三角形单元测试

合集下载

八年级上册数学《三角形》单元综合检测(含答案)

八年级上册数学《三角形》单元综合检测(含答案)
24.在四边形A B C D中,∠A=∠C=90°,BE平分∠A B C,DF平分∠C D A.
(1)作出符合本题的几何图形;
(2)求证:BE∥DF.
参考答案
一、选择题(共24分)
1.以下列各组线段为边,能组成三角形的是().
A.2Cm,3Cm,5CmB.5Cm,6Cm,10Cm
C.1Cm,1Cm,3CmD.3Cm,4Cm,9Cm
[点睛]本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.
2.以长为13Cm、10Cm、5Cm、7Cm的四条线段中的三条线段为边,可以画出三角形的个数是( )
A.1个B.2个C.3个D.4个
[答案]C
[解析]
解:能够构成三角形三边的组合有13Cm、10Cm、5Cm和13Cm、10Cm、7Cm和10Cm、5Cm、7Cm共3种,故选C.
人教版八年级上册《三角形》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(共24分)
1.以下列各组线段为边,能组成三角形的是().
A.2Cm,3Cm,5CmB.5Cm,6Cm,10Cm
C.1Cm,1Cm,3CmD.3Cm,4Cm,9Cm
2.以长为13Cm、10Cm、5Cm、7Cm的四条线段中的三条线段为边,可以画出三角形的个数是( )
[答案]45
[解析]
试题解析:
是 的一个外角.
故答案
点睛:三角形的一个外角等于与它不相邻的两个内角的和.
14.如图,△A B C中,∠A= 40°,∠B= 72°,CE平分∠A C B,C D⊥A B于D,DF⊥CE,则∠C DF =_________度.
[答案]74°
[解析]

八年级数学上册第十一章《三角形》单元测试题附答案

八年级数学上册第十一章《三角形》单元测试题附答案

八年级数学上册第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.下列说法正确的是()A.三角形分为等边三角形和三边不相等的三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形,直角三角形,钝角三角形2.如图,△ABC中,△ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若△A=24°,则△BDC等于()A. 42°B. 66°C. 69°D. 77°3.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A. 7B. 8C. 9D. 104.如图,在△BDF和△ABC中,它们相同的角是()A. △AB. △CC. △ABCD. △ACB5.如图,AB△CD,AD与BC相交于点O,已知角α、β,则用角α、β表示△AOC,则△AOC=()A.α+βB. 180°-α+βC. 2α-βD. 180°+α-β6.若三角形的三边长分别为3,4,x,则x的值可能是()A. 1B. 6C. 7D. 107.如图所示的图形中,属于多边形的有()个.A. 3个B. 4个C. 5个D. 6个8.如图,△ABC中,△1=△2,△3=△4,若△D=25°,则△A=()A. 25°B. 65°C. 50°D. 75°9.适合条件△A=△B=△C的三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形10.八边形的内角和是()A. 1440°B. 1080°C. 900°D. 720°11.如图,点D在BC的延长线上,连接AD,则△EAD是()的外角.A. △ABCB.△ACDC. △ABDD.以上都不对12.如图,在△ABC中,EF△AC,BD△AC,BD交EF于G,则下面说法中错误的是()A.BD是△BDC的高B.CD是△BCD的高C.EG是△BEF的高D.BE是△BEF的高二、填空题13.一副三角板,如图所示叠放在一起,则图中△α的度数是.14.如图,点D、E为△ABC边BC、AC上的两点,将△ABC沿线段DE折叠,点C落在BD上的C′处,若△C=30°,则△AEC′=.15.如图,写出△ADE的外角.16.在图中过点P任意画一条直线,最多可以得到____________个三角形.17.如图,已知△A=30°,△B=40°,△C=50°,那么△AOB=度.三、解答题18.如图,点D是△ABC的边BC上的一点,△B=△BAD=△C,△ADC=72°.试求△DAC的度数.19.如图,已知AB△CD,EF与AB、CD分别相交于点E、F,△BEF与△EFD的平分线相交于点P,求证:△EPF为直角三角形.20.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)•180°.例如:如图四边形ABCD的内角和:N=△A+△B+△C+△D=(4-2)×180°=360°问:(1)利用这个关系式计算五边形的内角和;(2)当一个多边形的内角和N=720°时,求其边数n.21.已知:在△ABC中,△BAC=90°,AD△BC于点D,△ABC的平分线BE交AD于F,试说明△AEF=△AFE.22.已知凸四边形ABCD中,△A=△C=90°.(1)如图1,若DE平分△ADC,BF平分△ABC的邻补角,判断DE与BF位置关系并证明;(2)如图2,若BF、DE分别平分△ABC、△ADC的邻补角,判断DE与BF位置关系并证明.答案解析1.【答案】D【解析】A.三角形分为等腰三角形和三边不相等的三角形,故本选项错误,B.等边三角形是等腰三角形,故本选项错误,C.等腰三角形不一定是等边三角形,故本选项错误,D.三角形分为锐角三角形,直角三角形,钝角三角形,故本选项正确,故选D.2.【答案】C【解析】在△ABC中,△ACB=90°,△A=24°,△△B=90°-△A=66°.由折叠的性质可得:△BCD=△ACB=45°,△△BDC=180°-△BC D-△B=69°.故选C.3.【答案】A【解析】设这个多边形的边数为n,根据题意得,(n-2)•180°=360°×2+180°,解得n=7.故选A.4.【答案】C【解析】△BDF的角有△D,△DBF,△DFB;△ABC的角有△A,△ACB,△ABC;它们相同的角是△ABC.5.【答案】A【解析】△AB△CD,△△ABO=β.在△AOB中,利用三角形的外角性质得到△AOC=△A+△ABO=α+β.故选A.6.【答案】B【解析】△4﹣3=1,4+3=7,△1<x<7,△x的值可能是6.故选B.7.【答案】A【解析】根据多边形的定义:平面内不在同一条直线上的几条线段首尾顺次相接组成的图形叫多边形.显然只有第一个、第二个、第五个.故选A8.【答案】C【解析】△BD是△ABC的平分线,△△DBC=△ABC,△CD是△ABC的外角平分线,△△ACD=(△A+△ABC),△△D+△DBC+△ACB+△ACD=180°,即△ABC+△ACB+(△A+△ABC)=155°△,△A+△ABC+△ACB=180°△,△△ABC+△ACB=130°,△△A=50°.故选C.9.【答案】B【解析】设△A=x°,则△B=x°,△C=3x°.根据三角形的内角和定理,得x+x+3x=180,x=36.则△C=108°.则该三角形是钝角三角形.故选B.10.【答案】B【解析】由题意得:180°(8-2)=1080°,故选B.11.【答案】C【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中△EAD是△ABD的外角,所以正确的选项是C.12.【答案】D【解析】A.BD△AC,则BD是△BDC的高,故命题正确;B.CD△BD,则CD是△BCD的高,故命题正确;C.EG△BG,则EG是△BEF的高,故命题正确;D.错误;13.【答案】75°【解析】如图,△1=45°-30°=15°, △α=90°-△1=90°-15°=75°.故答案为:75°14.【答案】60°【解析】根据折叠可得:EC=EC′, △△EC′D=△C,△△C=30°, △△EC′D=30°,△△AEC′=30°+30°=60°,故答案为:60°.15.【答案】△BDF、△DEC和△AEF【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中符合条件的角是△BDF、△DEC和△AEF.16.【答案】6【解析】如图1,有2个三角形;如图2,有4个三角形;如图3,有4个三角形;如图4,有5个三角形;如图5,有6个三角形.综上所述,最多有6个三角形.17.【答案】120【解析】延长BO交AC于D, △△B=40°,△C=50°,△△ADO=40°+50°=90°,△△A=30°, △△AOB=30°+90°=120°,故答案为:120.18.【答案】解:△△ADC是△ABD的外角,△ADC=72°,△△ADC=△B+△BAD.又△△B=△BAD,△△B=△BAD=36°.△△B=△BAD=△C,△△C=36°.在△ADC中,△△DAC+△ADC+△C=180°△△DAC=180°-△ADC-△C=180°-72°-36°=72°.【解析】先根据三角形外角的性质得出△ADC=△B+△BAD,再由△B=△BAD可知△B=△BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.19.【答案】证明:△AB△CD, △△BEF+△EFD=180°,又EP、FP分别是△BEF、△EFD的平分线,△△PEF=△BEF,△EFP=△EFD,△△PEF+△EFP=(△BEF+△EFD)=90°,△△P=180°-(△PEF+△EFP)=180°-90°=90°,△△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证△PEF+△EFP=90°,由角平分线的性质和平行线的性质可知,△PEF+△EFP=(△BEF+△EFD)=90°.20.【答案】解:(1)N=(5-2)×180°=540°(2)根据题意得:(n-2)×180°=720°解得n=6.【解析】(1)将n=5代入公式,依据公式计算即可;(2)将N=720°代入公式,得到关于n的方程,然后求解即可.21.【答案】证明:△BE平分△ABC,△△CBE=△ABE,△△BAC=90°,△△ABE+△AEF=90°,△DA△BC,△△CBE+△BFD=90°,△△AEF=△BFD,△△BFD=△AFE(对顶角相等),△△AEF=△AFE【解析】根据角平分线的定义求出△ABE=△EBC,再利用△BAC=90°,AD△BC于点D推出△AEF=△AFE.22.【答案】解:(1)DE△BF,延长DE交BF于点G△△A+△ABC+△C+△ADC=360°又△△A=△C=90°,△△ABC+△ADC=180°△△ABC+△MBC=180°△△ADC=△MBC,△DE、BF分别平分△ADC、△MBC△△EDC=△ADC,△EBG=△MBC,△△EDC=△EBG,△△EDC+△DEC+△C=180°△EBG+△BEG+△EGB=180°又△△DEC=△BEG△△EGB=△C=90△DE△BF;(2)DE△BF,连接BD,△DE、BF分别平分△NDC、△MBC△△EDC=△NDC,△FBC=△MBC,△△ADC+△NDC=180°又△△ADC=△MBC△△MBC+△NDC=180°△△EDC+△FBC=90°,△△C=90°△△CDB+△CBD=90°△△EDC+△CDB+△FBC+△CBD=180°即△EDB+△FBD=180°,△DE△BF.【解析】(1)DE△BF,延长DE交BF于G.易证△ADC=△CBM.可得△CDE=△EBF.即可得△EGB=△C=90゜,则可证得DE△BF;(2)DE△BF,连接BD,易证△NDC+△MBC=180゜,则可得△EDC+△CBF=90゜,继而可证得△EDC+△CDB+△CBD+△FBC=180゜,则可得DE△BF.。

