高中数学 (2.2.1 直线与平面平行的判定)示范教案 新人教A版必修2

合集下载

高中数学直线、平面平行的判定及其性质教案新人教版必修2

高中数学直线、平面平行的判定及其性质教案新人教版必修2

§2.2 直线、平面平行的判定及其性质§2.2.1 直线与平面平行的判定一、教材分析空间里直线与平面之间的位置关系中,平行是一种非常重要的关系,它不仅应用较多,而且是学习平面与平面平行的基础.空间中直线与平面平行的定义是以否定形式给出的用起来不方便,要求学生在回忆直线与平面平行的定义的基础上探究直线与平面平行的判定定理.本节重点是直线与平面平行的判定定理的应用.二、教学目标1.知识与技能(1)理解并掌握直线与平面平行、平面与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2.过程与方法学生通过观察图形,借助已有知识,掌握直线与平面平行、平面与平面平行的判定定理.3.情感、态度与价值观(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想.三、教学重点与难点如何判定直线与平面平行.四、课时安排1课时五、教学设计(一)复习复习直线与平面平行的定义:如果直线与平面没有公共点叫做直线与平面平行.(二)导入新课思路1.(情境导入)将一本书平放在桌面上,翻动书的封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面的位置关系吗?图1(三)推进新课、新知探究、提出问题①回忆空间直线与平面的位置关系.②若平面外一条直线平行平面内一条直线,探究平面外的直线与平面的位置关系.③用三种语言描述直线与平面平行的判定定理.④试证明直线与平面平行的判定定理.活动:问题①引导学生回忆直线与平面的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用反证法证明.讨论结果:①直线在平面内、直线与平面相交、直线与平面平行.②直线a在平面α外,是不是能够断定a∥α呢?不能!直线a在平面α外包含两种情形:一是a与α相交,二是a与α平行,因此,由直线a在平面α外,不能断定a∥α.若平面外一条直线平行平面内一条直线,那么平面外的直线与平面的位置关系可能相交吗?既然不可能相交,则该直线与平面平行.③直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.符号语言为:.图形语言为:如图2.图2④证明:∵a∥b,∴a、b确定一个平面,设为β.∴a⊂β,b⊂β.∵a⊄α,a⊂β,∴α和β是两个不同平面.∵b⊂α且b⊂β,∴α∩β=b.假设a与α有公共点P,则P∈α∩β=b,即点P是a与b的公共点,这与已知a∥b矛盾.∴假设错误.故a∥α.(四)应用示例思路1例1 求证空间四边形相邻两边中点的连线平行于经过另外两边的平面.已知空间四边形ABCD中,E、F分别是AB、AD的中点.求证:EF∥面BCD.活动:先让学生思考或讨论,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.证明:如图3,连接BD,图3EF∥面BCD.所以,EF∥面BCD.变式训练如图4,在△ABC所在平面外有一点P,M、N分别是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明画法.图4画法:过点N在面ABC内作NE∥BC交AB于E,过点M在面PBC内作MF∥BC交PB于F,连接EF,则平面MNEF为所求,其中MN、NE、EF、MF分别为平面MNEF与各面的交线.证明:如图5,图5.所以,BC∥平面MNEF.点评:“见中点,找中点”是证明线线平行常用方法,而证明线面平行往往转化为证明线线平行. 例2 如图6,已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别为AB 、BC 、CD 的中点.图6求证:AC∥平面EFG ,BD∥平面EFG.证明:连接AC 、BD 、EF 、FG 、EG.在△ABC 中,∵E、F 分别是AB 、BC 的中点,∴AC∥EF.又EF ⊂面EFG ,AC ⊄面EFG,∴AC∥面EFG.同理可证BD∥面EFG.变式训练已知M 、N 分别是△ADB 和△ADC 的重心,A 点不在平面α内,B 、D 、C 在平面α内,求证:MN∥α. 证明:如图7,连接AM 、AN 并延长分别交BD 、CD 于P 、Q ,连接PQ.图7∵M、N 分别是△ADB、△ADC 的重心, ∴NQAN MP AM ==2.∴MN∥PQ. 又PQ ⊂α,MN ⊄α,∴MN∥α.点评:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.思路2例题 设P 、Q 是边长为a 的正方体AC 1的面AA 1D 1D 、面A 1B 1C 1D 1的中心,如图8,(1)证明P Q∥平面AA 1B 1B ;(2)求线段PQ 的长.图8(1)证法一:取AA 1,A 1B 1的中点M,N,连接MN,NQ,MP, ∵MP∥AD,MP=AD 21,NQ∥A 1D 1,NQ=1121D A , ∴MP∥ND 且MP=ND.∴四边形PQNM 为平行四边形.∴PQ∥MN.∵MN ⊂面AA 1B 1B,PQ ⊄面AA 1B 1B,∴PQ∥面AA 1B 1B.证法二:连接AD 1,AB 1,在△AB 1D 1中,显然P,Q 分别是AD 1,D 1B 1的中点,∴PQ∥AB 1,且PQ=121AB . ∵PQ ⊄面AA 1B 1B,AB 1⊂面AA 1B 1B,∴PQ∥面AA 1B 1B.(2)解:方法一:PQ=MN=a N A M A 222121=+. 方法二:PQ=a AB 22211=. 变式训练如图9,正方体ABCD —A 1B 1C 1D 1中,E 在AB 1上,F 在BD 上,且B 1E=BF.图9求证:EF∥平面BB 1C 1C.证明:连接AF 并延长交BC 于M ,连接B 1M.∵AD∥BC,∴△AFD∽△MFB. ∴BFDF FM AF =. 又∵BD=B 1A ,B 1E=BF,∴DF=AE. ∴BFDF FM AF =. ∴EF∥B 1M ,B 1M ⊂平面BB 1C 1C. ∴EF∥平面BB 1C 1C.(五)知能训练已知四棱锥P —ABCD 的底面为平行四边形,M 为PC 的中点,求证:PA∥平面MBD.证明:如图10,连接AC 、BD 交于O 点,连接MO,图10∵O 为AC 的中点,M 为PC 的中点,∴MO 为△PAC 的中位线.∴PA∥MO.∵PA ⊄平面MBD,MO ⊂平面MBD,∴PA∥平面MBD.(六)拓展提升如图11,已知平行四边形ABCD 和平行四边形ACEF 所在的平面相交于AC,M 是线段EF 的中点.图11求证:AM∥平面BDE.证明:设AC∩BD=O ,连接OE ,∵O、M 分别是AC 、EF 的中点,ACEF 是平行四边形,∴四边形AOEM 是平行四边形.∴AM∥OE.∵OE ⊂平面BDE ,AM ⊄平面BDE ,∴AM∥平面BDE.(七)课堂小结知识总结:利用线面平行的判定定理证明线面平行.方法总结:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.(八)作业课本习题2.2 A组3、4.§2.2.3 直线与平面平行的性质一、教材分析上节课已学习了直线与平面平行的判定定理,这节课将通过例题让学生体会应用线面平行的性质定理的难度,进而明确告诉学生:线面平行的性质定理是高考考查的重点,也是最难应用的两个定理之一.本节重点是直线与平面平行的性质定理的应用.二、教学目标1.知识与技能掌握直线与平面平行的性质定理及其应用.2.过程与方法学生通过观察与类比,借助实物模型性质及其应用.3.情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力.(2)进一步体会类比的作用.(3)进一步渗透等价转化的思想.三、教学重点与难点教学重点:直线与平面平行的性质定理.教学难点:直线与平面平行的性质定理的应用.四、课时安排1课时五、教学设计(一)复习回忆直线与平面平行的判定定理:(1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(2)符号语言为:(3)图形语言为:如图1.图1(二)导入新课思路1.(情境导入)教室内日光灯管所在的直线与地面平行,是不是地面内的所有直线都与日光灯管所在的直线平行?思路2.(事例导入)观察长方体(图2),可以发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B 平行吗?图2(三)推进新课、新知探究、提出问题①回忆空间两直线的位置关系.②若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.