广东省13市2017届高三上学期期末考试数学(理科)分类汇编:圆锥曲线
2016年_2017年学年广东14市高三年级数学(理]期末考试试题分类汇编_圆锥曲线(有答案解析](上学期]
![2016年_2017年学年广东14市高三年级数学(理]期末考试试题分类汇编_圆锥曲线(有答案解析](上学期]](https://img.taocdn.com/s3/m/c16626a4d0d233d4b04e691a.png)
广东省14市高三上学期期末考试数学理试题分类汇编圆锥曲线一、选择题1、(潮州市2016届高三上期末)已知双曲线22221(0,0)x y a b a b-=>>的一个焦点恰为抛物线28y x =的焦点,且离心率为2,则该双曲线的标准方程为A 、2213y x -= B 、221412x y -= C 、2213x y -= D 、221124x y -=2、(东莞市2016届高三上期末)已知圆22()4x m y -+=上存在两点关于直线20x y --=对称,的双曲线22221(0,0)x y a b a b-=>>的两条渐近线与圆相交,则它们的交点构成的图形的面积为(A )1 (B ) (C ) (D )43、(佛山市2016届高三教学质量检测(一))已知1F 、2F 分别是双曲线12222=-by a x (0>a ,0>b )的左、右两个焦点,若在双曲线上存在点P ,使得︒=∠9021PF F ,且满足12212F PF F PF ∠=∠,那么双曲线的离心率为( )A .13+B .2C .3D .254、(广州市2016届高三1月模拟考试)过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若2FB FA =uu r uu r,则此双曲线的离心率为(A (B (C )2 (D 5、(惠州市2016届高三第三次调研考试)若双曲线22221(0,0)x y a b a b-=>>与直线2y x=无交点,则离心率e 的取值范围是( )A .(1,2)B .(1,2]C .D .6、(揭阳市2016届高三上期末)如果双曲线经过点p ,且它的一条渐近线方程为y x =,那么该双曲线的方程式(A )22312y x -= (B ) 22122x y -= (C )22136x y -= (D )22122y x -=7、(茂名市2016届高三第一次高考模拟考试)设双曲线2214y x -=上的点P 到点的距离为6,则P 点到(0,的距离是( )A .2或10 B.10 C.2 D.4或88、(清远市2016届高三上期末)已知双曲线C :2221x my +=的两条渐近线互相垂直,则抛物线E :2y mx =的焦点坐标是( ) A 、(0,1) B 、(0,-1) C 、(0,12) D 、(0,-12) 9、(东莞市2016届高三上期末)已知直线l 过抛物线E :22(0)y px p =>的焦点F 且与x 轴垂直,l 与E 所围成的封闭图形的面积为24,若点P 为抛物线E 上任意一点,A (4,1),则|PA |+|PF |的最小值为(A )6 (B )4+ (C )7 (D )4+10、(汕尾市2016届高三上期末)已知双曲线22221(0,0)x y a b a b-=>>的左右焦点为,点 A 在其右半支上, 若12AF AF =0, 若,则该双曲线的离心率e 的取值范围为) B.( C. D. )11、(韶关市2016届高三1月调研)曲线221(6)106x y m m m +=<--与曲线221(59)59x y n n n+=<<--的( ) A .焦距相等 B . 离心率相等 C .焦点相同 D .顶点相同12、(珠海市2016届高三上期末)点00()P x y ,为双曲线22:149x y C -=上一点,12B B 、为C 的虚轴顶点,128PB PB ⋅<uuu r uuu r,则0x 的范围是( )A .(2][2-UB .(2)(2-UC .(2][2--UD .(2)(2--U13、(湛江市2016年普通高考测试(一))等轴双曲线C 的中心在原点,焦点在x 轴上,C与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=C 的实轴长为:CA B 、 C 、4 D 、814、(潮州市2016届高三上期末)若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)x y +-=1至多有一个交点,则双曲线的离心率的取值范围是A 、(1,2)B 、[2,+∞)C 、D 、B 、∞)选择题答案:1、A2、D3、A4、C5、D6、B7、A8、D9、C 10、A 11、A 12、C 13、 14、A 二、解答题1、(潮州市2016届高三上期末)已知椭圆22221(0)x y a b a b+=>>右顶点与右焦点的距离为-1,短轴长为。
广东省广州市普通高中2017高考高三数学第一次模拟试题精选:圆锥曲线02 含答案

圆锥曲线0223、已知抛物线24y x =的焦点与圆2240x y mx ++-=的圆心重合,则m 的值是 【答案】2-【解析】抛物线的焦点坐标为(1,0)。
圆的标准方程为222()424m m x y ++=+,所以圆心坐标为(,0)2m -,所以由12m-=得2m =-。
24、双曲线2213x y -=的两条渐近线的夹角的大小等于_______ 【答案】3π【 解析】双曲线的渐近线为3y x =±。
3y x =的倾斜角为6π,所以两条渐近线的夹角为263ππ⨯=。
25、设点P 在曲线22y x =+上,点Q 在曲线y =PQ 的最小值为_______【答案】427 【 解析】在第一象限内,曲线22+=x y 与曲线2-=x y 关于直线y =x 对称,设P 到直线y =x 的距离为d ,则|PQ |=2d ,故只要求d 的最小值d =2)(2|2|2||472212+--+-==x x x x y ,当12x =时,d min ,所以|PQ |min4=26、若双曲线2221(0)4x y b b-=>的一条渐近线过点P (1, 2),则b 的值为_________.【答案】4【 解析】双曲线的渐近线方程为2by x =±,因为点P (1, 2)在第一象限,所以点P (1, 2)在渐近线2b y x =上,所以有22b=,所以4b =。