《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章 三角形》单元测试卷及答案(共六套)

《第十一章三角形》单元测试卷(一)(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知三条线段的长是:①2,3,4;②3,4,5;③3,3,5;④6,6,10.其中可构成等腰三角形的有( )A.1个 B.2个 C.3个 D.4个2.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A.15 B.16 C.18 D.193.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD 的度数为( )A.40° B.45° C.50° D.55°第3题图, 第4题图4.如图,在△ABC中,∠A=80°,高BE和CH的交点为O,则∠BOC等于( ) A.80° B.120° C.100° D.150°5.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( ) A.40° B.60° C.80° D.90°6.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠C B.∠A=12∠B=13∠CC.∠A∶∠B∶∠C=1∶2∶3 D.∠A=2∠B=3∠C7.一个正多边形的外角与它相邻的内角之比为1∶4,那么这个多边形的边数为( )A.8 B.9 C.10 D.128.若一个多边形的每个外角都等于60°,则它的内角和等于( ) A.180° B.720° C.1080° D.540°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是( )A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)第9题图) 第10题图10.如图是D,E,F,G四点在△ABC边上的位置图,根据图中的符号和数据,则x+y的值为( )A.110 B.120 C.160 D.165二、填空题(每小题3分,共24分)11.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.12.在△ABC中,∠C比∠A+∠B还大30°,则∠C的外角为________度,这个三角形是________三角形.,第11题图) ,第13题图)13.如图,在△ABC中,已知∠BAC=50°,∠C=60°,AD是高,BE是∠ABC 的平分线,AD,BE交于点F,则∠BEC=________.14.已知a,b,c是△ABC的三边,化简:|a+b-c|+|b-a-c|-|c+b-a|=________.15.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.第15题图 ,第16题图16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF =90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=________.17.如果一个多边形的边数增加1倍,它的内角和就为2160°,那么原来那个多边形是______边形.18.上午9时,一艘船从A处出发以20海里/时的速度向正北航行,11时到达B处,若在A处测得灯塔C在北偏西34°,且∠ACB=32∠BAC,则灯塔C应在B处的________.三、解答题(共66分)19.(9分)如图,已知AD,AE分别是△ABC的高和中线,AB=6 cm,AC=8 cm,BC=10 cm,∠CAB=90°,求:(1)△ABC的面积;(2)AD的长;(3)△ACE和△ABE的周长的差.20.(9分)等腰三角形的两边长满足|a-4|+(b-9)2=0.求这个等腰三角形的周长.21.(10分)如图,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADC=∠EDF,∠CED=∠FEG.求∠F的度数.22.(9分)小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2620°.(1)求这个多加的外角的度数;(2)求这个多边形的边数.23.(9分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=28°,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?24.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC.则BE与DF有何位置关系?试说明理由.25.(10分)如图,∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY 的平分线,BE的反向延长线与∠OAB的平分线相交于点C.试问∠ACB的大小是否变化?请说明理由.参考答案1.B 2.D 3.A 4.C 5.A 6.D 7.C 8.B 9.B 10.B 11.6 12.75;钝角13.85°14.3a-b-c 15.360°16.25°17.七18.北偏西85°19.(1)24 cm2(2)4.8 cm (3)2 cm20.由题中条件可知:|a-4|≥0,(b-9)2≥0,又|a-4|+(b-9)2=0,∴|a-4|=0,(b-9)2=0,即a=4,b=9.若a为腰长,则另一腰长为4,∵4+4<9,∴不符合三角形三边关系.若b为腰长,则这个等腰三角形的周长为9+9+4=22.综上所述,这个等腰三角形的周长为22 21.∵∠A+∠ACB=90°,∴∠ACB =90°-10°=80°,∴∠DCE=80°,又∵∠DCE=∠A+∠ADC=80°,∴∠ADC =80°-10°=70°,∴∠EDF=70°,∴∠DEA=∠EDF-∠A=70°-10°=60°,∴∠FEG=60°,∴∠F=∠FEG-∠A=60°-10°=50°22.(1)∵26 20÷180=14……100,∴误加的外角为100°(2)设这个多边形的边数为n.由①知n-2=14,∴n=16,∴这个多边形的边数为1623.在△AOB中,∠QBO=180°-∠A-∠O=180°-28°-100°=52°.即∠QBO应等于52°才能确保BQ与AP在同一条直线上24.BE∥DF.理由如下:在四边形ABCD中,∠A+∠C+∠ABC+∠ADC=360°,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,又∵∠1=∠2,∠3=∠4,∴∠2+∠4=90°,∵∠4+∠5=90°,∴∠2=∠5,∴BE∥DF25.不变化.∵AC平分∠OAB,BE平分∠YBA,∴∠CAB=12∠OAB,∠EBA=12∠YBA,∵∠EBA=∠C+∠CAB,∴∠C=12∠YBA-12∠OAB=12(∠Y BA-∠OAB),∵∠YBA-∠OAB=90°,∴∠C=12×90°=45°《第十一章三角形》单元测试卷(二)(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,三角形的个数为(D )A.3 B.4 C.5 D.6,第3题图,第6题图2.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值( B ) A.11 B.5 C.2 D.13.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数是( B )A.30° B.40° C.50° D.60°4.若△ABC有一个外角是钝角,则△ABC一定是( D )A.钝角三角形 B.锐角三角形 C.直角三角形 D.以上都有可能5.一个多边形的内角和是外角和的2倍,这个多边形的边数为( B )A.5 B.6 C.7 D.86.如图,CD平分含30°角的三角板的∠ACB,则∠1等于( B )A.110° B.105° C.100° D.95°7.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF 等于( A )=2,则S△ABCA.16 B.14 C.12 D.10,第7题图)8.一个多边形对角线的条数是边数的3倍,则这个多边形是( C )A.七边形 B.八边形 C.九边形 D.十边形9.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠D的度数为( C )A.115° B.105° C.95° D.85°第9题图 ,第10题图10.如图,∠1,∠2,∠3,∠4恒满足的关系是( D )A.∠1+∠2=∠3+∠4 B.∠1+∠2=∠4-∠3C.∠1+∠4=∠2+∠3 D.∠1+∠4=∠2-∠3二、填空题(每小题3分,共24分)11.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是__60__度.,第11题图) ,第12题图)12.如图,△ABC中,BD是AC边上的高,CE是AB边上的高,BD与CE相交于点O,则∠ABD__=__∠ACE(填“>”“<”或“=”),∠A+∠DOE=__180__度.13.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有__稳定__性.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为__7或9或11__.15.正多边形的一个外角是72°,则这个多边形的内角和的度数是__540°__.16.一个等腰三角形的底边长为5 cm,一腰上的中线把这个三角形的周长分成的两部分之差是3 cm,则它的腰长是__8_cm__.17.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,此时C点正好在A点的北偏东70°的方向上,那么∠ACB的度数是__95°__.18.如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2016,得∠A2016,则∠A2016=__α22016__.(用含α的式子表示)三、解答题(共66分)19.(8分)如图,△ABC中,∠A=90°,∠ACB的平分线交AB于D,已知∠DCB =2∠B,求∠ACD的度数.解:设∠B=x°,可得∠DCB=∠ACD=2x°,则x+2x+2x=90,∴x=18,∴∠ACD=2x°=36°20.(8分)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =18°,求∠C 的度数.解:∵∠BAD =90°-∠B =20°,∴∠BAE =∠BAD +∠DAE =38°.∵AE 是角平分线,∴∠CAE =∠BAE =38°,∴∠DAC =∠DAE +∠CAE =56°,∴∠C =90°-∠DAC =34°21.(9分)已知等腰三角形的周长为18 cm ,其中两边之差为3 cm ,求三角形的各边长.解:设腰长为x cm ,底边长为y cm ,则⎩⎨⎧2x +y =18,x -y =3,或⎩⎨⎧2x +y =18,y -x =3,解得⎩⎨⎧x =7,y =4,或⎩⎨⎧x =5,y =8,经检验均能构成三角形,即三角形的三边长是7 cm ,7 cm ,4 cm 或5 cm ,5 cm ,8 cm22.(9分)如图,小明从点O 出发,前进5 m 后向右转15°,再前进5 m 后又向右转15°……这样一直走下去,直到他第一次回到出发点O 为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?解:(1)所经过的路线正好构成一个外角是15度的正多边形,360÷15=24,24×5=120 (m ),则小明一共走了120米(2)(24-2)×180°=3960°23.(10分)如图,在直角三角形ABC 中,∠ACB =90°,CD 是AB 边上的高,AB =10 cm ,BC =8 cm ,AC =6 cm.(1)求△ABC的面积;(2)求CD的长;(3)作出△ABC的中线BE,并求△ABE的面积.解:(1)24 cm2(2)S△ABC =12×10×CD=24,∴CD=4.8 cm(3)作图略,S△ABE=12 cm224.(10分)(1)如图,一个直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,△ABC中,若∠A=30°,则∠ABC+∠ACB =__150°__,∠XBC+∠XCB=__90°__;(2)若改变直角三角板XYZ的位置,但三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请说明理由;若不变化,请求出∠ABX+∠ACX的大小.解:(2)∵∠ABX+∠ACX=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°,∴∠ABX+∠ACX的大小不变,其大小为60°25.(12分)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,又因为∠BOD 是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD 内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.解:(1)不成立,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C +∠D+∠E=180°《第十一章三角形》单元测试卷(三)一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有().A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上) 10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________. 12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE =__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是_____ _____边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD 和BC 相交于点O ,AB∥CD,∠AOC=95°,∠B=50°,求∠A 和∠D.21.(本题满分12分)如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求∠C 的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________; (2)图②中草坪的面积为__________; (3)图③中草坪的面积为__________;(4)如果多边形的边数为n ,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B 点拨:只有B 中较短两边之和大于第三边,能组成三角形.132.C 点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C 点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C 点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A 点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D 点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A 点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B 点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C 点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A 与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性不稳定性11.2a-2b 点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250°点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360°点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45°点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120 点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n,得180(n-2)=360×3,解得n=8.答:这个正多边形是八边形.20.解:因为∠AOC是△AOB的一个外角,所以∠AOC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC=95°,∠B=50°,所以∠A=∠AOC-∠B=95°-50°=45°.