③用三种语言描述直线与平面平行的性质定理.④试证明直线与平面平行的性质定理.⑤应用线面平行的性质定理的关键是什么?⑥总结应用线面平行性质定理的要诀.活动:问题①引导学生回忆两直线的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用排除法.问题⑤引导学生找出应用的难点.问题⑥鼓励学生总结,教师归纳.讨论结果:①空间两条直线的位置关系:相交、平行、异面.②若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面.怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.③直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.这个定理用符号语言可表示为:这个定理用图形语言可表示为:如图3.图3④已知a∥α,a β,α∩β=b.求证:a∥b.证明:⑤应用线面平行的性质定理的关键是:过这条直线作一个平面.⑥应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.(四)应用示例思路1例1 如图4所示的一块木料中,棱BC平行于面A′C′.图4(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与面AC是什么位置关系?活动:先让学生思考、讨论再回答,然后教师加以引导.分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.解:(1)如图5,在平面A′C′内,过点P作直线EF,使EF∥B′C′,图5并分别交棱A′B′、C′D′于点E、F.连接BE、CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC∥B′C′.由(1)知,EF∥B′C′,所以EF∥BC.因此BE 、CF 显然都与平面AC 相交.变式训练如图6,a∥α,A 是α另一侧的点,B 、C 、D ∈a ,线段AB 、AC 、AD 交α于E 、F 、G 点,若BD=4,CF=4,AF=5,求EG.图6解:A ∉a ,∴A、a 确定一个平面,设为β.∵B∈a ,∴B∈β.又A ∈β,∴AB ⊂β.同理AC ⊂β,AD ⊂β.∵点A 与直线a 在α的异侧,∴β与α相交.∴面ABD 与面α相交,交线为EG.∵BD∥α,BD ⊂面BAD ,面BAD∩α=EG,∴BD∥EG.∴△AEG∽△ABD. ∴ACAF BD EG =.(相似三角形对应线段成比例) ∴EG=920495=⨯=∙BD AC AF . 点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.图7已知直线a,b,平面α,且a∥b,a∥α,a,b 都在平面α外.求证:b∥α.证明:过a 作平面β,使它与平面α相交,交线为c.∵a∥α,a ⊂β,α∩β=c,∴a∥c.∵a∥b,∴b∥c.∵c ⊂α,b ⊄α,∴b∥α.变式训练如图8,E 、H 分别是空间四边形ABCD 的边AB 、AD 的中点,平面α过EH 分别交BC 、CD 于F 、G.求证:EH∥FG.图8证明:连接EH.∵E、H 分别是AB 、AD 的中点,∴EH∥BD.又BD ⊂面BCD ,EH ⊄面BCD,∴EH∥面BCD.又EH ⊂α、α∩面BCD=FG,∴EH∥FG.点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.思路2例 1 求证:如果两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.如图9.图9已知a∥b,a ⊂α,b ⊂β,α∩β=c.求证:c∥a∥b.证明:变式训练求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.图10已知:如图10,a∥α,a∥β,α∩β=b ,求证:a∥b.证明:如图10,过a 作平面γ、δ,使得γ∩α=c ,δ∩β=d ,那么有点评:本题证明过程,实际上就是不断交替使用线面平行的判定定理、性质定理及公理4的过程.这是证明线线平行的一种典型的思路.例2 如图11,平行四边形EFGH 的四个顶点分别在空间四边形ABCD 的边AB 、BC 、CD 、DA 上,求证:BD∥面EFGH ,AC∥面EFGH.图11证明:∵EFGH 是平行四边形变式训练如图12,平面EFGH 分别平行于CD 、AB ,E 、F 、G 、H 分别在BD 、BC 、AC 、AD 上,且CD=a ,AB=b ,CD⊥AB.图12(1)求证:EFGH 是矩形;(2)设DE=m,EB=n,求矩形EFGH 的面积.(1)证明:∵CD∥平面EFGH ,而平面EFGH∩平面BCD=EF,∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH 为平行四边形.由CD∥EF,HE∥AB,∴∠HEF 为CD 和AB 所成的角.又∵CD⊥AB,∴HE⊥EF.∴四边形EFGH 为矩形.(2)解:由(1)可知在△BCD 中EF∥CD,DE=m ,EB=n, ∴DB BE CD EF =.又CD=a,∴EF=a nm n +. 由HE∥AB,∴DBDE AB HE =. 又∵AB=b,∴HE=b n m m +. 又∵四边形EFGH 为矩形,∴S 矩形EFGH =HE·EF=ab n m mn a n m n b n m m 2)(+=+∙+. 点评:线面平行问题是平行问题的重点,有着广泛应用.(五)知能训练求证:经过两条异面直线中的一条有且只有一个平面和另一条直线平行.已知:a 、b 是异面直线.求证:过b 有且只有一个平面与a 平行.证明:(1)存在性.如图13,图13在直线b 上任取一点A ,显然A ∉a.过A 与a 作平面β,在平面β内过点A 作直线a′∥a,则a′与b 是相交直线,它们确定一个平面,设为α,∵b ⊂α,a 与b 异面,∴a ⊄α.又∵a∥a′,a′⊂α,∴a∥α.∴过b 有一个平面α与a 平行.(2)唯一性.假设平面γ是过b 且与a 平行的另一个平面,则b ⊂γ.∵A∈b ,∴A∈γ.又∵A∈β,∴γ与β相交,设交线为a″,则A ∈a″.∵a∥γ,a ⊂β,γ∩β=a″,∴a∥a″.又a∥a′,∴a′∥a″.这与a′∩a″=A 矛盾.∴假设错误,故过b 且与a 平行的平面只有一个.综上所述,过b 有且只有一个平面与a 平行.变式训练已知:a∥α,A ∈α,A ∈b ,且b∥a.求证:b ⊂α.证明:假设b ⊄α,如图14,图14设经过点A 和直线a 的平面为β,α∩β=b′, ∵a∥α,∴a∥b′(线面平行则线线平行). 又∵a∥b,∴b∥b′,这与b∩b′=A 矛盾.∴假设错误.故b ⊂α.(六)拓展提升已知:a,b 为异面直线,a ⊂α,b ⊂β,a∥β,b∥α,求证:α∥β.证明:如图15,在b 上任取一点P ,由点P 和直线a 确定的平面γ与平面β交于直线c ,则c 与b 相交于点P.图15变式训练已知AB 、CD 为异面线段,E 、F 分别为AC 、BD 中点,过E 、F 作平面α∥AB.(1)求证:CD∥α;(2)若AB=4,EF=5,CD=2,求AB 与CD 所成角的大小.(1)证明:如图16,连接AD交α于G,连接GF,图16∵AB∥α,面ADB∩α=GF AB∥GF.又∵F为BD中点,∴G为AD中点.又∵AC、AD相交,确定的平面ACD∩α=EG,E为AC中点,G为AD中点,∴EG∥CD.(2)解:由(1)证明可知:∵AB=4,GF=2,CD=2,∴EG=1,EF=5.在△EGF中,由勾股定理,得∠EGF=90°,即AB与CD所成角的大小为90°.(七)课堂小结知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行.方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.(八)作业课本习题2.2 A组5、6.§2.2.2 平面与平面平行的判定§2.2.4 平面与平面平行的性质一、教材分析空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法;面面平行的性质定理又给出了由面面平行转化为线线平行的方法,所以本节在立体几何中占有重要地位.本节重点是平面与平面平行的判定定理及其性质定理的应用.二、教学目标1、知识与技能(1)理解并掌握平面与平面平行的判定定理;(2)掌握两个平面平行的性质定理及其应用(3)进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法学生通过观察与类比,借助实物模型理解及其应用3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。