27、已知抛物线22(0)y px p =>上一点(1,)M m (m >0)到其焦点F 的距离为5,该抛物线的顶点在直线MF 上的射影为点P ,则点P 的坐标为 . 【答案】6448(,)2525【 解析】抛物线的焦点坐标(,0)2p F ,准线方程为2p x =-。
因为1()52pMF =--=,所以解得8p =。
所以抛物线方程为216y x =,即216m =,所以4m =。
即(1,4)M ,则直线MF 的方程为43160x y +-=,斜率为43-。
广东省广州市普通高中2017高考高三数学第一次模拟试题精选:圆锥曲线05 含答案

圆锥曲线058、 如图,椭圆2222:1(0)x y E a b a b+=>> 的左焦点为1F ,右焦点为2F ,过1F 的直线交椭圆于,A B 两点,2ABF ∆的周长为8,且12AF F ∆面积最大时,12AF F ∆为正三角形.(1)求椭圆E 的方程;(2)设动直线:l y kx m =+与椭圆E 有且只有一个公共点P ,且与直线4x =相交于点Q .试探究:① 以PQ 为直径的圆与x 轴的位置关系?② 在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出M 的坐标;若不存在,说明理由.【答案】解:(1)当三角形面积最大时,为正三角形,所以,,=,=A (0b )a 2c 4a 822=4,=3b ∴a ,椭圆E 的方程为22+=143x y(2)①由22143y kx m x y =+⎧⎪⎨+=⎪⎩,得方程222(43)84120k x kmx m +++-=由直线与椭圆相切得220,0,430.m k m ≠∆=⇒-+= 求得43(,)k P m m -,(4,4)Q k m +,PQ 中点到x 轴距离 223(2)22m d k m=++ 2222212()(1)0(4302)2kPQ d k m m k m-=->-+=⇒≠。
所以圆与x 轴相交。
(2)②假设平面内存在定点M 满足条件,由对称性知点M 在x 轴上,设点M 坐标为1(,0)M x ,1143(,),(4,4)k MP x MQ x k m m m=--=-+。
由0MP MQ ⋅= 得2111(44)430k x x x m-+-+=所以211144430x x x -=-+=,即11x =所以定点为(1,0)M 。
9、已知椭圆2222:1(0)x y C a b a b +=>>的一个焦点为(1,0)F ,点(1,)2-在椭圆C 上,点T满足2OT OF =(其中O 为坐标原点), 过点F 作一斜率为(0)k k >的直线交椭圆于P 、Q 两点(其中P 点在x 轴上方,Q 点在x 轴下方) .(1)求椭圆C 的方程;(2)若1k =,求PQT ∆的面积;(3)设点P '为点P 关于x 轴的对称点,判断P Q ' 与QT的位置关系,并说明理由.【答案】(1)由222211112a b ab ⎧-=⎪⎨+=⎪⎩,得 …………………… ……………………..2分 a 2=2,b 2=1,所以,椭圆方程为2212x y +=. …………… …………………..4分 (2)设PQ:y=x-1,由22112x y x y =+⎧⎪⎨+=⎪⎩得3y 2+2y-1=0, ………..6分 解得: P(41,33),Q(0,-1),由条件可知点(2,0)T , PQT S ∆=12|FT||y 1-y 2|=23. ….. ……………10分(3) 判断:P Q ' 与QT共线. ….. …… …………11分设1122(,),(,)P x y Q x y则P '(x 1,-y 1),P Q ' =(x 2-x 1,y 2+y 1),TQ=(x 2-2,y 2), …… ………..12分由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4220k x k x k +-+-=. ………………………..13分(x 2-x 1)y 2-(x 2-2)(y 1+y 2)=(x 2-x 1)k(x 2-1)-(x 2-2)(kx 1-k+kx 2-k)=3k(x 1+x 2)-2kx 1x 2-4k=3k 22412k k +-2k 222212k k -+-4k=k(2222124441212k k k k---++)=0. ………..15分 所以,P Q ' 与QT共线. …………… …………..16分10、已知动点),(y x A 到点)0,2(F 和直线2-=x 的距离相等. 1.求动点A 的轨迹方程;2.记点)0,2(-K ,若AF AK 2=,求△AFK 的面积.【答案】(1)由题意可知,动点A 的轨迹为抛物线,其焦点为)0,2(F ,准线为2-=x设方程为px y 22=,其中22=p,即4=p ……2分 所以动点A 的轨迹方程为x y 82=……2分(2)过A 作l AB ⊥,垂足为B ,根据抛物线定义,可得||||AF AB =……2分AF AK 2=,所以AFK ∆是等腰直角三角形………2分 4||=KF …………2分所以84421=⨯⨯=∆AFK S …………2分(第20题图)11、已知椭圆:C 22221(0)x y a b a b+=>>的两个焦点分别是()0,11-F 、()0,12F ,且焦距是椭圆C 上一点P 到两焦点21F F 、距离的等差中项. (1)求椭圆C 的方程;(2)设经过点2F 的直线交椭圆C 于N M 、两点,线段MN 的垂直平分线交y 轴于点 ),0(0y Q ,求0y 的取值范围.【答案】解:设椭圆C 的半焦距是c .依题意,得 1c =. ………1分 由题意得 a c 24=,2=a2223b a c =-=. ………4分故椭圆C 的方程为 22143x y +=. ………6分(2)解:当MN x ⊥轴时,显然00y =. ………7分当MN 与x 轴不垂直时,可设直线MN 的方程为(1)(0)y k x k =-≠.由 22(1),3412,y k x x y =-⎧⎨+=⎩消去y 整理得 0)3(48)43(2222=-+-+k x k x k .………9分 设1122(,),(,)M x y N x y ,线段MN 的中点为33(,)Q x y ,则 2122834k x x k +=+. ………10分所以212324234x x k x k +==+,3323(1)34ky k x k -=-=+. 线段MN 的垂直平分线方程为)434(1433222k k x k k k y +--=++. 在上述方程中令0=x ,得k k k k y 4314320+=+=. ………12分当0k <时,34k k +≤-0k >时,34k k +≥所以0012y -≤<,或0012y <≤. ………13分 综上,0y的取值范围是[. ………14分。