因为AB∥CD,所以∠D=∠A=45°(两直线平行,内错角相等).21.解:因为BD∥AE,所以∠DBA=∠BAE=57°.所以∠ABC=∠DBC-∠DBA=82°-57°=25°.在△ABC中,∠BAC=∠BAE+∠CAE=57°+15°=72°,所以∠C=180°-∠ABC-∠BAC=180°-25°-72°=83°.22.答案:(1)12πR2(2)πR2 (3)32πR2(4)n-22πR2点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.《第十一章三角形》单元测试卷(四)答题时间:90 满分:100分班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的性.3.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为______.4.如图,已知AB∥CD,∠A=55°,∠C=20°,则∠P=___________.5.如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC =°.6.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了米.7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可).8.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数为.9.如图,△ABC中,BD平分∠ABC,CD平分∠ACE,请你写出∠A与∠D的关系:.10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为.11.在△ABC中,∠A=55°,高BE、CF交于点O,则∠BOC=______.12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A=50°,∠ACD=40°,∠ABE=28°,则∠CFE 的度数为______. 14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”).二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9三、解答题(共60分)19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?20.(4分)如图,已知四边形ABCD 中,∠A=∠D ,∠B=∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB=AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?CBACBA25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A →C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______. (2)小明绝对不会走③,因为③路程最长,即AC+BC >AD+DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A+∠B+∠C+∠D+∠E=180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.图1图2图3DCBA(1)如图,请根据下列图形,填写表中空格:(2)如果限于一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形? (3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.参考答案: (B 卷) 一、填空题1.2 2.稳定 3.60° 4.35° 5.82.5 6.120 7.答案不唯一 8.540° 9.∠A=2∠D 10.130° 11.55或125 12.360 13.62 14.否二、选择题15.C 16.C 17.B 18.C 三、解答题 19.36011⎛⎫⎪⎝⎭20.AD BC∥21.56 22.三边长为16,16,22或20,20,14 23.略 24.六边形 25.只要量得∠B +∠C=150°,∠C +∠D=160°,则模板即为合格 26.(1)两点之间,线段最短;(2)略 27.结论都成立,理由略 28.(1)60°,90°,108°,120°,(2)180n n-°;(2)正三角形、正方形、正六边形;(3)答案不唯一,如正方形和正八边形,正三角形和正十二边形.《第十一章三角形》单元测试卷(五)时间:120分钟满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A.5,6,10 B.5,6,11C.3,4,8 D.4a,4a,8a(a>0)2.下列说法错误的是( )A.一个三角形中至少有一个角不小于60°B.三角形的角平分线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高3.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A 等于( )A.60° B.70° C.80° D.90°4.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.两点之间线段最短 B.三角形的稳定性C.两点确定一条直线 D.垂线段最短5.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是( )A.9 B.14 C.16 D.不能确定6.在△ABC中,已知∠A=4∠B=104°,则∠C的度数是( )A.50° B.45° C.40° D.30°7.如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于( ) A.60° B.70° C.50° D.40°8.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=12∠C;④∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个 C.3个 D.4个9.一个正多边形的边长为2,每个外角为45°,则这个多边形的周长是( ) A.8 B.12 C.16 D.1810.长度为1cm、2cm、3cm、4cm、5cm的五条线段,若以其中的三条线段为边构成三角形,可以构成不同的三角形共有( )A.3个 B.4个 C.5个 D.6个11.墨墨发现从某多边形的一个顶点出发,可以作4条对角线,则这个多边形的内角和是( )A.1260° B.1080°C.900° D.720°12.一个三角形的三个外角之比为3∶4∶5,则这个三角形内角之比是( ) A.5∶4∶3 B.4∶3∶2C.3∶2∶1 D.5∶3∶113.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=( )A.12° B.18° C.24° D.30°14.若a,b,c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是( )A.60° B.65° C.55° D.50°16.如图①,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图②.则下列说法正确的是( )A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2空,每空2分.把答案写在题中横线上)17.将一副三角板按如图所示的方式叠放,则∠α的度数为 .18.如图,在△ABC中,已知点D,E分别为AC,BD的中点,且S△BDC=2cm2,则S= .阴影19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A 1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为°.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图:(1)在△ABC中,BC边上的高是;(2)在△AEC中,AE边上的高是;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.21.(9分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD 的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.22.(9分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.(9分)如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于点E,∠A=60°,∠BDC=100°,求△BDE各内角的度数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(11分)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).26.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.A 2.D 3.C 4.B 5.A 6.A 7.B 8.C 9.C 10.A11.C 12.C 13.C 14.B15.A 解析:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD +∠CDE=540°-300°=240°.∵∠BCD,∠CDE的平分线在五边形内相交于点P,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=120°,∴∠P=180°-120°=60°.故选A.16.C 解析:∵∠C=100°,∴AB>AC.如图,取BC的中点E,则BE=CE,∴AB +BE>AC+CE,由三角形三边关系得AC+BC>AB,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选C.17.75°18.1cm219.76 6 解析:∵A1A2⊥AO,∠AOB=7°,∴∠1=∠2=90°-7°=83°,∴∠A=∠1-∠AOB=76°.如图,当MN⊥OA时,光线沿原路返回,∴∠4=∠3=90°-7°=83°,∴∠6=∠5=∠4-∠AOB=83°-7°=76°=90°-14°,∴∠8=∠7=∠6-∠AOB=76°-7°=69°,∴∠9=∠8-∠AOB=69°-7°=62°=90°-2×14°,由以上规律可知,∠A=90°-n·14°,当n=6时,∠A取得最小值,最小度数为6°.20.解:(1)AB(2分) (2)CD(4分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(6分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)21.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(9分)22.解:由三角形的外角性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(9分)23.解:∵∠BDC是△ABD的一个外角,∠A=60°,∠BDC=100°,∴∠ABD=∠BDC-∠A=40°.(4分)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵ED∥BC,∴∠BDE=∠CBD=∠ABD=40°,(7分)∴∠BED=180°-40°-40°=100°.(9分)24.解:设AB=x cm,BC=y cm,则AD=CD=12x cm.有以下两种情况:(1)当AB+AD=12cm,BC+CD=15cm时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎨⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系.(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎨⎧x =10,y =7.即AB =AC =10cm ,BC =7cm , 符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分) 25.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°,∠CAD =90°-∠C =90°-70°=20°,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)∵∠B +∠C +∠BAC =180°,∴∠BAC =180°-∠B -∠C .∵AE 平分∠BAC ,∴∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(7分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(9分)(3)∵∠C -∠B =α,∴由(2)中可知∠DAE =12(∠C -∠B )=12α.(11分)26.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n·90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n ·(180°-45°)=135°n.(10分)∴∠P =∠PCE -∠POC =45°n .(12分)《第十一章 三角形》单元测试卷(六)(满分:100分 时间:60分钟)一、选择题(每小题3分,共30分)1、下列长度的各组线段中,能组成三角形的是( )A .1,1,2B .3,7,11C .6,8,9D .3,3,62、下列语句中,不是命题的是( )A .两点之间线段最短B .对顶角相等C .不是对顶角不相等D .过直线AB 外一点P 作直线AB 的垂线3、下列命题中,假命题是( )A .如果|a|=a ,则a ≥0B .如果,那么a=b 或a=-b C .如果ab>0,则a>0,b>0 D .若,则a 是一个负数4、若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形( )A .一定有一个内角为45°B .一定有一个内角为60°C .一定是直角三角形D .一定是钝角三角形5、三角形的一个外角大于相邻的一个内角,则它是( )A.直角三角形B.锐角三角形C.钝角三角形D.不能确定6、下列命题中正确的是( )A .三角形可分为斜三角形、直角三角形和锐角三角形B .等腰三角形任一个内角都有可能是钝角或直角C .三角形外角一定是钝角D .△ABC 中,如果∠A>∠B>∠C ,那么∠A>60°,∠C<60°7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( )A .3:2:1B .5:4:3C .3:4:5D .1:2:38、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为( )A .-6<a<-3B .-5<a<-2C .-2<a<5D .a<-5或a>29、如图9,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14cm 2图9 图1010、已知:如图10,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( )A .10°B .18°C .20°D .30°二、填空题(每小题4分,共20分)11、 已知三角形的周长为15cm ,其中的两边长都等于第三边长的2倍,则这个三角形的最短边长是 .12、已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .13、如图13,∠A =70°,∠B =30°,∠C =20°,则∠BOC= . F EC图13 图14 图1514、如图14,AF、AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF= .15、如图15,D是△ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .三、解答题(第16题6分,第17题8分,第18-21题每题9分,共50分)16、写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果a+b=0,那么a=0,b=0.(2)等角的余角相等.(3)如果一个数的平方是9,那么这个数是3.17、完成以下证明,并在括号内填写理由:已知:如图所示,∠1=∠2,∠A=∠3.求证:AC∥DE.证明:因为∠1=∠2(),所以AB∥___(). 所以∠A=∠4().又因为∠A=∠3(),所以∠3=_ _().所以AC∥DE().18、如图,在△ABC中,AB=AC,AC上的中线把三角形的周长分为24cm和30cm 的两个部分,求三角形各边的长.。