高中数学 2.2.1直线与平面平行、平面与平面平行的判定教案 新人教a版必修2

高中数学 2.2.1直线与平面平行、平面与平面平行的判定教案 新人教a版必修2

第一课时直线与平面平行、平面与平面平行的判定(一)教学目标1.知识与技能(1)理解并掌握直线与平面平行、平面与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2.过程与方法学生通过观察图形,借助已有知识,掌握直线与平面平行、平面与平面平行的判定定理.3.情感、态度与价值观(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想.(二)教学重点、难点重点、难点:直线与平面平行、平面与平面平行的判定定理及应用.(三)教学方法借助实物,让学生通过观察、思考、交流、讨论等理解判定定理,教师给予适当的引教学过2(生:师:生:不好判定师:么样的位置关系?:如图,如果在平生:平行师:生:问题师投影问题符号表示:bα⎭生生Aβ=,则共点,又的公共直线,所以b= A,但a∥b∴直线.师:根据刚才分析,师:求证证明:连结BD.在△ABD中,因为分别是AB、AD的中所以又因为所以师:生:连结师:你能证明吗?学生分析,教师板书例①两个平面不相交②两个平面没有公共点,b p a αβα=⇒分别与平面A ′B ′′D ′内两条相交直线A ′′,B ′D ′平行,由直线与平面平行的判定定理可知,这两条直交直线ABCD – A 1B 1C 1D 1D C = A B 11D B D =平面AB 1D 1点评:线线平行⇒线面平行(1)与AB 平行的平面是 . (2)与AA ′ 平行的 .3.判断下列命题是否正确,正确的说明理由,错误的举例说(1)已知平面α,5.平面α与平面β平行的条件可以是()A.α内有无穷多条直线都与平行.B.直线a∥α,a∥备选例题例1 在正方体ABCD – A 1B 1C 1D 1 中,E 、F 分别为棱BC 、C 1D 1的中点.求证:EF ∥平面BB 1D 1D .【证明】连接AC 交BD 于O ,连接OE ,则OE ∥DC ,OE = DC 21. ∵DC ∥D 1C 1,DC = D 1C 1,F 为D 1C 1的中点,∴ OE ∥D 1F ,OE = D 1F ,四边形D 1FEO 为平行四边形. ∴EF ∥D 1O .又∵EF ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D , ∴EF ∥平面BB 1D 1D .例2 已知四棱锥P – ABCD 中,底面ABCD 为平行四边形.点M 、N 、Q 分别在PA 、BD 、PD 上,且PM : MA = BN : ND = PQ : QD .求证:平面MNQ ∥平面PBC .【证明】∵PM ∶ MA = BN ∶ND = PQ ∶ QD . ∴MQ ∥AD ,NQ ∥BP ,而BP ⊂平面PBC ,NQ ⊄平面PBC ,∴NQ ∥平面PBC . 又∵ABCD 为平行四边形,BC ∥AD , ∴MQ ∥BC ,而BC ⊂平面PBC ,MQ ⊄平面PBC , ∴MQ ∥平面PBC .由MQ ∩NQ = Q ,根据平面与平面平行的判定定理, ∴平面MNQ ∥平面PBC .【评析】由比例线段得到线线平行,依据线面平行的判定定理得到线面平行,证得两条相交直线平行于一个平面后,转化为面面平行.一般证“面面平面”问题最终转化为证线与线的平行.。