广东省13市2017届高三上学期期末考试数学文试题分类汇编:三角函数含答案

广东省13市2017届高三上学期期末考试数学文试题分类汇编三角函数一、选择、填空题1、(潮州市2017届高三上学期期末)若=﹣12,则sin (α+)的值为( )A .12 B .﹣12C .D .﹣2、(东莞市2017届高三上学期期末)已知函数3sin()3y x πω=+的最小正周期为π,将函数3sin()3y x πω=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减 B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增3、(佛山市2017届高三教学质量检测(一))已知函数12cos 2sin 3)(+-=x x x f ,下列结论中错误的是( )A .)(x f 的图像关于)1,12(π中心对称 B .)(x f 在)1211,125(ππ上单调递减C .)(x f 的图像关于3π=x 对称 D .)(x f 的最大值为34、(广州市2017届高三12月模拟)已知角θ的顶点与原点重合, 始边与x 轴正半轴重合, 终边过点()12P ,-, 则tan 2=θ(A )43 (B)45 (C )45- (D )43- 5、(惠州市2017届高三第三次调研)在ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知2,22b c ==且4C π=,则ABC ∆的面积为( )(A )13+ 31 (C )4 (D )26、(江门市2017届高三12月调研)设函数f (x )=sin (ωx +φ)+cos (ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,且f (x )=f (−x ),则 A .f (x )在(0,π2)单调递减 B .f (x )在(π4,3π4)单调递减 C .f (x )在(0,π2)单调递增 D .f (x )在(π4,3π4)单调递增7、(揭阳市2017届高三上学期期末)已知3cos 5α=,3(,2)2παπ∈,则cos()4πα-= (A 72(B )72(C 2(D)28、(茂名市2017届高三第一次综合测试)已知△ABC 30C ∠=︒,BC 则AB 等于( )A. 1 B 。
广东省13市2017届高三上学期期末考试数学理试题分类汇编:不等式与不等式选讲含答案

广东省13市2017届高三上学期期末考试数学理试题分类汇编不等式与不等式选讲一、选择、填空题1、(潮州市2017届高三上学期期末)设实数x ,y 满足约束条件,则z=2x+y 的最大值为( )A .10B .8C .D .2、(东莞市2017届高三上学期期末)对于实数m >-3,若函数1()2xy =图象上存在点(x , y )满足约束条件30230x y x y x m -+≥⎧⎪++≥⎨⎪≤⎩,则实数m的最小值为A .12B. -1C.-32D 。
-23、(佛山市2017届高三教学质量检测(一))量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+10202y y x y x ,则目标函数y x z 3+=的最小值为( ) A .2 B .4 C .5 D .64、(广州市2017届高三12月模拟)已知,x y 满足约束条件220,220,20,x y x y x y -+≥⎧⎪--≤⎨⎪+-≤⎩若()0z x ay a =->的最大值为4,则a = 。
5、(惠州市2017届高三第三次调研)已知x ,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z =ax +y 的最大值为4,则a 等于( )(A )3 (B )2 (C )-2 (D )-3 6、(江门市2017届高三12月调研)若x 、y 满足约束条件{y ≤x +15x +3y ≤152y ≥1,则 z =x +y 的最大值为M = .7、(揭阳市2017届高三上学期期末)已知,a b R ∈、且2222290ab ab ++-=,若M 为22a b +的最小值,则约束条件⎩⎨⎧≤+≤+.2||||,322M y x M y x 所确定的平面区域内整点(横坐标纵坐标均为整数的点)的个数为(A)29(B )25(C )18 (D )168、(茂名市2017届高三第一次综合测试)若圆2240xy x my +-+-=关于直线0=-y x 对称,动点P ()b a ,在不等式组2000x y x my y +-≤⎧⎪+≥⎨⎪≥⎩表示的平面区域内部及边界上运动,则21bz a -=-的取值范围是 * . 9、(清远市清城区2017届高三上学期期末)已知函数,)1ln()(2x x a x f -+=在区间(0、1)内任取两个实数P 、q ,且q P ≠,若不等式(1)(1)1f P f q P q+-+>-恒成立,则实数a 的取值范围为( )A. []∞+,11 B 。
广东省13市2017届高三上学期期末考试数学(理科)分类汇编:极坐标与参数方程

广东省13市2017届高三上学期期末考试数学(理科)分类汇编:极坐标与参数方程1、(潮州市2017届高三上学期期末)已知直线l :(t 为参数,α为l 的倾斜角),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 为:ρ2﹣6ρcosθ+5=0.(1)若直线l 与曲线C 相切,求α的值;(2)设曲线C 上任意一点的直角坐标为(x ,y ),求x+y 的取值范围.2、(东莞市2017届高三上学期期末)已知曲线C的参数方程为21x y αα⎧=+⎪⎨=+⎪⎩(α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设,若l 1 、l 2与曲线C 相交于异于原点的两点 A 、B ,求△AOB 的面积.3、(佛山市2017届高三教学质量检测(一))在极坐标系中,射线6:πθ=l 与圆2:=ρC 交于点A ,椭圆Γ的方程为θρ22sin 213+=,以极点为原点,极轴为x 轴正半轴建立平面直角坐标系xOy(Ⅰ)求点A 的直角坐标和椭圆Γ的参数方程;(Ⅱ)若E 为椭圆Γ的下顶点,F 为椭圆Γ上任意一点,求⋅的取值范围5、(惠州市2017届高三第三次调研)已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是1cos sin x t y t αα=+⎧⎨=⎩(t 为参数). (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,且AB =求直线l 的倾斜角α的值.6、(珠海市2017届高三上学期期末)已知直线( t 为参数),曲线为参数).