2020最新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

2020最新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°. (1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形. 5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________. 6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm . 7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______. 8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),1∠BMN(),∴∠GMN=21∠DNM.同理∠GNM=2∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1 时,图中共有2×k +1,即2k +1个直角三角形.6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 11.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB . 12.(1)AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC . 13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直. 14.94°; 35.120°; 36.10°;17.∠EBC <∠DCE ,而∠DCE =∠ACE ,∴ ∠EBC <∠ACE . 18.略.北师大版七年级数学下册第三章三角形单元测试卷(二)班级姓名学号得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是 ( )A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为 ( )[A.0 B.1 C.2 D.34.下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线 C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠ 1 B.∠ 2 C.∠ B D.∠ 1、∠ 2和∠ B 7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是( ) A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( ) A .M >0 B . M =0 C .M <0 D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =________.8.如图5—13,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A =50°,那么∠D =_____. 10.如图5—15,△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.11.如图5—16,该五角星中,∠A +∠B +∠C +∠D +∠E =________度. 12.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________. 三、解答题1.如图5—17,点B 、C 、D 、E 共线,试问图中A 、B 、C 、D 、E 五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100;8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC . ∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74,∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( )A 2,3,4B 1,4,2C 1,2,3D 6,2,3 2. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( )AB C DE图4图2 图 3 A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是( )A .6 B .7 C .8 D .97.如果两个三角形全等,那么下列结论不正确的是( ) A .这两个三角形的对应边相等 B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )A.1个B.2个C.3个D.4个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。

三角形单元测试卷(学生版)

三角形单元测试卷(学生版)

三角形单元测试卷一.选择题1.下列图形中具有稳定性的是A.梯形B.菱形C.三角形D.正方形2.三角形一边上的中线把原三角形分成两个A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形3.在下列条件中:①A B C,②A B C123,③A900B,④A B C中,能确定ABC是直角三角形的条件有A.1个B.2个C.3个D.4个4.若一个三角形的一个外角小于与它相邻的内角则这个三角形是A.直角三角形B.锐角三角形C.钝角三角形D.无法确定5.已知三角形的三个外角的度数比为234则它的最大内角的度数为A.90B.110C.100D.1206.下列说法中,正确的是A.正六边形和正三角形的外角和相等B.三角形的两边之差不一定小于第三边C.五边形只有两条对角线D.多边形的内角和公式为n2360n37.以下说法错误的是A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点.·1·在ABC中,A B2C B A20A如图所示,1234度.已知三角形的两边分别为a2cm b5cm,a b c取值范围为.等腰三角形周长为21cm一中线将周长分成的两部分差为3cm则这个三角形三边长为.长为,6,4的四根木条,选其中三根能组成三角形有法,分别是如下图,在ABC AE是中线,AD是角平分线,AF根据图形填空:⑴BAD 1 2⑵BE 12BC;⑶AFB AFC.DFA边形有一个外角是60,其它各外角都是0n·2·15.从n 边形一个顶点出发共可作5条对角线,则这个n 边形的内角和为16.n 边形的内角和与外角和相等,则n三.证明题:17.如图3,BD 为ABC 的角平分线,CD 为ABC 的外角ACE 的平分线,它们相交于点D ,试探索BDC 与A 之间的数量关系.18.如图4,D 是ABC 的BC 边上一点,且12,34,BAC63,求DAC 的度数.·3·,ABC 平分BAC BE AC 若EBC ,ADB 80求BAC 的度数.AD E6,ABC AD 、是角平分线,它们相交于点BAC 50,C 70求DAC 及BOA ACD E FOB。

《第十一章 三角形》单元测试卷含答案(共5套)

《第十一章 三角形》单元测试卷含答案(共5套)