高中数学人教A版必修2《2.2.1直线与平面平行的判定》教案4

高中数学人教A版必修2《2.2.1直线与平面平行的判定》教案4

必修二2.2.1 直线与平面平行的判定【教学目标】(一)知识目标:1、直线与平面平行的定义2、直线与平面平行的判定定理(二)能力目标:1、转化思想:空间问题转化为平面问题是处理立体几何问题的重要思想空间中线线位置关系与线面位置关系的互相转化;2、培养数学思维过程【教学重点】直线与平面平行的定义、判定定理及其简单应用.【教学难点】1、判定定理的探索与归纳;2、判定定理和定义在解决线面平行问题中的交互与转化.【教学方式】启发探究式【教学手段】计算机、自制课件、实物模型【教学过程】一、课前准备问题1:我们学习了直线与平面有哪些位置关系?直线与平面的位置关系有______________,_______________,_________________. 讨论:直线和平面的位置关系中,平行是最重要的关系之一,那么如何判定直线和平面是平行的呢?根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点.但是,直线无限延长,平面无限延展,如何保证直线与平面没有公共点呢?你能想到其它的判断方法吗?二、直观感知直线与平面平行的位置关系实例1:如图1-1,将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?图1-1结论:上述问题中的直线l 与对应平面都是平行的.三、抽象概括直线与平面平行的定义探究1:直线与平面平行的判定定理问题:实例1中的直线l 为什么会和对应的平面平行呢?你能猜想出什么结论吗?能作图把这一结论表示出来吗?新知:直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 如图1-2所示,a ∥ .图1-2反思:思考下列问题⑴用符号语言如何表示上述定理;⑵上述定理的实质是什么?它体现了什么数学思想?⑶判定定理中共有几个条件?怎样总结?(4)你能从以上定理想到证明平行的步骤吗?(5)证明线线平行常用的方法有哪些?四.小试牛刀如图,在长方体ABCD ——1111D C B A 六个表面中,⏹ (1)与AB 平行的直线有:⏹ (2)与AB 平行的平面有:C1D1B1A1C DA五. 典型例题例1如图,空间四边形ABCD 中,,E F 分别是,AB AD 的中点,求证:EF ∥平面BCD .解后反思:请您把您解决本题的思路和方法说出来与大家分享。

2.2.1《直线和平面平行判定》(新人教A版必修2)

2.2.1《直线和平面平行判定》(新人教A版必修2)
人教A版普通高中课程标准实验教科书数学必修2
2.2.1
直线与平面平行的判定
(第一课时)
湖南省泸溪县第一中学
说 课 流 程
1 教 材 分 析
2 学 情 分 析
3 教 学 目 标 分 析
4 教 法 学 法 分 析
5 教 学 过 程 分 析
6 设 计 说 明
一、教材分析
1 、 • 教 材 的 地 位 和 作 用
(3)若b , a // b, 则a //
3
辨 析 讨 论 深 化 理 解
判定定理的三个条件缺一不可 a a ∥ b a∥b
简记为:内外线线平行 (平面化)

线面平行
(空间问题)
定理运用、辨析: 1、判断下列命题是否正确,若正确,请简述理由,若不 正确,请给出反例.
(1)如果a、b是两条直线,且a∥b,那么a 平行于经过b的 任何平面;( )
教学过程 知识回顾: 一、直线与平面的位置关系
1、位置关系 (1)有无数个公共点 (2)有且只有一个公共点
直线在平面内
直线与平面相交 直线与平面平行
(3)没有公共点
教学过程
2、直线和平面位置关系的图形表示、符
号表示
a a
A
α
a
α
α
a //
a
a A
教学过程
1 创 设 情 境 感 知 概 念
直线和平面平行的判定定理:
2
观 察 归 纳 形 成 概 念
如果平面外的一条直线和此平面内的一条 直线平行,那么这条直线和这个平面平行.
a b
a b a∥b
a ∥

分组讨论:
判断下列命题是否正确,若不正确,请用图 形语言或模型加以表达

人教A版高中数学必修二第二章2.2.1直线与平面平行的判定说课稿

人教A版高中数学必修二第二章2.2.1直线与平面平行的判定说课稿

2.2.1直线与平面平行的判定(说课稿)本节课的内容选自于高中教材新课程人教A版必修二“2.2.1直线与平面平行的判定”。

下面我将从教材分析、教学目标设计、教学方法设计、教学过程设计和评价分析五大方面来阐述我对这节课的理解。

一、教材分析1.背景和地位本节课主要学习直线与平面平行的判定定理及其初步运用。

线面平行的判定定理充分体现了线线平行与线面平行之间的转化,它与前面所学习的平面几何中两条直线的位置关系以及立体几何中直线与平面的位置关系等知识都有密切的关系,又是后面学习面面平行的基础,成为连接线线平行和面面平行的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。

本节课中,学生将按照“直观感知—操作确认—探究思辨—归纳总结”的认知过程展开学习,对图片、实例的观察感知,对实验的操作确认,对问题的数学概括并做探究思辨,最后归纳总结出线面平行的判定定理。

学生将在情景和问题的带动下,进行更主动的思维活动,发展学生的合情推理能力、空间想象能力,培养学生的质疑思辨精神。

2.教学重点和难点教学重点:直线与平面平行的判定定理的探究及应用教学难点:利用线面平行、线线平行及公理3对直线与平面平行的判定定理的思辨探究学习本课前,学生了解了平面的3个公理,又通过直观感知的方法,学习了直线、平面之间的位置关系,对空间概念建立有一定基础。

但是,学生的抽象概括能力、空间想象力还有待提高。

利用线面平行、线线平行及公理3对直线与平面平行的判定定理的思辨探究可进一步巩固前面所学,同时也存在一定难度,因而,我将本节课的教学难点确立为:利用线面平行、线线平行及公理3对直线与平面平行的判定定理的思辨探究。

二、教学目标设计(一)知识与技能1、理解并掌握直线与平面平行的判定定理;2、进一步培养学生观察、发现的能力和空间想象能力;3、能用直线与平面平行的判定定理证明一些空间线面的平行关系。

(二)过程与方法通过直观感知、操作确认、思辨探究的方法概括出直线与平面平行的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。

最新直线与平面平行的判定定理教案设计

最新直线与平面平行的判定定理教案设计

§2.2.1 直线与平面平行的判定(选自人教A版必修②第二章第二节第一课时)一、教材分析本节教材选自人教A版数学必修②第二章第二节第一课时,主要内容是直线与平面平行的判定定理的探究与发现、归纳概括、练习与应用。

它是在前面已学空间点、线、面的位置关系的基础上,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

学线面平行判定是三大平行判定(线线平行、线面平行、面面平行)的核心,也是高考的高频考点之一,学好线面平行对后续学习面面平行及三大垂直的判定与性质等内容,具有良好的示范作用,同时,它在立体几何学习中起着承上启下的作用,具有重要的意义与地位。