(1) 当r =1时,求C 1 与C 2的交点坐标;(2) 点P 为曲线 C 2上一动点,当r 求点P 到直线C 1距离最大时点P 的坐标.7、(揭阳市2017届高三上学期期末)已知直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩学科网(t为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos +=θρρ.(Ⅰ)写出直线l 经过的定点的直角坐标,并求曲线C 的普通方程; (Ⅱ)若4πα=,求直线l 的极坐标方程,以及直线l 与曲线C 的交点的极坐标.8、(茂名市2017届高三第一次综合测试)在直角坐标系xOy 中,曲线1C 的参数方程为,,x y α⎧=⎨=⎩(α为参数). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线22:4cos 2sin 40.C ρρθρθ+-+=(Ⅰ)写出曲线21C C ,的普通方程; (Ⅱ)过曲线1C 的左焦点且倾斜角为4π的直线l 交曲线2C 于B A ,两点,求AB .9、(清远市清城区2017届高三上学期期末)在直角坐标系xOy 中,曲线1C 的参数方程为2x y αα⎧=⎪⎨=+⎪⎩学科网(其中α为参数), 曲线()222:11C x y -+=,以坐标原点O 为极点,x 轴的在半轴为极轴建立极坐标系. (Ⅰ)求曲线1C 的普通方程和曲线2C 的极坐标方程; (Ⅱ)若射线6πθ=()0ρ>与曲线12 C C ,分别交于A ,B 两点,求AB .10、(汕头市2017届高三上学期期末)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.11、(韶关市2017届高三1月调研)在直角坐标系xOy 中,曲线C 的参数方程为,(sin x y ααα⎧=⎪⎨=⎪⎩为参数).以点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()4πρθ-=.(Ⅰ)将直线l 化为直角坐标方程;(Ⅱ)求曲线C 上的一点Q 到直线l 的距离的最大值及此时点Q 的坐标.12、(肇庆市2017届高三第二次模拟)在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y θθ=-+⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是224sin =⎪⎭⎫⎝⎛+πθρ. (Ⅰ)直接写出1C 的普通方程和极坐标方程,直接写出2C 的普通方程; (Ⅱ)点A 在1C 上,点B 在2C 上,求AB 的最小值.参考答案1、【解答】解:(1)曲线C 的直角坐标方程为x 2+y 2﹣6x+5=0即(x ﹣3)2+y 2=4曲线C 为圆心为(3,0),半径为2的圆. 直线l 的方程为:xsinα﹣ycosα+sinα=0… ∵直线l 与曲线C 相切∴即…∵α∈[0,π)∴α=…(2)设x=3+2cosθ,y=2sinθ 则 x+y=3+2cosθ+2sinθ=…(9分) ∴x+y 的取值范围是.…(10分)2、(Ⅰ)∵曲线C 的参数方程为⎪⎩⎪⎨⎧+=+=ααsin 51cos 52y x (α为参数)∴曲线C 的普通方程为()()51222=-+-y x …………2分将⎩⎨⎧==θρθρsin cos y x 代入并化简得:θθρsin 2cos 4+=即曲线C 的极坐标方程为θθρsin 2cos 4+=. …………5分 (Ⅱ)解法一:在极坐标系中,θθρsin 2cos 4+=:C∴由⎪⎩⎪⎨⎧+==θθρπθsin 2cos 46得到132+=OA …………7分 同理32+=OB . ………… 9分 又∵6π=∠AOB∴4358sin 21+=∠⋅=∆AOB OB OA S AOB . 即AOB ∆的面积为4358+. …………10分解法二::在平面直角坐标系中,C :()()51222=-+-y x x y l 331=:,x y l 32=: ∴由()()⎪⎩⎪⎨⎧=-+-=5123322y x x y得A 学科网 …………6分 ∴132+=OA …………7分 同理⎪⎪⎭⎫⎝⎛++2332,232B …………8分∴132+=OA ,32+=OB …………9分 又∵6π=∠AOB∴4358sin 21+=∠⋅=∆AOB OB OA S AOB 即AOB ∆的面积为4358+. …………10分 3、【解析】(1)点A 的极坐标为 2 6π⎛⎫ ⎪⎝⎭,,对应的直角坐标为)1A ,.………………2分由22312sin ρθ=+得2222sin 3ρρθ+=,因为222x y ρ=+,sin y ρθ=,所以22223x y y ++=.即椭圆Γ的直角坐标方程为2213x y +=,对应的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数) (5)分(2)设)sin Fθθ,,……………………6分又()0 1E -,,所以() 2AE =- ,,)sin 1AF θθ=-,,……7分于是()()3cos 32sin 12sin 3cos 55AE AF θθθθθϕ⋅=-+--=--+++,……8分因为()1sin 1θϕ-≤+≤,所以()555θϕ++≤所以AE5 5⎡⎣,.