《第十一章三角形》单元测试卷(一)时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.以下列每组长度的三条线段为边能组成三角形的是( )A.2、3、6 B.2、4、6C.2、2、4 D.6、6、62.如图,图中∠1的大小等于( )A.40° B.50° C.60° D.70°第2题图第4题图第6题图3.一个多边形的每一个内角都等于140°,则它的边数是( )A.7 B.8 C.9 D.104.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC交AC于点D,那么∠BDC的度数是( )A.76° B.81° C.92° D.104°5.用五根木棒钉成如下四个图形,具有稳定性的有( )A.1个 B.2个 C.3个 D.4个6.如图,点A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是( )A.180° B.360°C.540° D.720°二、填空题(本大题共6小题,每小题3分,共18分)7.已知三角形两条边长分别为3和6,第三边的长为奇数,则第三边的长为________.8.若n边形内角和为900°,则边数n为________.9.将一副三角板按如图所示的方式叠放,则∠α的度数为________.第9题图第10题图第11题图10.如图,在△ABC中,∠ACB=90°,∠A=20°.若将△ABC沿CD所在直线折叠,使点B落在AC边上的点E处,则∠CDE的度数是________.11.如图,在△ABC中,E、D、F分别是AD、BF、CE的中点.若△DEF的面积是1cm2,则S△ABC=________cm2.12.当三角形中一个内角β是另一个内角α的12时,我们称此三角形为“希望三角形”,其中角α称为“希望角”.如果一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”的度数为______________.三、(本大题共5小题,每小题6分,共30分)13.在△ABC中,∠A=30°,∠C=2∠B,求∠B的度数.14.如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.15.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.16.如果一个多边形的内角和是外角和的3倍还多180°,那么这个多边形的边数是多少?17.如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)若CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.已知a,b,c为三角形三边的长,化简:|a-b-c|-|b-c-a|+|c-a-b|.19.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.20.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为24和18两部分,求三角形三边的长.五、(本大题共2小题,每小题9分,共18分)21.如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.22.如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数;(2)若∠C-∠B=30°,求∠DAE的度数;(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).六、(本大题共12分)23.如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,在(2)中,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.D 2.D 3.C 4.A 5.D6.B 解析:如图,∵∠BMQ=∠A+∠B,∠DQF=∠C+∠D,∠FNM=∠E+∠F,∴∠BMQ+∠DQF+∠FNM=∠A+∠B+∠C+∠D+∠E+∠F.∵∠BMQ+∠DQF+∠FNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故选B.7.5或7 8.7 9.75°10.65°11.712.54°或84°或108°解析:①54°角是α,则希望角度数为54°;②54°角是β,则12α=β=54°,所以希望角α=108°;③54°角既不是α也不是β,则α+β+54°=180°,所以α+12α+54°=180°,解得α=84°.综上所述,希望角的度数为54°或84°或108°.13.解:∵∠A=30°,∴∠B+∠C=180°-∠A=150°.(3分)∵∠C=2∠B,∴3∠B=150°,∴∠B=50°.(6分)14.解:(1)AB(1分) (2)CD(2分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(4分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(6分)15.解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9.(3分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-125°=55°.(4分)又∵∠A=55°,∴∠C=180°-∠A-∠AEC=180°-55°-55°=70°.(6分) 16.解:设这个多边形的边数为n.根据题意,得(n-2)·180°=360°×3+180°,(3分)解得n=9.(5分)答:这个多边形的边数是9.(6分)17.解:(1)在△ABC中,∵BD是AC边上的高,∴∠ADB=∠BDC=90°.∵∠A =70°,∴∠ABD=180°-∠BDA-∠A=20°.(3分)(2)在△EDC中,∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=28°.∵CE平分∠ACB,∴∠DCB=2∠DCE=56°,∴∠DBC=180°-∠BDC-∠DCB=34°,∴∠ABC=∠ABD+∠DBC=54°.(6分)18.解:∵a,b,c为三角形三边的长,∴a+b>c,a+c>b,b+c>a,(4分)∴原式=|a-(b+c)|-|b-(c+a)|+|c-(a+b)|=b+c-a-a-c+b+a+b-c=-a+3b-c.(8分)19.(1)解:∵六边形ABCDEF的内角都相等,∴∠B=∠A=∠BCD=120°.(1分)∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=180°-120°=60°,∴∠FCD =120°-60°=60°.(4分)(2)证明:∵CF∥AB,∴∠AFC=180°-∠A=60°,∴∠AFC=∠FCD,∴AF∥CD.(8分)20.解:如图,设AB=AC=a,BC=b,则AD=CD=12a.根据题意,有a+12a=24且12a +b =18,或a +12a =18且12a +b =24,(4分)解得a =16,b =10或a =12,b =18,两种情况下都能构成三角形.(6分)综上所述,三角形的三边长分别为16,16,10或12,12,18.(8分)21.解:(1)∵BE 平分∠ABC ,∴∠ABC =2∠EBC =64°,∴∠EBC =32°.∵AD ⊥BC ,∴∠ADC =90°.(2分)∵∠C =∠AEB -∠EBC =70°-32°=38°,∴∠CAD =90°-38°=52°.(4分)(2)分两种情况:①当∠EFC =90°时,如图①所示,则∠BFE =90°,∴∠BEF =90°-∠EBC =90°-32°=58°;(6分)②当∠FEC =90°时,如图②所示,则∠EFC =90°-38°=52°,∴∠BEF =∠EFC -∠EBC =52°-32°=20°.(8分)综上所述,∠BEF 的度数为58°或20°.(9分)22.解:(1)由题意可得∠BAC =180°-∠B -∠C =180°-40°-70°=70°.∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C =90°-70°=20°.∵AE 平分∠BAC ,∴∠CAE =12∠BAC =35°,∴∠DAE =∠CAE -∠CAD =35°-20°=15°.(3分)(2)由(1)中可得∠CAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).∵AD ⊥BC ,∴∠ADC =90°,∴∠CAD =90°-∠C .(5分)∴∠DAE =∠CAE -∠CAD =90°-12(∠B +∠C )-(90°-∠C )=12(∠C -∠B )=12×30°=15°.(7分)(3)由(2)中可知∠DAE =12(∠C -∠B ),∴∠C -∠B =α,∴∠DAE =12α.(9分)23.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13(180°-45°)=45°.∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n.(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n×90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n.(10分)∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =45°n.(12分)《第十一章 三角形》单元测试卷(二) 时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是( ) A .2、2、4 B .8、6、3 C .2、6、3 D .11、4、6 2.如图,∠1的度数是( ) A .40° B.50° C .60° D.70°3.下列实际情景运用了三角形稳定性的是( )A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒4.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是( )A.9 B.14C.16 D.不能确定5.如图,在△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠BDC的度数是( )A.76° B.81°C.92° D.104°6.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3.能确定△ABC为直角三角形的条件有( )A.1个 B.2个C.3个 D.0个7.一个正多边形的内角和为540°,则这个正多边形的每一个外角的度数是( )A.108° B.90° C.72° D.60°8.若a、b、c是△ABC三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A.a+b+c B.-a+3b-cC.a+b-c D.2b-2c9.小明同学在用计算器计算某n边形的内角和时,不小心多输入一个内角,得到和为2016°,则n的值为( )A.11 B.12 C.13 D.1410.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有( )A.∠ADE=20° B.∠ADE=30°C.∠ADE=12∠ADC D.∠ADE=13∠ADC二、填空题(每小题3分,共24分)11.如图,以∠E为内角的三角形共有________个.12.若n边形的内角和为900°,则边数n的值为________.13.一个三角形的两边长分别是3和8,若周长是偶数,则第三边的长是________.14.将一副三角板按如图所示的方式叠放,则∠α的度数是________.15.如图,在△ABC中,CD是AB边上的中线,E是AC的中点,已知△DEC的面积是4cm2,则△ABC的面积是________.16.如图,把三角形纸片ABC沿DE折叠,使点A落在四边形BCDE的内部.已知∠1+∠2=80°,则∠A的度数是________.17.如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2的度数是________.18.如图,已知在△ABC中,∠A=155°.第一步:在△ABC的上方确定点A1,使∠A1BA=∠ABC,∠A1CA=∠ACB;第二步:在△A1BC的上方确定点A2,使∠A2BA1=∠A1BA,∠A2CA1=∠A1CA……则∠A1的度数是________,照此继续,最多能进行________步.三、解答题(共66分)19.(8分)如图:(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.20.(8分)如图,在△BCD中,BC=4,BD=5,在CB的延长线上取点A,在CD 的延长线上取两点E,F,连接AE.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.21.(8分)如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.22.(10分)如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C=2∠B,∠BFC-∠BEC=20°,求∠C的度数.23.(10分)如果多边形的每个内角都比与它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm和15cm两部分,求△ABC各边的长.25.(12分)如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若射线OP、CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠P的大小,并证明你的结论(用含n的式子表示).参考答案与解析1.B 2.D 3.C 4.A 5.A 6.B 7.C 8.B9.C 解析:n边形的内角和为(n-2)·180°,并且每一个内角的度数都小于180°.∵(13-2)×180°=1980°,(14-2)×180°=2160°,1980°<2016°<2160°,∴n=13.故选C.10.D 解析:如图,在△AED中,∠AED=60°,∴∠ADE=180°-∠A-∠AED =120°-∠A.在四边形ABCD中,∵∠A=∠B=∠C,∴∠ADC=360°-∠A-∠B-∠C=360°-3∠A=3(120°-∠A),∴∠ADC=3∠ADE.∴∠ADE=13∠ADC.故选D.11.3 12.7 13.7或9 14.75°15.16cm216.40°17.28°18.130° 6 解析:∵在△ABC中,∠A=155°,∴∠ABC+∠ACB=25°.又∵∠A1BA=∠ABC,∠A1CA=∠ACB,∴∠A1BC+∠A1CB=50°,∴在△A1BC中,∠A1=180°-50°=130°.∵25°+25°×6=175°<180°,25°+25°×7=200°>180°,∴最多能进行6步.19.解:(1)AB(1分) (2)CD(2分)(3)∵AE=3cm,CD=2cm,∴S△AEC=12AE·CD=12×3×2=3(cm2).(5分)∵S△AEC=12CE·AB=3cm2,AB=2cm,∴CE=3cm.(8分)20.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(4分)(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-∠BDE=55°.又∵∠A=55°,∴∠C=180°-∠A-∠AEC=70°.(8分)21.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.(1分)∵CF∥AB,∴∠B+∠BCF=180°,∴∠BCF=60°,∴∠FCD=∠BCD-∠BCF=60°.(4分)(2)证明:∵CF∥AB,∴∠A+∠AFC=180°,∴∠AFC=180°-120°=60°,∴∠AFC=∠FCD,∴AF∥CD.(8分)22.解:由三角形外角的性质,得∠BFC=∠A+∠C,∠BEC=∠A+∠B.(2分)∵∠BFC-∠BEC=20°,∴(∠A+∠C)-(∠A+∠B)=20°,即∠C-∠B=20°.(5分)∵∠C=2∠B,∴∠B=20°,∠C=40°.(10分)23.解:设这个多边形的一个外角为x°.依题意有x+4x+30=180,解得x=30.(3分)∴这个多边形的边数为360°÷30°=12,(5分)∴这个多边形的内角和为(12-2)×180°=1800°,(7分)对角线的总条数为(12-3)×122=54(条).(10分)24.解:设AB =x cm ,BC =y cm ,则AD =CD =12x cm.有以下两种情况:(1)当AB +AD =12cm ,BC +CD =15cm 时,⎩⎪⎨⎪⎧x +12x =12,y +12x =15,解得⎩⎨⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三角形的三边关系;(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎪⎨⎪⎧x +12x =15,y +12x =12,解得⎩⎨⎧x =10,y =7.即AB =AC =10cm ,BC =7cm ,符合三角形的三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm.(10分)25.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°.(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA .(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°.∵∠PCE =13∠ACE ,∴∠PCE=13×(180°-45°)=45°.∴∠P =∠PCE -∠POC =15°.(7分) (3)解:∠P =45°n .(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n·90°=90°n .∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n.(10分)∴∠P =∠PCE -∠POC =45°n.(12分)《第十一章 三角形》单元测试卷(三)一、相信你的选择(每题5分,共35分) 1.三角形三条高的交点一定在( ) (A )三角形的内部 (B )三角形的外部(C )三角形的内部或外部. (D )三角形的内部、外部或顶点 2.一个多边形的边数每增加一条,这个多边形的( ) (A )内角和增加 (B )外角和增加 (C )对角线增加一条 (D )内角和增加3.已知一个三角形的周长为 厘米,且其中两边都等于第三边的倍,那么这个三角形的最短边为( )厘米(A ) (B ) (C ) (D )4.如图,工人师傅砌门时,常用木条固定长方形门框,使其不变形,这种做法的数学根据是 ( )(A )两点之间线段最短 (B )长方形的四个角都是直角 (C )三角形的稳定性 (D 长方形的对称性(第4题图) (第5题图)5.为估计池塘岸边、的距离,小方在池塘的一侧选取点,测得米,米,、间的距离不可能是( ) (A )米 (B )米 (C )米 (D )米6.若线段、、 能组成三角形,则它们的长度比可能是( ) (A ) (B ) (C ) (D )︒360︒360︒1801521234EFABCD A B O 15=OA 10=OB A B 2015105a b c 4:2:14:3:17:4:34:3:2二、试试你的身手(每小题5分,共35分)8.在中,,那么长的取值范围是_______.9.一个多边形的内角和是外角和的倍,该多边形是_______边形.10.有四条线段,长分别是厘米,厘米,厘米,厘米,如果用这些线段组成三角形,可以组成不同的三角形的个数为____个.11.一个三角形三边的长度之比为,周长为,则此三角形最短边的长为______.12.在中,是中线,则的面积________的面积(填“>”“<”或“=”).(第13题图)13.将一副直角三角板如图所示摆放,则的度数为_______度.14.如图,已知点是射线上一动点(即可在射线上运动),,当___________时,为直角三角形.(第14题图)三、挑战你的技能(共30分)15.(7分)如图所示,平分,平分,.请判断直线、的位置关系,并给出理由.ABC∆5==ACAB BC335794:3:2cm36cmABC∆AD ABD∆ACD∆1∠P ON P ON︒=∠30AON=∠A AOP∆BE ABD∠DE BDC∠︒=∠+∠9021AB CDABD C(第12题图)BACFEDBA C16.(4分)有人说,自己步子大,一步能走三米多,你相信吗?写出理由.17.(7分)如图所示,一块模板中要求、的延长线相交成角,因交点不在模板上,不便测量,测得,此时,、的延长线相交成的角是否符合规定?请说明理由.18.(12分)如图,在中: (1)画出边上的高和中线(2)若 求和的度数。