本节课的学习对培养学生空间想象能力与逻辑推理能力起到重要作用。

线面平行的判定蕴含的数学思想方法主要有数形结合与化归与转化思想。

二、学情分析本节课的教学对象是高一的学生,他们具备一定的由形象思维转化为逻辑思维的能力。

学生在此前已经学习了直线与直线平行的性质及判定、直线与平面平行的定义,对直线与平面平行有了一定的认识,这些都为学生学习本节课做了准备。

同时,由于本节课与生活实际相结合,学生的学习兴趣、参与度会比较大。

但是由于学生处于学习空间立体几何的初始阶段,学习立体几何所具备的语言表达及空间感与空间想象能力不够,特别是对线面平行(空间立体)转化为线线平行(平面)的化归与转化思想,这是学生首次接触的思想方法,应加以必要的强化与引导。

三、教学目标(一)知识技能目标(1)理解直线与平面平行的判定定理并能进行简单应用;(2)培养学生观察、发现问题的能力和空间想象能力。

(二)过程方法目标(1)启发式:以实物(门、书、直角梯形卡纸)为媒介,启发、诱导学生逐步经历定理的直观感知过程;(2)指导学生进行合情推理。

对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题,教师予以指导,帮助学生合情推理、澄清概念、加深认识。

新人教版必修二高中数学:2.2.1直线与平面平行的判定教案

2.2.1 直线与平面平行的判定一、教学目标:1、知识与技能(1)理解并掌握直线与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法学生通过直观感知——观察——操作确认——归纳并认识直线与平面平行的判定定理。

3、情感、态度与价值观(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想。

二、教学重点、难点重点、难点:直线与平面平行的判定定理及应用。

三、学法与教学用具1、学法:学生借助实例,通过观察、思考、交流、讨论等,理解判定定理。

2、教学用具:投影仪(片)四、教学思想(一)知识准备,新课引入问题1.直线与平面的位置关系有哪几种?完成下表。

问题2:在直线与平面的位置关系中,平行是一种非常重要的关系,它是空间线面位置关系的基本形态,那么怎样判定直线与平面平行呢?(二)研探新知知识探究(一):直线与平面平行的背景分析1、直观感知思考1:根据定义,怎样判定直线与平面平行?图中直线l和平面α平行吗?思考2:生活中,我们注意到门扇的两边是平行的.αl当门扇绕着一边转动时,观察门扇转动的一边与门框所在平面的位置关系如何?2.动手实践——数学实验(1)将课本的一边AB 紧靠桌面,并绕AB 转动,观察AB 的对边CD 在各个位置时,是不是都与桌 面所在的平面平行?(2)直线AB 、CD 各有什么特点呢?有什么关系呢?(3)从中你能得出什么结论?结论:CD 是桌面外一条直线, AB如果CD ∥ AB ,则CD ∥桌面。

3.探究思考 思考3:猜想在什么条件下直线a 与平面α平行?猜想:如果平面外一条直线和这个平面内 的一条直线平行,那么这条直线和这个平面平行。

(引发学生思考其可否作为判断线面平行的定理。

)探究(二):直线与平面平行的判断定理 1、归纳确认思考1:如果直线a 与平面α内的一条直 线b 平行,则直线a 与平面α一定平行吗? (说明直线a 在平面外的重要性)思考2:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

高中数学人教版必修2 2.2.1 直线与平面平行的判定 教案(系列二)