………………10分4、解:(Ⅰ) 由sin ,1cos ,x t y t ϕϕ=⎧⎨=+⎩消去t 得cos sin sin 0x y ϕϕϕ-+=, ……………………1分所以直线l 的普通方程为cos sin sin 0x y ϕϕϕ-+=. ……………………2分由2cos 4sin =ρθθ, 得()2cos 4sin ρθρθ=, ……………………3分 把cos ,sin x y ρθρθ==代入上式, 得y x 42=,所以曲线C 的直角坐标方程为y x 42=. …………………………………………5分 (II) 将直线l 的参数方程代入y x 42=, 得22sin4cos 40t t ϕϕ--=, ………………6分当2ϕ=时, AB 的最小值为4. …………………………………………10分5、解:(Ⅰ)由4cos ρθ=得24cos ρρθ=. ∵222x y ρ+=,cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为2240x y x +-=,即()2224x y -+= ……4分(Ⅱ)将1cos ,sin x t y t αα=+⎧⎨=⎩代入圆的方程得()()22cos 1sin 4t t αα-+=,化简得22cos 30t t α--=. ……………5分设,A B 两点对应的参数分别为1t 、2t ,则12122cos ,3.t t t t α+=⎧⎨=-⎩ ……………6分∴12AB t t =-== ……………8分∴24cos 2α=,cos 2α=±,4πα=或34π. (10)分6、7、解:(Ⅰ)直线l 经过定点)1,1(-,-----------------------------------------------------------2分由2cos +=θρρ得22)2cos (+=θρρ,得曲线C 的普通方程为222)2(+=+x y x ,化简得442+=x y ;---5分(Ⅱ)若4πα=,得⎪⎪⎩⎪⎪⎨⎧+=+-=t y tx 221221,的普通方程为2+=x y ,----------------------------6分 则直线l 的极坐标方程为2cos sin +=θρθρ,----------------------------------8分 联立曲线C :2cos +=θρρ. 得1sin =θ,取2πθ=,得2=ρ,所以直线l 与曲线C 的交点为)2,2(π.------10分8、解:(Ⅰ)2222()cos sin 122sin y x y αααα⎧=⎪⇒+=+=⎨=⎪⎩ ………………1分即曲线1C 的普通方程为221204x y+=…………………………………………2分222,c o s ,s i n,x y x y ρρθρθ=+== 曲线2C 的方程可化为224240x y x y ++-+= ………………………………3分 即1)1()2(:222=-++y x C . …………………………………………4分 (Ⅱ)曲线1C 左焦点为(4-,0) ………………………………………5分 直线l 的倾斜角为4πα=, sin 2cos αα==…………………………………6分 所以直线l 的参数方程为: 为参数)t t y t x (22224⎪⎪⎩⎪⎪⎨⎧=+-=……………………………7分 将其代入曲线2C 整理可得:04232=+-t t , ………………………………8分 设A,B 对应的参数分别为21,t t 则 所以4,232121==+t t t t . ……………………9分所以12AB t t =-===……………………10分解法二:(Ⅰ)同解法一. …………………………………………………………4分 (Ⅱ)曲线1C 左焦点为(4-,0) …………………………………………………5分直线l 的斜率为tan14k π==, …………………………………………………6分 直线l 的普通方程为4y x =+. 即40x y -+= ……………………………7分圆2C 的圆心坐标为:(-2,1). ………………………………………………8分 圆心2C 到直线l的距离2d ==……………………………9分故AB === ……………………………………10分 解法三:(Ⅰ)同解法一. ……………………………………4分(Ⅱ)曲线1C 左焦点为(4-,0) ……………………………………5分 直线l 的斜率为tan14k π==, ………………………………………6分 直线l 的普通方程为4y x =+ ……………………………………………7分2122212423560(2)(1)121y x x x x x x y y y =+⎧⎧⎧=-=-⇒++=⇒⎨⎨⎨++-===⎩⎩⎩或,………9分AB =|| …………………………………10分9、解:(Ⅰ)由2x y αα⎧=⎪⎨=+⎪⎩得2x y αα⎧=⎪⎨-=⎪⎩,所以曲线1C 的普通方程为()2227x y +-=. 把cos x ρθ=,sin y ρθ=,代入()2211x y -+=, 得()()22cos 1sin 1ρθρθ-+=,化简得,曲线2C 的极坐标方程为2cos ρθ=.(Ⅱ)依题意可设12 66A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,.因为曲线1C 的极坐标方程为24sin 30ρρθ--=, 将()06πθρ=>代入曲线1C 的极坐标方程得2230ρρ--=,解得13ρ=.同理将()06πθρ=>代入曲线2C 的极坐标方程得2ρ=.所以123AB ρρ=-=10、解:(1)由题意知:θρcos 2=,]2,0[πθ∈,所以θρρcos 22=,]2,0[πθ∈,即0222=-+x y x ,可化为1)1(22=+-y x ,]1,0[∈y ,可得C 的参数方程为⎩⎨⎧=+=ty tx sin cos 1(t 为参数,π≤≤t 0).(2)设)sin ,cos 1(t t D +,由(1)知C 是以)0,1(G 为圆心,1为半径的上半圆,因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同, ∴31)cos 1(0sin =-+-t t ,解得3tan =t ,即3π=t ,故D 的直角坐标为)3sin ,3cos 1(ππ+,即)23,23(.11、解(Ⅰ) 由cos()4πρθ-=,得cos cos sin sin 44ππρθθ⎛⎫+= ⎪⎝⎭化简得,cos sin 4ρθρθ+=, ………………………………………1分 由 cos x ρθ=,sin y ρθ=∴直线l 的直角坐标方程为4x y +=. ………………………………………3分 (Ⅱ)由于点Q 是曲线C 上的点,则可设点Q的坐标为),sin αα……………4分点Q 到直线l的距离为d =………………………………5分=. …………………………7分当sin 13πα⎛⎫+=- ⎪⎝⎭时,即526k αππ=-max d == ……………………9分此时,551cos cos()sin()662απαπ=-==-=- ∴ 点Q 31(,)22--. ………………10分 12、解:(Ⅰ)1C 的普通方程是()2224x y ++= , (2分)1C 的极坐标方程4cos ρθ=- , (4分) 2C 的普通方程40x y +-=. (6分)(Ⅱ)方法一:1C 是以点()2,0-为圆心,半径为2的圆;2C 是直线. (7分)圆心到直线2C2=>,直线和圆相离. (8分) 所以AB的最小值为2. (10分) 方法二:设()22cos ,2sin A θθ-+,因为2C 是直线, (7分)所以AB的最小值即点A到直线的距离d的最小值,d==,(9分)2=. (10分)11。