人教版八年级上册数学《三角形》单元测试题带答案

人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1.能将三角形面积平分的是三角形的..)A.角平分..B...C.中..D.外角平分线2.已知三角形的两边长分别为4cm和9cm, 则下列长度的四条线段中能作为第三边的是.. )A.13c..B.6c..C.5c..D.4cm3.三角形一个外角小于与它相邻的内角, 这个三角形是...)A.直角三角..B.锐角三角..C.钝角三角..D.属于哪一类不能确定4.若一个多边形每一个内角都是135º, 则这个多边形的边数是...)A...B...C.1..D.125.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面, 可供选择的地砖共有( )A.4..B.3..C.2..D.1种6.一个多边形的外角和是内角和的一半, 则它是. )边形A...B...C...D.47.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S △DGF的值为. )学*科*网...学*科*网...A.4cm..B.6cm..C.8cm..D.9cm28.已知△ABC中, ∠A=20°, ∠B=∠C, 那么三角形△ABC是()A.锐角三角..B.直角三角..C.钝角三角..D.正三角形9.试通过画图来判定, 下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形10.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35..B.55..C.60..D.70°二、填空题11.如果点G是△ABC的重心.AG的延长线交BC于点D.GD=12.那么AG=________.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1= ,∠2= ,则∠3=_____________°.13.若一个多边形的内角和比外角和大360°, 则这个多边形的边数为_______________.14.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D.E、F,则线段___是△ABC中AC边上的高.15.一个多边形的内角和是外角和的2倍, 则这个多边形的边数为___.16.十边形的外角和是_____°.17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18.如图,⊿ABC中,∠..40°,∠..72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CD.=_________度。

数学八年级上册《三角形》单元检测(含答案)

【详解】当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.
当腰为6cm时,6−3<6<6+3,能构成三角形;
此时等腰三角形的周长为6+6+3=15cm.
故答案为15cm.
【点睛】此题考查等腰三角形的性质,三角形三边关系,解题关键在于利用三角形三边关系进行解答.
12.一个三角形的三边长分别为a、b、c,则 =________.
A. B. C. D.
6.若△ABC中,∠A:∠B:∠C=1:2:3,则△ABC一定是()
A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形
7. 、等腰三角形的两条边长分别为3cm,7cm,则等腰三角形的周长为( )cm
A. 13或17B. 17C. 13D. 10
8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】
7.、等腰三角形的两条边长分别为3cm,7cm,则等腰三角形的周长为()cm
A. 13或17B. 17C. 13D. 10
【答案】B
【解析】
∵等腰三角形的两条边长分别为3cm,7cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为3,只能为7,
∴等腰三角形的周长=7+7+3=17cm.
故选B.
8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】
A. 125°B. 120°C. 140°D. 130°
【答案】D
【解析】
如图,∵EF∥GH,∴∠FCD=∠2.
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°.
∴∠2=∠FCD=130°.
故选D.
9.如图:在△ABC中,BC=BA,点D在AB上,AC=CD=DB,则∠B=( ).