2.2 直线与平面平行的判定(第一课时)【教学内容解析】本节教材选自人教A版数学必修Ⅱ第二章第二节,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位.之前的课程已学过空间点、线、面的位置关系及4个公理.结合有关的实物模型,通过直观感知、合情推理、探究说理、操作确认,归纳出直线与平面平行的判定定理.本节课的教学重点是直线与平面平行的判定定理的初步理解和简单应用.本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线面平行的性质、面面平行的判定与性质的学习作用重大,因为研究过程渗透的数学思想都是化归与转化.【教学目标设置】通过直观感知——观察提炼——探究说理——操作确认的认识方法初步理解并掌握直线与平面平行的判定定理.初步掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理,培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力.通过定理的运用,让学生学会在具体问题中正确使用定理,理解使用定理的关键是找平行线,并知道证明线线平行的一般途径.通过对空间直线与平面平行的判定定理的感知、提炼、论证以及应用的过程,培养学生发现规律、认识规律并利用规律解决问题的能力.在定理的获得和应用过程中进一步渗透化归与转化的数学思想,渗透立体几何中将空间问题降维转化为平面问题的一般方法.通过本节课的学习,进一步培养学生从生活空间中抽象出几何图形关系的能力,提高演绎推理、逻辑记忆的能力.让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感.通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.【学生学情分析】通过前面课程的学习,学生对简单几何体的结构特征有了初步认识,对几何体的直观图及三视图的画法有了基本的了解.结合他们生活和学习中的空间实例,学生对空间图形的基本关系也有了大致的了解,初步具备了最朴素的空间观念.由于刚刚接触立体几何不久,学习经验有限,学习立体几何所应具备的语言表达能力及空间想象能力相对不足,他们从生活实例中抽象概括出问题的数学本质的能力相对欠缺,从具体情境发现并归纳出直线与平面平行的判定定理以及对定理的理解是教学难点.【教学策略分析】新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程.综合考虑教学内容与学生学情,本节课的教学遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,合情推理,探究说理,操作确认,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定定理、理解数学概念,领会数学思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象能力,提高学生的数学逻辑思维能力.【教学过程】(一)复习回顾、铺陈蓄势【教学实录】教师简单回顾了之前学习的课程内容后,面向全体同学提出问题1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系,并请一位学生代表上黑板作图表示直线与平面的位置关系,其余同学在座位上同步完成.接着,多媒体幻灯片展示了空间直线与平面的三种位置关系的三种语言表示.同时强调:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊆/α.引导学生回顾总结空间直线与平面的三种位置关系是按照直线与平面的公共点的个数来分类的.直线在平面内的情形公理1已经解决,直线与平面相交的情形将在后续课程中研究,本节课我们将研究直线与平面平行这一位置关系.面向全体同学提出问题2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法.带领同学体会本节课学习的必要性,引出课题.设计意图:教学预设以生本教育观为指导,充分尊重学生的学习主体地位.从建构主义理论来看,学生原有认知结构是新授课的基础.本节课学生已有的知识储备是直线与平面平行的定义.教学预设从数学学科内部发展的顺序来说明本节课学习任务的确定,从数学学科内部发展的需要来引起认知冲突并说明本课学习的必要性,逻辑性强,利于知识系统的主动建构.(二)列举实例、直观感知面向全体同学提问:在日常生活中,哪些实例给我们以直线与平面平行的印象呢?αa (师生充分交流,学生容易指出教室的日光灯与地面平行、黑板的边缘与地面平行、足球场上球门的横梁与足球场平行等等.)设计意图:使学生有充分的具体情境下的认知体验,为后续内容做好铺垫,引导学生学自己身边的数学,学有用的数学.通过充分的直观感知,努力促进学生空间观念的构建.列举身边的实例后,面向全体同学抛出问题1:单凭感觉可靠吗?(让学生单凭直观感觉,判断直线a 与平面α是否平行)进而给出问题2:该怎样判定直线与平面平行呢?设计意图:问题1是为了设置一个有争议的情境,眼见不一定为实,进而调动学生的探究欲望.问题2是为下面动手操作、合作探究,发现判定定理作了一个引子,埋了一个伏笔.(三)动态演示、抽象概括从同学们列举的日光灯的实例出发,学生容易发现如果将日光灯平稳..下降,最终日光灯管会平稳..地落到地面内来,通过多媒体动态演示这一过程.将原来日光灯所在直线记作a ,平移到地面(记作平面α)内之后记作直线b ,同学们可以发现a //b (强调直线a ,b 没有公共点).教师引导学生发现直线a 与b 没有公共点.在平面α内平移b ,得到直线c ,不难发现a //c (强调直线a ,c 没有公共点).紧接着,提出问题,直线a 能与平面α内的无数条直线都平行吗?(能)教师追问,直线a 与平面α内的这无数条直线有公共点吗?(没有)教师带领全体同学思考一个问题:“反过来,直线a 与平面α内的无数条直线都平行,则a 与平面α平行吗?”(此处可能是需要突破的地方,视学生反应情况可以辅以几何画板软件展示无数条直线无限细密地“铺满”平面.)教师追问,直线a 与平面内的无数条直线都平行,a 与这些直线有公共点吗?(没有)结合几何画板的展示过程,提问:直线a 与平面α有公共点吗?(没有)教师继续追问:直线a 与平面α没有公共点意味着什么?(a //α)教师充分肯定同学们的发现后,揭示数学本质:平面α内的任一点均在直线a 的某条平行线上,于是,直线a 与平面α没有公共点,即a //α.之后,教师追问:“需要平面外的直线a 与平面α内的无数条直线都平行吗?”(不需要!)追问:符号语言:////a b a a b ααα⊆⎫/⎪⊂⇒⎬⎪⎭图形语言:“几条就可以了?”(一条!)“为什么?”(平面内的无数条直线都可以通过平面内的一条直线平移得到)教师此时可抓住时机,面向全体同学发问:大家能得到空间直线与平面平行的一个判定方法吗?定理5.1 (直线和平面平行的判定定理)平面外的一条直线与平面内的一条直线平行,则该直线和此平面平行.(四)动手操作、实验确认接下来,教师引导学生通过动手实验操作,进一步确认定理的正确性.请全体同学将课本按如图所示的方式直立地放在桌面上,并借助多媒体动画演示,引导学生探究思考书页的边缘所在直线与桌面、与另一张书页所在平面的位置关系,进一步巩固对定理的理解.然后,请同学们考虑该定理用符号语言应当怎样表述?并请一位同学上黑板板演,教师及时纠正.经历了前面的探究过程,学生不难指出该定理前提条件的三个关键词:“平面外”、“平面内”、“平行”.接下来,请同学们指出我们在“空间图形的基本关系”一课中用图形表示空间直线与平面平行的合理性.为防止学生因为思维定势造成的负迁移,教师通过实物展示空间直线与平面平行的其它情形(将上图中直线a ,b 作水平旋转得到如图所示的情形).同时强调只要在平面内找到一条..直线与平面外的直线平行即可. 最后,教师引导学生指出此处渗透的处理立体几何问题的基本思想:将空间问题降维转化为平面问题解决(线线平行⇒线面平行).设计意图:定理的发现与论证过程采用了“观察模型—直观感知—理性分析—抽象概括—操作确认—思考探究”的方式展开.新课程教材中回避了定理的理论证明,但考虑到数学的理性精神及良好的学情状况,在定理的生成过程中仍然强调了“说理”.在教师的引导下,经过推理,定理生成.考虑到学生主体未能直接动手操作,印象未必深刻.为此,设计了两个学生活动,让他们在动手操作中体会定理的正确性,给他们充分的思考时间与空间,让他们主动建构新知.定理生成后,①教师强调三种数学语言的转化,利用判定定理反观线面平行的图形表示的合理性,并通过直观演示,防止学生出现思维定势;②教师及时给出关于直线与平面平行的两个假命题,继续从反面强调定理成立的三个要素缺一不可.以上的教学预设与生成都是从学生的最近发展区设计问题,帮助学生主动辨明定理的实质,教师在其中板演的角色仍然是一个组织者和引导者,学习的主体是学生.(五)定理运用、形成技能(多媒体幻灯片演示)想一想:判断下列命题的真假并说明理由:①若一条直线不在平面内,则该直线与此平面平行( )②若一条直线与平面内的无数条直线平行,则该直线与此平面平行( )③如图,a 是平面α内的一条给定的直线,若平面α外的直线b 不平行于直线a ,则直线b 与平面α就不平行( )(教师带领全体同学辨析)证一证:如图1,已知空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点,判断并证明 EF 与平面BCD 的位置关系.全班同学尝试解答的同时,请一位同学上黑板解答,教师及时规范学生的答题,适时点评.师生共同图1 图2总结出运用定理的关键是找线(平面内)线(平面外)平行.面向全体同学提问,初中平面几何中,我们学习了哪些判定直线与直线平行的方法?(利用三角形的中位线、梯形的中位线、平行四边形的对边、平行线分线段成比例定理的逆定理、同位角相等、内错角相等、同旁内角互补……)教师可以顺势给出一个简单的变式:如图2,将△ABD 改为梯形BDHG ,E 、F 分别是BG 、DH 的中点,判断并证明 EF 与平面BCD 的位置关系.最后,如果学情允许,给出如下的操作思考:如图,正方体ABCD -A 1B 1C 1D 1中,P 是棱A 1B 1的中点,过点 P 画一条直线使之与截面A 1BCD 1平行.问题提出后,给学生足够的时间思考讨论,学生取BB 1的中点,C 1D 1的中点得到画法应该不困难.难点是其它可能的情形.这里,到底讲到什么程度,也应当视学情而定,尊重课堂教学的生成.为使更多的同学有一个直观的体验,将借助几何动画将正方体运动起来,变换观察的角度,让他们有一个直观的体验.设计意图:“想一想”的设置是为了进一步从反例出发促使学生对判定定理的准确理解.“证一证”是为了让学生通过动手尝试证明问题,掌握运用定理解决问题的一般方法,并进一步从实践操作层面体会运用定理需满足的三个要点缺一不可,学生经历了解题过程后主动发现运用定理的关键是找平行线.“操作思考”更是借助一题多解关注不同层次的同学的不同发展需求,让不同的同学获得不同的发展.(六)收获感悟、总结提高先由学生口头总结,然后教师归纳总结:(多媒体幻灯片展示)一、直线与平面平行的判定定理;二、证明直线与平面平行的方法;三、运用判定定理时的几个要点;四、运用定理的关键:找平行线;五、立体几何的基本思想:化归.(七)分层作业 共同进步基本作业:1、如图,在空间四边形ABCD 中,E 、F 分别为AB 、AD 上的点.若AE AF,判断并证明EF与平面BCD的位置关系.AB AD拓展提高:1、如图,在长方体ABCD-A1B1C1D1中,E是棱CC1上的点,试确定点E的具体位置使AC1//平面BDE.2、尝试严格地证明直线与平面平行的判定定理.附:板书设计反思与改进。