广东省广州市普通高中2017高考高三数学第一次模拟试题精选:圆锥曲线03 含答案
圆锥曲线031、给定椭圆C :22221(0)x y a b a b+=>>,称圆心在原点O C 的“准圆”.已知椭圆C 的一个焦点为F ,其短轴的一个端点到点F (1)求椭圆C 和其“准圆”的方程;(2)过椭圆C 的“准圆”与y 轴正半轴的交点P 作直线12,l l ,使得12,l l 与椭圆C 都只有一个交点,求12,l l 的方程;(3)若点A 是椭圆C 的“准圆”与x 轴正半轴的交点,,B D 是椭圆C 上的两相异点,且BD x ⊥轴,求AB AD ⋅的取值范围.【答案】解:(1)由题意知c =a 1b =,故椭圆C 的方程为2213x y +=,其“准圆”方程为224x y +=. ………………4分 (2)由题意可得P 点坐标为(0,2),设直线l 过P 且与椭圆C 只有一个交点,则直线l 的方程可设为2y kx =+,将其代入椭圆方程可得 ………………6分223(2)3x kx ++=,即22(31)1290k x kx +++=,由22(12)36(31)0k k ∆=-+=,解得1k =±, ………………8分 所以直线1l 的方程为2y x =+,2l 的方程为2y x =-+,或直线1l 的方程为2y x =-+,2l 的方程为2y x =+. ………………10分(3)由题意,可设(,),(,)B m n D m n -(m <,则有2213m n +=, 又A 点坐标为(2,0),故(2,),(2,)AB m n AD m n =-=--, ………………12分 故2222(2)44(1)3m AB AD m n m m ⋅=--=-+-- 2244343()332m m m =-+=-, …………………………14分又m 243()[0,732m -∈+,所以AB AD ⋅ 的取值范围是[0,7+. …………………………16分2、已知椭圆12222=+by a x 的两个焦点为)0,(1c F -、)0,(2c F ,2c 是2a 与2b 的等差中项,其中a 、b 、c 都是正数,过点),0(b A -和)0,(a B 的直线与原点的距离为23. (1)求椭圆的方程;(2)过点A 作直线交椭圆于另一点M ,求AM 长度的最大值;(3)已知定点)0,1(-E ,直线t kx y +=与椭圆交于C 、D 相异两点.证明:对任意的0>t ,都存在实数k ,使得以线段CD 为直径的圆过E 点.【答案】解:(1)在椭圆中,由已知得222222b a b ac +=-= ········································ 1分过点),0(b A -和)0,(a B 的直线方程为1=-+by a x ,即0=--ab ay bx ,该直线与原点的距离为23,由点到直线的距离公式得:2322=+ba ab ······················································ 3分 解得:1,322==b a ;所以椭圆方程为11322=+y x ··························································· 4分 (2)(文)设),(y x M ,则)1(322y x -=,422)1(2222++-=++=y y y x AM,其中11≤≤-y ···································································································································· 6分 当21=y 时,2AM 取得最大值29,所以AM 长度的最大值为223 ······························· 9分 (3)将t kx y +=代入椭圆方程,得0336)31(222=-+++t ktx x k ,由直线与椭圆有两个交点,所以0)1)(31(12)6(222>-+-=∆t k kt ,解得3122->t k ································ 11分设),(11y x C 、),(22y x D ,则221316k ktx x +-=+,222131)1(3kt x x +-=⋅,因为以CD 为直径的圆过E 点,所以0=⋅,即0)1)(1(2121=+++y y x x , ······································ 13分而))((2121t kx t kx y y ++==221212)(t x x tk x x k +++,所以01316)1(31)1(3)1(22222=++++-+-+t kkt tk k t k ,解得t t k 3122-= ·································· 14分 如果3122->t k 对任意的0>t 都成立,则存在k ,使得以线段CD 为直径的圆过E 点.09)1(31)312(2222222>+-=---tt t t t t ,即3122->t k .所以,对任意的0>t ,都存在k ,使得以线段CD 为直径的圆过E 点. 16分3、设直线0,11≠+=p p x k y L :交椭圆)0(12222>>=+Γb a by a x :于D C 、两点,交直线x k y L 22=:于点E .(1)若E 为CD 的中点,求证:2221ab k k -=⋅;(2)写出上述命题的逆命题并证明此逆命题为真;(3)请你类比椭圆中(1)、(2)的结论,写出双曲线中类似性质的结论(不必证明).