《三角形》单元测试题(含答案)

“三角形”知识要点梳理之迟辟智美创作三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质三角形全等三角形SSSSAS全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”暗示.2、极点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来暗示,极点A所对的边BC用a暗示,边AC、AB分别用b,c来暗示;4、∠A、∠B、∠C为ΔABC的三个内角.二、三角形中三边的关系1、三边关系:三角形任意两边之和年夜于第三边,任意两边之差小于第三边.用字母可暗示为a+b>c,a+c>b,b+c>a;a-b<c,a-c<b,b-c<a. 2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形;(2)当两条较短线段之和年夜于最长线段时,则可以组成三角形.3、确定第三边(未知边)的取值范围时,它的取值范围为-<<+.年夜于两边的差而小于两边的和,即a b c a b三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和即是1800.2、三角形按内角的年夜小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通经常使用“RtΔ”暗示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余.(3)钝角三角形,即有一个内角是钝角的三角形.3、判定一个三角形的形状主要看三角形中最年夜角的度数.4、直角三角形的面积即是两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质.6、三角形内角和定理包括一个等式,它是我们列出有关角的方程的重要等量关系.四、三角形的三条重要线段1、三角形的三条重要线段是指三角形的角平分线、中线和高线.2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的极点和交点之间的线段叫做三角形的角平分线.(2)任意三角形都有三条角平分线,而且它们相交于三角形内一点.3、三角形的中线:(1)在三角形中,连接一个极点与它对边中点的线段,叫做这个三角形的中线.(2)三角形有三条中线,它们相交于三角形内一点.4、三角形的高线:(1)从三角形的一个极点向它的对边所在的直线做垂线,和垂足之间的线段叫做三角形的高线,简称为三角形的高.(2)任意三角形都有三条高线,它们所在的直线相交于一点.五、全等图形1、两个能够重合的图形称为全等图形.2、全等图形的性质:全等图形的形状和年夜小都相同.3、全等图形的面积或周长均相等.4、判断两个图形是否全等时,形状相同与年夜小相等两者缺一不成.5、全等图形在平移、旋转、折叠过程中仍然全等.6、全等图形中的对应角和对应线段都分别相等.六、全等分割1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割.2、对一个图形全等分割:(1)首先要观察分析该图形,发现图形的构成特点;(2)其主要年夜胆检验考试,敢于入手,需要时可采纳计算、交流、讨论等方法完成.七、全等三角形1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全即是”.2、用“≌”连接的两个全等三角形,暗示对应极点的字母写在对应的位置上.3、全等三角形的性质:全等三角形的对应边、对应角相等.这是今后证明边、角相等的重要依据.4、两个全等三角形,准确判定对应边、对应角,即找准对应极点是关键.八、全等三角形的判定1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”.3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”.4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”.5、注意以下内容(1)三角形全等的判定条件中必需是三个元素,而且一定有一组边对应相等.(2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形全等.(3)两边及其中一边的对角对应相等不能判定两三角形全等.6、熟练运用以下内容(1)熟练运用三角形判定条件,是解决此类题的关键.(2)已知“SS”,可考虑A:第三边,即“SSS”;B:夹角,即“SAS”.(3)已知“SA”,可考虑A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”.(4)已知“AA”,可考虑A:任意一边,即“AAS”或“ASA”.7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状和年夜小就完全确定了,三角形的这个性质叫做三角形的稳定性.九、作三角形1、作图题的一般步伐:(1)已知,即将条件具体化;(2)求作,即具体叙述所作图形应满足的条件;(3)分析,即寻找作图方法的途径(通常是画出草图);(4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程;(5)证明,即验证所作图形的正确性(通常省略不写).2、熟练以下三种三角形的作法及依据.(1)已知三角形的两边及其夹角,作三角形.(2)已知三角形的两角及其夹边,作三角形.(3)已知三角形的三边,作三角形.十、利用三角形全等测距离1、利用三角形全等测距离,实际上是利用已有的全等三角形,或构造出全等三角形,运用全等三角形的性质(对应边相等),把较难丈量或无法丈量的距离转化成已知线段或较容易丈量的线段的长度,从而获得被测距离.2、运用全等三角形解决实际问题的步伐:(1)先明确实际问题应该用哪些几何知道解决;(2)根据实际问题笼统出几何图形;(3)结合图形和题意分析已知条件;(4)找到解决问题的途径.十一、直角三角形全等的条件1、在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”.2、“HL”是直角三角形特有的判定条件,对非直角三角形是不成立的;3、书写时要规范,即在三角形前面必需加上“Rt”字样.十二、分析-综合法1、我们在平时解几何题时,采纳的解题方法通常有两种,综合法与分析法.2、综合法:从问题的条件动身,通过分析条件,依据所学知识,逐步探索,直到得出问题的结论.3、分析法:从问题的结论动身,不竭寻找使结论成立的条件,直至已知条件.4、在具体解题中,通常是两种方法结合起来使用,既运用综合法,又运用分析法.“三角形”单位测试一、选择题1.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB 交BC于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长是()A.6㎝B.4㎝C.10㎝D.以上都分歧毛病(第1题) (第6题) (第7题) 2.一个多边形的内角和是720 ,则这个多边形的边数为()A.4 B.5 C.6 D.73.等腰三角形中的一个内角为50°,则另两个内角的度数分别是()A、65°,65°B、50°,80°C、50°,50° D.65°,65°或50°,80°4.以下各组数为边长的三角形中,能组成直角三角形的是()A.1,2,3B.2,3,4C.4,5,6D.5,12,13 5.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有()A.1个B.2个C.3个D.4个6.如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确的结论的个数是()A.1 B.2 C.3 D.47.如图,△ABC中,AB=AC,∠A=040,则B=()A、060B、070C、075D、0808.满足下列条件的ABC∆,不是直角三角形的是()A.︒∠65B B.5:4:3=A, ︒=∠25BA∠C:=:∠∠C .222c a b -=D .12=AC ,20=AB ,16=BC9.下列几组数,能作为直角三角形的三边的是A .5,12,23B .0.6,0.8,1C .20,30,50D .4, 5,610.如图,将Rt △ABC (∠ACB =90°,∠ABC =30°)沿直线AD 折叠,使点B 落在E 处,E 在AC 的延长线上,则∠AEB 的度数为( )A .30°B .40°C .60°D .55°(第10题) (第11题) (第13题)二、填空题11.如图,E 点为ΔABC 的边AC 中点,CN ∥AB ,过E 点作直线交AB 与M 点,交CN 于N 点,若MB =6cm ,CN =4cm ,则AB =________.12.一个十二边形的内角和是度,外角和是度.13.如图,∠ACD 是△ABC 的外角,∠ACD =80°,∠B =30°,则∠A =.14.若等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数为. NC BAEM15.如图,在Rt△ABC中,∠ABC=90°,AB=BC=8,点M在BC上,且BM=2 N是AC上一动点,则BN+MN的最小值为___________.(第15题) (第16题)16.如图,△ABC的三个极点分别在格子的3个极点上,请你试着再在图中的格子的极点上找出一个点D,使得△DBC 与△ABC全等,这样的三角形有个.三、解答题17.今年第九号台风“苏拉”登岸浙江,A市接到台风警报时,台风中心位于A市正南方向85km的B处,正以14km/h 的速度沿BC方向移动.已知A市到BC的距离AD=40km,那么台风中心从B点移到D点经过多长时间?(计算结果精确到0.1小时)18.已知三角形的两边长分别为3和5,第三边长为c,化简.19.如图,△ABD≌△EBD, △DBE≌△DCE, B, E, C在一条直线上.(1)BD是∠ABE的平分线吗?为什么?(2)DE⊥BC,BE=EC吗?为什么?ADB CE20.已知:如图,AB=CD,DE⊥AC,BF⊥AC,DE=BF.求证:AE=CF.21.如图:AD是△ABC的高,E为AC上一点,BE交AD 于F,且有BF=AC,FD=CD.求证:BE⊥AC.22.如图,︒=AOB,OM是AOB∠90∠的平分线,将三角尺的直角极点P在射线OM上滑动,两直角边分别与OBOA,交于点C和D,证明:PDPC=.参考谜底1.A2.C3.D4.D5.D6.D7.B8.B9.B10.C 11.10cm12.18000,360°13.50°14.50°或80°15.1016.3 1718.由三边关系定理,得3+5>c,5-3<c,即8>c>2.==c-2-(4-c)=c-2-4+c=c-6.(15分)19.略20.略21.略22.略。

人教版数学《三角形》单元测试题(含答案)