高一数学 2.2.1 直线与平面平行的判定教案人教新课标A版 必修2

§2.2.1 直线与平面平行的判定【教学目标】(1)识记直线与平面平行的判定定理并会应用证明简单的几何问题;(2)进一步培养学生观察、发现的能力和空间想象能力;(3)让学生了解空间与平面互相转换的数学思想。

【教学重难点】重点、难点:直线与平面平行的判定定理及应用。

【教学过程】(一)创设情景、揭示课题引导学生观察身边的实物,如教材第54页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。

(二)研探新知1、观察①当门扇绕着一边转动时,门扇转动的一边所在直线与门框所在平面具有什么样的位置关系?②将课本放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系?问题本质:门扇两边平行;书的封面的对边平行从情境抽象出图形语言探究问题:平面α外的直线a 平行平面α内的直线b ③直线,a b 共面吗? ④直线a 与平面α相交吗?课本P55探究学生思考后,小组共同探讨,得出以下结论直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:a αb β => a ∥α a ∥b2、典例αba例1 课本p55求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。

分析:先把文字语言转化为图形语言、符号语言,要求已知、求证、证明三步骤,要证线面平行转化为线线平行BDEF//已知:如图,空间四边形ABCD中,,E F分别是,AB AD的中点.求证:.EF//平面BCD。

证明:连接BD,因为,,AE EB AF FB==所以BDEF//(三角形中位线定理)因为,,EF BCD BD BCD⊄⊂平面平面由直线与平面平行的判定定理得BCDEF平面//点评:该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。

变式训练:如图,在空间四面体A BCD-中,,,,E F M N分别为各棱的中点,变式一 (学生口头表达)①四边形EFMN是什么四边形?(平行四边形)②若AC BD=,四边形EFMN是什么四边形?(菱形)N MFEB③若AC BD,四边形EFMN是什么四边形?(矩形)变式二①直线AC与平面EFMN的位置关系是什么?为什么?(平行)②在这图中,你能找出哪些线面平行关系?点评:再次强调判定定理条件的寻求例2、如图,已知P为平行四边形ABCD所在平面外一点,M为PB的中点,求证:PD//平面MAC.分析:证明线面平行的一般思路转化为线线平行,本题关键寻找与之平行的直线证明:连接AC、BD交点为O,连接MO,则MO为BDP△的中位线,∴PD MO//.PD⊄∵平面MAC,MO⊂平面MAC,∴PD//平面MAC.点评:本题利用了初中几何中证明平行的常用方法中位线变式训练:如图,在正方体1111ABCD A B C D中,试作出过AC且与直线1D B平行的截面,并说明理由.解:如图,连接DB交AC于点O,取1D D的中点M,连接MA,MC,则截面MAC即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.【板书设计】一、直线与平面平行的判定定理 二、例题 例1 变式1 例2 变式2 【作业布置】1、教材第62页 习题2.2 A 组第3题;2、预习:如何判定两个平面平行?。

高中数学新人教版A版精品教案《2.2.1 直线与平面平行的判定》

《2.2.1直线与平面平行的判定》教学重难点
突破设计
重点难点
如何判定直线与平面平行.
三维目标
1.探究直线与平面平行的判定定理.
2.直线与平面平行的判定定理的应用.
课时安排
1课时
教学过程
教学思想
(一)创设情景、揭示课题
引导学生观察身边的实物,如教材第55页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。

(二)研探新知
1、投影问题
a
直线a 与平面α平行吗?
若α内有直线b 与a 平行,那么α与a 的位置关系如
何?是否可以保证直线a 与平面α平行? 学生思考后,师生共同探讨,得出以下结论: 直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

简记为:线线平行,则线面平行。

符号表示:,,a b a a α⊄⊂且∥b ⇒a ∥α.
2、例1 引导学生思考后,师生共同完成
该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。