【答案】(1)解法一:设),(11y x C ),(22y x D ),(00y x E02)(12222212212222221=-+++⇒⎪⎩⎪⎨⎧=++=b a p a x pa k x k a b b y ax p x k y ……… …2分 212221212k a b pa k x x +-=+∴ ,p k a b pa k k y y 22212221121++-⋅=+212222k a b pb +=… ……4分 又2121221021022x x y y k y y y x x x ++=⇒⎪⎪⎩⎪⎪⎨⎧+=+=21222pa k pb -=2221a b k k -=⋅∴…… ………7分 解法二(点差法):设),(11y x C ),(22y x D ),(00y x E)1(12121=+b a ,)2(12222=+ba 两式相减得0))(())((2212122121=+-++-by y y y a x x x x 即0)(2)(222102210=-+-b y y y a x x x ……………………… ………3分222020221211k a b y a x b x x y y k ⋅-=⋅⋅-=--=∴ 2221a b k k -=⋅∴ ………………………………………………………………………7分(2)逆命题:设直线p x k y L +=11:交椭圆)0(12222>>=+Γb a b y a x :于D C 、两点,交直线x k y L 22=:于点E .若2221ab k k -=⋅,则E 为CD 的中点. ……9分证法一:由方程组02)(12222212212222221=-+++⇒⎪⎩⎪⎨⎧=++=b a p a x pa k x k a b b y ax p x k y …………………………………… ……………10分 因为直线p x k y L +=11:交椭圆Γ于D C 、两点,所以0>∆,即022212>-+p b k a ,设),(11y x C 、),(22y x D 、),(00y x E则2122212102k a b pa k x x x +-=+=∴ ,212222102k a b pb y y y +=+=……………………12分 ⎪⎩⎪⎨⎧=-=⇒⎩⎨⎧=+=xk y k k p x x k y p x k y 21221又因为2221a b k k -=⋅ ,所以 ⎪⎪⎩⎪⎪⎨⎧=+===+-=-=0212222021221212y k a b p b x k y x k a b p k a k k px ,故E 为CD 的中点.……………………………14分 证法二:设),(11y x C ),(22y x D ),(00y x E则)1(12121=+b a ,)2(12222=+ba 两式相减得0))(())((2212122121=+-++-by y y y a x x x x 即)()(21221221211y y a x x b x x y y k +⋅+⋅-=--=………………………………………………………9分 又0022221,x y k ab k k =-=⋅ ,002121y x x x y y =++即00212211x pkx x x p x k p x k +=++++ ……………………………………………………12分 012112x pk x x p k +=++∴得0212x x x =+0212y y y =+∴,即E 为CD 的中点.……………………………14分(3)设直线0,11≠+=p p x k y L :交双曲线)0,0(12222>>=-Γb a b y a x :于D C 、两点,交直线x k y L 22=:于点E .则E 为CD 中点的充要条件是2221ab k k =⋅. (16)分。
广东省13市2017届高三上学期期末考试数学文试题分类汇编:统计与概率含答案
广东省13市2017届高三上学期期末考试数学文试题分类汇编统计与概率一、选择、填空题1、(潮州市2017届高三上学期期末)对具有线性相关关系的变量x,y,测得一组数据如下x1234y4。
543 2.5根据表,利用最小二乘法得到它的回归直线方程为()A.y=﹣0.7x+5。
20 B.y=﹣0.7x+4.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.252、(东莞市2017届高三上学期期末)从六个数1,3,4,6,7,9中任取2个数,则这两个数的平均数恰好是5的概率为( )A.120B.115C.15D.163、(佛山市2017届高三教学质量检测(一))本学期王老师任教两个平行班高三A班、高三B班,两个班都是50个学生,图1反映的是两个班在本学期5次数学测试中的班级平均分对比,根据图表,不正确的结论是()A.A班的数学成绩平均水平好于B班B.B班的数学成绩没有A班稳定C .下次考试B 班的数学平均分要高于A 班D .在第1次考试中,A 、B 两个班的总平均分为984、(广州市2017届高三12月模拟)袋中有大小,形状相同的红球,黑球各一个,现有放回地随机摸取3次,每次摸出一个球。
若摸到红球得2分,摸到黑球得1分,则3次摸球所得总分为5分的概率是(A ) 31(B ) 83(C ) 21 (D)85 5、(惠州市2017届高三第三次调研)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为( )(A )31 (B)41 (C )51 (D)61 6、(茂名市2017届高三第一次综合测试)在{1,3,5}和{2,4}两个集合中各取一个数组成一个两位数,则这个数能被4整除的概率是( )1111A. B. C. D.32647、(汕头市2017届高三上学期期末)去nS 城市旅游有三条不同路线,甲、乙两位同学各自选择其中一条线路去31)31(2-⋅n城市旅游,若每位同学选择每一条线路的可能性相同,则这两位同学选择同一条路线的概率为( )A .31B .21C .32D .918、(汕头市2017届高三上学期期末)某单位为了了解用电量)0,125(π度与气温)0,125(π之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表气温(C )20 16 12 4 用电量(度) 14642842由表中数据得回归直线方程)0,125(π中)0,125(π,预测当气温为)0,125(π时,用电量的度数是( )A .70B .68C 。
广东省13市2017届高三上学期期末考试数学理试题分类汇编:圆锥曲线含答案