《三角形》单元测试题一、选择题1. 如图,D,E,F是△ABC的边BC上的点,且BD=DE=EF=FC,那么△ABE 的中线是()A.线段AD B.线段AEC.线段AF D.线段DF2. 在△ABC中,△A=95°,△B=40°,则△C的度数是()A. 35°B. 40°C. 45°D. 50°3. 至少有两边相等的三角形是()A.等边三角形B.等腰三角形C.等腰直角三角形D.锐角三角形4. 如图,小明书上的三角形被墨迹遮挡了一部分,测得其中两个角的度数分别为28°,62°,于是他很快判断出这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.钝角三角形5. 如图是六边形ABCDEF,则该图形的对角线的条数是()A.6B.9C.12D.186. 如图,为估计池塘岸边A,B两地之间的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,那么A,B两地之间的距离可能是()A.2米B.15米C.18米D.28米7. 如图,在△ABC中,△ABC,△ACB的平分线BE,CD相交于点F,△ABC=42°,△A=60°,则△BFC的度数为()A.118°B.119°C.120°D.121°8. 如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m).则点E的坐标是()A. (2,-3)B. (2,3)C. (3,2)D. (3,-2)9. 如图,将△ABC沿BC向右平移后得到△DEF,△A=65°,△B=30°,则△DFC 的度数是()A.65° B.35° C.80° D.85°10. 如图,在△ABC中,△ACB=70°,△1=△2,则△BPC的度数为()A.70° B.108°C.110° D.125°二、填空题11. 如图,已知△CAE是△ABC的外角,AD△BC,且AD是△EAC的平分线.若△B=71°,则△BAC=________.12. 如图,在△ABC 中,△ABC ,△ACB 的平分线相交于点O ,OD△OC 交BC 于点D.若△A =80°,则△BOD =________°.13. 如图,小明从点A 出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°……照这样走下去,他第一次回到出发地点A 时,一共走了________米.14. 如图,在△ABC 中,AD △BC ,BE △AC ,CF △AB ,垂足分别是D ,E ,F .若AC =4,AD =3,BE =2,则BC =________.15. 如图所示,在△ABC 中,△A =36°,E 是BC 延长线上一点,△DBE =23△ABE ,△DCE =23△ACE ,则△D 的度数为________.16. 如图,若该图案是由8个形状和大小相同的梯形拼成的,则△1=________°.三、解答题17. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?18. 如图,CE是△ABC的外角△ACD的平分线,且CE交BA的延长线于点E,△B=25°,△E=30°,求△BAC的度数.19. 如图是一个大型模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得△A=145°,△B=75°,△C=85°,△D=55°,就断定这块模板是合格的,这是为什么?20. 如图,在△ABC中,CD,BE分别是AB,AC边上的高,BE,CD相交于点O.(1)若△ABC=50°,△ACB=60°,求△BOC的度数;(2)求证:△BOC +△A =180°.21. 如图,在△ABC 中,BD 是角平分线,CE 是AB 边上的高,且△ACB=60°, △ADB=97°,求△A 和△ACE 的度数.三角形答案一、选择题1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】C ∴△ACB=180°-△A -△ABC=78°. ∴△ABC ,△ACB 的平分线分别为BE ,CD , ∴△FBC=12△ABC=21°,△FCB=12△ACB=39°, ∴△BFC=180°-△FBC -△FCB=120°.故选C.8. 【答案】C9. 【答案】D10. 【答案】C△1=△2,△△2+△BCP=△1+△BCP=△ACB=70°.△△BPC=180°-△2-△BCP=180°-70°=110°.二、填空题11. 【答案】38°12. 【答案】4013. 【答案】120则他第一次回到出发地点A时,一共走了12×10=120(米).故答案为120.14. 【答案】8315. 【答案】24°16. 【答案】67.5三、解答题17. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.△20+65<90,△20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,△100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.18. 【答案】解:△△B=25°,△E=30°,△△ECD=△B+△E=55°.△CE是△ACD的平分线,△△ACE=△ECD=55°.△△BAC=△ACE+△E=85°.19. 【答案】解:如图,延长DA,CB相交于点F,延长BA,CD相交于点E.∴△C+△ADC=85°+55°=140°,∴△F=180°-140°=40°.∴△C+△ABC=85°+75°=160°,∴△E=180°-160°=20°.故这块模板是合格的.20. 【答案】解:(1)△CD△AB,BE△AC,△△BDC=△BEC=90°.△△ABC=50°,△ACB=60°.△△BCO=40°,△CBO=30°.△△BOC=180°-40°-30°=110°.(2)证明:△CD△AB,BE△AC,△△BDC=△BEC=90°.△△ABE=90°-△A.△△BOC=△ABE+△BDC=90°-△A+90°=180°-△A.△△BOC+△A=180°.21. 【答案】解:∴△ADB=△DBC+△ACB,∴△DBC=△ADB-△ACB=97°-60°=37°.∴BD是△ABC的角平分线,∴△ABC=74°.∴△A=180°-△ABC-△ACB=46°.∴CE是AB边上的高,∴△AEC=90°.∴△ACE=90°-△A=44°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形单元测试
一、选择题(共10 题,每小题3分,共 30 分) 1.下列三条线段,能组成三角形的是( )
A .3,3,3
B .3,3,6
C .3 ,2 ,5
D .3,2,6
2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形B .钝角三角形C .直角三角形 D .都有可能
3.如图所示,AD 是△ABC 的高,延长BC 至E ,使CE =BC ,△ABC 的面积为S 1, △ACE 的面积为S 2,那么( )
A .S 1>S 2
B .S 1=S 2
C . S 1<S 2
D .不能确定 4.下列图形中有稳定性的是( ) A .正方形 B .长方形 C .直角三角形 D .平行四边形
5.如图,正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图形所示,C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数为( ) A .3个 B .4个 C .5个 D .6个
6.已知△ABC 中,∠A 、∠B 、∠C 三个角的比例如下,其中能说明 △ABC 是直角三角形的是( )
A .2:3:4
B .1:2:3
C .4:3:5
D .1:2:2 7.点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中∠1、∠2、∠A 的大小关系是( ) A .∠A >∠2>∠1 B .∠A >∠2>∠1 C .∠2>∠1>∠A D .∠1>∠2>∠A 8.在△ABC 中,∠A =80°,BD 、C
E 分别平分∠ABC 、 ∠ACB ,BD 、CE 相交于点O ,则∠BOC 等于( ) A .140° B .100° C .50° D .130°
9.下列正多边形的地砖中,不能铺满地面的正多边形是( ) A .正三角形B .正四边形 C .正五边形 D .正六边形
A
B
D C
E
(第3题)
A
B A B
C
D
P
12
第7题
10.在△ABC 中, ∠ABC =90°,∠A =50°,BD ∥AC ,则∠CBD 等于( )
A .40°
B .50°
C .45°
D .60°
二、填空题(共6小题,每小题3分,共18分)
11.P 为△ABC 中BC 边的延长线上一点,∠A =50°,∠B =70°,则∠ACP =_____. 12.如果一个三角形两边为2cm .7cm ,且第三边为奇数,则三角形的周长是_____. 13.在△ABC 中,∠A =60°,∠C =2∠B ,则∠C =_____.
14.一个多边形的每个内角都等于150°,则这个多边形是_____边形.
15.用正三角形和正方形镶嵌平面,每一个顶点处有_____个正三角形和_____个正方形. 16.黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案,(1)第4个图案中有白色纸片_____块.(2)第n 个图案中有白色纸片_____块.
三、计算(共3题,每题5分,共15分)
17.等腰三角形两边长为4cm 、6cm ,求等腰三角形的周长.
18.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.
A
B
C
D
第10题
第1个
第2个
第3个
19.如图所示,有一块三角形ABC 空地,要在这块空地上种植草皮来美化环境,已知这种草皮每平方米售价230元,AC =12m,BD =15m ,购买这种草皮至少需要多少元?
四、(共3小题,每题6分,共18分)
20.一块三角形的试验田,需将该试验田划分为面积相等的四小块,种植四个不同的优良品种,设计三种以上的不同划分方案,并给出说明.
A A A A
C
21.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于E 、F ,EP ⊥EF ,∠EFD 的平分线与EP 相交于点P ,且∠BEP =40°,求∠P 的度数.
D
A
15m
12m
A B C
D
E
P
F
22.如图,AD是△ABC的角平分线。

DE∥AC,DE交AB于E。

DF∥AB,DF交AC于F。

图中∠1与∠2有什么关系?为什么?
五、(共2小题,第23题9分,第24题10分,共19分)
23.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE=∠CHG?为什么?
A
B
C
D
E
F H
G
A
B C
D
F
E
12
24.(1)如图所示,已知△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,试说明 ∠BOC =90°+
2
1
∠A 。

(2)如图所示,在△ABC 中,BD 、CD 分别是∠ABC 、∠ACB 的外角平分线,试说明∠D =90°-
2
1
∠A 。

(3)如图所示,已知BD 为△ABC 的角平分线,CD 为△ABC 外角∠ACE 的平分线,且与BD 交于点D ,试说明∠A =2∠D 。

18. 如图,已知AB ∥CD ,∠ABE 和∠CDE 的平分线相交于F ,∠E = 140º,求∠BFD 的度数。

A B
C
O
A
B C
D
A
B
C
D (1)
(2)
(3)。

相关文档
最新文档