新建鱼塘面积最大,你认为新建鱼25.(本题满分12分)已知:直线a∥b,P、Q是直线a上的两点,M、N是直线b上两点。

(1)如图①,线段PM、QN夹在平行直线a和b之间,四边形PMNQ为等腰梯形,其两腰PM=QN。

请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a和b之间的两条线段相等。

(2)我们继续探究,发现用两条平行直线a、b去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”。

把经过全等变换后能重合的两条曲线段叫做“曲线段相等”)。

请你在图③中画出一种图形,使夹在平行直线a和b之间的两条曲线段相等。

(3)如图④,若梯形PMNQ是一块绿化地,梯形的上底PQ=m,下底MN=n,且m<n。

现计划把价格不同的两种花草种植在S1、S2、S3、S4四块地里,使得价格相同的花草不相邻。

为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由。

25.(10分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.⑴请根据下列图形,填写表中空格:⑵如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?⑶从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.27.(本题满分10分)阅读下面短文:如图①, △ABC是直角三角形, ∠C=90°,现将△ABC补成矩形, 使△ABC的两个顶点为矩形一边的两个端点, 第三个顶点落在矩形这一边的对边上, 那么符合要求的矩形可以画出两个:矩形ACBD和矩形AEFB(如图②).解答问题:(1)设图②中矩形ABCD和矩形AEFB的面积分别为S1,S2, 则S1_____S2(填“>”,“=”或“<”)(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形, 那么符合要求的矩形可以画出_____个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC >AB, 按短文中的要求把它补成矩形,那符合要求的矩形可以画出____个,利用图④把它画出来. (4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?(第27题图③)(第27题图④)(第27题图①)(第27题图②)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.(本题满分12分)
已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点。

(1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM =QN 。

请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a 和b 之间的两条线段相等。

(2)我们继续探究,发现用两条平行直线a 、b 去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”。

把经过全等变换后能重合的两条曲线段叫做“曲线段相等”)。

请你在图③中画出一种图形,使夹在平行直线a 和b 之间的两条曲线段相等。

(3)如图④,若梯形PMNQ 是一块绿化地,梯形的上底PQ =m ,下底MN =n ,且m <n 。

现计划把价格不同的两种花草种植在S 1、S 2、S 3、S 4四块地里,使得价格相同的花草不相邻。

为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由。

25.(本题满分12分)
王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图①),王师傅想将这两块板子裁成两块全等的矩形板材。

他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图②),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点。

(1)求FC 的长;
(2)利用图②求出矩形顶点B 所对的顶点.....到BC 边的距离)(cm x 为多少时,矩形的面积最大?最大面积时多少? (3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长。

P Q M N
a b 第25题图① a b 第25题图② a
b
第25题图③
P Q M N
a b 第25题图④ S 1
S 2
S 3 S 4 n m
25.(本题满分12分)
如图,O 的半径均为R .
(1)请在图①中画出弦AB CD ,,使图①为轴对称图形而不是..中心对称图形;请在图②中画出弦AB CD ,,使图②仍为中心对称图形; (2)如图③,在
O 中,(02)AB CD m m R ==<<,
且AB 与CD 交于点E ,夹角为锐角α.求四边形ACBD 面积(用含m α,的式子表示); (3)若线段AB CD ,是
O
的两条弦,且AB CD ==,你认为在以点A B C D ,,,为顶点的四边形中,
是否存在面积最大的四边形?请利用图④说明理由.
25、(本题满分12分)
某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处。

如图,甲、乙两村坐落在夹角为30
°的两条公路的AB 段和CD 段(村子和公路的宽均不计),点M 表示这所中学。

点B 在点M 的北偏西30°的3km 处,点A 在点M 的正西方向,点D 在点M 的南偏西60
°的处。

为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:
方案一:供水站建在点M 处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;
方案二:供水站建在乙村(线段CD 某处),甲村要求管道铺设到A 处,请你在图①中,画出铺设到点A 和
点M 处的管道长度之和最小的线路图,并求其最小值;
方案三:供水站建在甲村(线段
AB 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值。

综上,你认为把供水站建在何处,所需铺设的管道最短?
(第25题图①) (第25题图②) (第25题图③) (第25题图④)
图①
图②
25.(本题满分12分) 问题探究
(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..
点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..
的点P ,并说明理由. 问题解决
(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).
25.(本题满分12分)
问题探究(1)请你在图①中做一条..
直线,使它将矩形ABCD 分成面积相等的两部分; (2)如图②点M 是矩形ABCD 内一点,请你在图②中过点M 作一条直线,使它将矩形ABCD 分成面积相等的两部分。

问题解决
(1) 如图③,在平面直角坐标系中,直角梯形OBCD 是某市将要筹建的高新技术开发区用地示意图,其中
DC ∥OB,OB=6,CD=4开发区综合服务管理委员会(其占地面积不计)设在点P (4,2)处。

为了方便驻区单位准备过点P 修一条笔直的道路(路宽不计),并且是这条路所在的直线l 将直角梯形OBCD 分成面积相等的了部分,你认为直线l 是否存在?若存在求出直线l 的表达式;若不存在,请说明理由
D C B A ① D C B
A ③ D C
B A ② (第25题图)
25.(本题满分12分)
如图①、在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个_________三角形
(2)如图②、甲在矩形ABCD,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)、如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?
若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?25.(本题满分12分)
问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.
问题解决
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点.如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?若存在,求出BQ的长;若不存在,说明理由.
M
D
B C
A
P
D
B C
A
(第25题图)

②③
25.(本题满分12分)
问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4.如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个
..等腰△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点.当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安监控装置,用来监视边AB.现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳.已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m.问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长;若不存在,请说明理由.
图①图②图③25.(本题满分12分)
如图,正三角形ABC的边长为3+3.
(1)如图①,正方形EFPN的顶点E F
、在边AB上,顶点N在边AC上.在正三角形ABC及其内部,以A为位似中心,作正方形EFPN的位似正方形''''
EFPN,且使正方形''''
EFPN的面积最大(不要求写作法);(2)求(1)中作出的正方形''''
EFPN的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE EF
、在边AB上,点P N
、分别在边CB CA
、上,求这两个正方形面积和的最大值及最小值,并说明理由.。

相关文档
最新文档