(三)自主学习、发展思维
练习:教材第55页 1、2题
让学生独立完成,教师检查、指导、讲评。

(四)归纳整理
1、同学们在运用该判定定理时应注意什么?
α a
b
2、在解决空间几何问题时,常将之转换为平面几何问题。

(五)作业
1、教材第64页习题2.2 A组第3题;
2、预习:如何判定两个平面平行?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
整体设计
教学分析
空间里直线与平面之间的位置关系中,平行是一种非常重要的关系,它不仅应用较多,而且是学习平面与平面平行的基础.空间中直线与平面平行的定义是以否定形式给出的用起来不方便,要求学生在回忆直线与平面平行的定义的基础上探究直线与平面平行的判定定理.本节重点是直线与平面平行的判定定理的应用.
三维目标
1.探究直线与平面平行的判定定理.
2.直线与平面平行的判定定理的应用.
重点难点
如何判定直线与平面平行.
课时安排
1课时
教学过程
复习
复习直线与平面平行的定义:如果直线与平面没有公共点叫做直线与平面平行.
导入新课
思路1.(情境导入)
将一本书平放在桌面上,翻动书的封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?
思路2.(事例导入)
观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面的位置关系吗?
图1
推进新课
新知探究
提出问题
①回忆空间直线与平面的位置关系.
②若平面外一条直线平行平面内一条直线,探究平面外的直线与平面的位置关系.
③用三种语言描述直线与平面平行的判定定理.
④试证明直线与平面平行的判定定理.
活动:问题①引导学生回忆直线与平面的位置关系.
问题②借助模型锻炼学生的空间想象能力.
问题③引导学生进行语言转换.
问题④引导学生用反证法证明.
讨论结果:①直线在平面内、直线与平面相交、直线与平面平行.
②直线a在平面α外,是不是能够断定a∥α呢?
不能!直线a在平面α外包含两种情形:一是a与α相交,二是a与α平行,
因此,由直线a在平面α外,不能断定a∥α.
若平面外一条直线平行平面内一条直线,那么平面外的直线与平面的位置关系可能相交吗?既然不可能相交,则该直线与平面平行.
③直线与平面平行的判定定理:
平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
符号语言为:.
图形语言为:如图2.
图2
④证明:∵a∥b,∴a、b确定一个平面,设为β.
∴a⊂β,b⊂β.
∵a⊄α,a⊂β,∴α和β是两个不同平面.
∵b⊂α且b⊂β,
∴α∩β=b.假设a与α有公共点P,
则P∈α∩β=b,即点P是a与b的公共点,这与已知a∥b矛盾.
∴假设错误.故a∥α.
应用示例
思路1
例1 求证空间四边形相邻两边中点的连线平行于经过另外两边的平面.
已知空间四边形ABCD中,E、F分别是AB、AD的中点.
求证:EF∥面BCD.
活动:先让学生思考或讨论,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
证明:如图3,连接BD,
图3
EF∥面BCD.所以,EF∥面BCD.
变式训练
如图4,在△ABC所在平面外有一点P,M、N分别是PC和AC上的点,过MN作平面平行
于BC,画出这个平面与其他各面的交线,并说明画法.
图4
画法:过点N在面ABC内作NE∥BC交AB于E,过点M在面PBC内作MF∥BC交PB于F,连接EF,则平面MNEF为所求,其中MN、NE、EF、MF分别为平面MNEF与各面的交线.
证明:如图5,
图5
.
所以,BC∥平面MNEF.
点评:“见中点,找中点”是证明线线平行常用方法,而证明线面平行往往转化为证明线线平行.
例2 如图6,已知AB、BC、CD是不在同一平面内的三条线段,E、F、G分别为AB、BC、CD 的中点.
图6
求证:AC∥平面EFG,BD∥平面EFG.
证明:连接AC、BD、EF、FG、EG.
在△ABC中,
∵E、F分别是AB、BC的中点,∴AC∥EF.
又EF⊂面EFG,AC⊄面EFG,
∴AC∥面EFG.
同理可证BD∥面EFG.
变式训练
已知M、N分别是△ADB和△ADC的重心,A点不在平面α内,B、D、C在平面α内,
求证:MN∥α.
证明:如图7,连接AM 、AN 并延长分别交BD 、CD 于P 、Q ,连接PQ.
图7
∵M、N 分别是△ADB、△ADC 的重心, ∴
NQ
AN
MP AM ==2.∴MN∥PQ. 又PQ ⊂α,MN ⊄α,∴MN∥α.
点评:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.
思路2
例题 设P 、Q 是边长为a 的正方体AC 1的面AA 1D 1D 、面A 1B 1C 1D 1的中心,如图8, (1)证明PQ∥平面AA 1B 1B ; (2)求线段PQ 的长.
图8
(1)证法一:取AA 1,A 1B 1的中点M,N,连接MN,NQ,MP, ∵MP∥AD,MP=
AD 21,NQ∥A 1D 1,NQ=112
1
D A , ∴MP∥ND 且MP=ND.
∴四边形PQNM 为平行四边形. ∴PQ∥MN.
∵MN ⊂面AA 1B 1B,PQ ⊄面AA 1B 1B, ∴PQ∥面AA 1B 1B.
证法二:连接AD 1,AB 1,在△AB 1D 1中,显然P,Q 分别是AD 1,D 1B 1的中点,
∴PQ∥AB 1,且PQ=12
1
AB . ∵PQ ⊄面AA 1B 1B,AB 1⊂面AA 1B 1B,
∴PQ∥面AA 1B 1B. (2)解:方法一:PQ=MN=
a N A M A 2
22121=
+.
方法二:PQ=
a AB 2
2211=. 变式训练
如图9,正方体ABCD —A 1B 1C 1D 1中,E 在AB 1上,F 在BD 上,且B 1E=BF.
图9
求证:EF∥平面BB 1C 1C.
证明:连接AF 并延长交BC 于M ,连接B 1M. ∵AD∥BC,∴△AFD∽△MFB. ∴
BF
DF
FM AF =
. 又∵BD=B 1A ,B 1E=BF,∴DF=AE.

BF
DF
FM AF =
. ∴EF∥B 1M ,B 1M ⊂平面BB 1C 1C.
∴EF∥平面BB 1C 1C. 知能训练
已知四棱锥P —ABCD 的底面为平行四边形,M 为PC 的中点,求证:PA∥平面MBD. 证明:如图10,连接AC 、BD 交于O 点,连接MO,
图10
∵O 为AC 的中点,M 为PC 的中点, ∴MO 为△PAC 的中位线. ∴PA∥MO.
∵PA ⊄平面MBD,MO ⊂平面MBD, ∴PA∥平面MBD. 拓展提升
如图11,已知平行四边形ABCD 和平行四边形ACEF 所在的平面相交于AC,M 是线段EF 的中点.
图11
求证:AM∥平面BDE.
证明:设AC∩BD=O,连接OE,
∵O、M分别是AC、EF的中点,ACEF是平行四边形,
∴四边形AOEM是平行四边形.
∴AM∥OE.
∵OE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDE.
课堂小结
知识总结:利用线面平行的判定定理证明线面平行.
方法总结:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.
作业
课本习题2.2 A组3、4.
设计感想
线面关系是线线关系和面面关系的桥梁和纽带,线面平行的判定是高考考查的重点,多年来,高考立体几何第一问往往考查线面平行的判定.本节不仅选用了大量的传统经典题目,而且还选取了近几年的高考题目.学生通过这些优秀题目的训练,不仅可以熟练掌握线面平行的判定,而且将大大增强学好数学的信心.。

相关文档
最新文档