广东省13市2017届高三上学期期末考试数学理试题分类汇编圆锥曲线一、选择、填空题1、(潮州市2017届高三上学期期末)已知抛物线y 2=2px (p >0)的焦点成F,过点F 且倾斜角为45°的直线l 与抛物线在第一、第四象限分别交于A 、B ,则等于( )A .3B .7+43C .3+2D .22、(珠海市2017届高三上学期期末)已知双曲线221C 1164x y =:-,双曲线22222C 1(00)x y a b a b=>>:-,的左、右焦点分别为F 1,F 2,M 是双曲线C 2 一条渐近线上的点,且OM ⊥MF 2,若△OMF 2的面积为 16,且双曲线C 1,C 2的离心率相同,则双曲线C 2的实轴长为A .4B .8C .16D .323、(佛山市2017届高三教学质量检测(一))已知双曲线)0(1:2222>>=-a b by a x C 的右焦点为F ,O 为坐标原点,若存在直线l 过点F 交双曲线C 的右支于B A ,两点,使0=⋅OB OA ,则双曲线离心率的取值范围是________ 4、(广州市2017届高三12月模拟)已知双曲线:C 12222=-bx a y (0,0>>b a )的渐近线方程为x y 21±=, 则双曲线C 的离心率为(A) 25 (B) 5 (C ) 26 (D ) 65、(惠州市2017届高三第三次调研)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) (A )错误! (B)错误! (C)2 (D)36、(江门市2017届高三12月调研)过抛物线y 2=2px (p >0)焦点的直线 l 与抛物线交于A 、B 两点,以AB 为直径的圆的方程为(x −3)2+(y −2)2=16,则p = A .1 B .2 C .3 D .47、(揭阳市2017届高三上学期期末)设椭圆22221(0)x y a b a b+=>>的两焦点与短轴一端点组成一正三角形三个顶点,若焦点到椭圆上点的最大距离为33则分别以,a b 为实半轴长和虚半轴长,焦点在y 轴上的双曲线标准方程为 .8、(茂名市2017届高三第一次综合测试)过双曲线()0,012222>>=-b a by a x 的右焦点2(,0)F c 作圆222a y x =+的切线,切点为M ,延长2M F 交抛物线24y cx =-于点,P 其中O 为坐标原点,若21()2OM OF OP =+,则双曲线的离心率为( )A .7224- B .7224+C .231+D .251+9、(清远市清城区2017届高三上学期期末)已知双曲线c:,以右焦点F 为圆心,|OF|为半径的圆交双曲线两渐近线于点M 、N (异于原点O ),若|MN |=,则双曲线C 的离心率 是( )A .2B .3C .2D .31+10、(汕头市2017届高三上学期期末)圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( ) A .34-B .43- C .3 D .2 11、(韶关市2017届高三1月调研)已知点A 是双曲线)0,0(12222>>=-b a b y a x 右支上一点,F 是右焦点,若AOF ∆(O 是坐标原点)是等边三角形,则该双曲线离心率e 为(A) 2 (B) 3 (C) 12 (D ) 13二、解答题1、(潮州市2017届高三上学期期末)已知点A 、B 分别是左焦点为(﹣4,0)的椭圆C :22221(0)x y a b a b+=>>的左、右顶点,且椭圆C 过点P(,).(1)求椭圆C 的方程;(2)已知F 是椭圆C 的右焦点,以AF 为直径的圆记为圆M ,过P 点能否引圆M 的切线?若能,求出这条切线与x 轴及圆M 的弦PF 所对的劣弧围成的图形面积;若不能,说明理由.2、(珠海市2017届高三上学期期末)在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为F 1(-1,0), 离心率e =22。
广东省13市2017届高三上学期期末考试数学理试题分类汇编:函数含答案
yxO 广东省13市2017届高三上学期期末考试数学理试题分类汇编函数1、(潮州市2017届高三上学期期末)设函数f(x )=,则使得f (x 2﹣2x )>f (3x ﹣6)成立的x 的取值范围是( )A .(﹣∞,2)∪(3,+∞)B .(2,3)C .(﹣∞,2)D .(3,+∞)2、(东莞市2017届高三上学期期末)已知函数,则函数 y =f (1-x ) 的大致图象是( )3、(佛山市2017届高三教学质量检测(一))函数xaxx x f -+-=11log1)(2为奇函数,则实数=a ________4、(广州市2017届高三12月模拟)已知函数2,0,()1,0,x x f x x x⎧≥⎪=⎨<⎪⎩ ()()g x f x =--,则函数()g x 的图象是5、(惠州市2017届高三第三次调研)函数f (x )=错误!cos x (-π≤x ≤π且x ≠0)的图象可能为( )(A ) (B) (C ) (D )6、(江门市2017届高三12月调研)若a =log 0.60.3,b =0.30.6,c =0.60.3,则A .a >b >cB .a >c >bC .b >a >cD .b >c >a 7、(揭阳市2017届高三上学期期末)函数],[|,|sin ππ-∈+=x x x y 的大致图象是8、(茂名市2017届高三第一次综合测试)已知定义域为R 的偶函数()f x 在(,0]-∞上是减函数,且(1)2f =,则不等式2(log )2f x >的解集为( )A 。
(2,)+∞B 。
1(0,)(2,)2+∞C 。
2(0,(2,)2+∞ D 。
(2,)+∞9、(清远市清城区2017届高三上学期期末)已知函数2f x x bx c =++(),(b ,c ∈R ),集合()()()00{}{|}A x f x B x f f x ====丨,,若存在00xB x A ∈∉,则实数b 的取值范围是()A .04b ≤≤ B . 0b ≤或4b ≥ C .04b ≤< D .0b <或4b ≥10、(汕头市2017届高三上学期期末)已知定义在R 上的函数)(x f 满足)()(x f x f -=,且当)0,(-∞∈x 时,0)(')(<+x xf x f 成立,若)2()2(1.01.0f a ⋅=,)2(ln )2(ln f b ⋅=,)81log )81(log 22f c ⋅=,则c b a ,,的大小关系是()A .c b a >>B .a b c >> C. b a c >> D .b c a >>11、(韶关市2017届高三1月调研)已知(1),(1)()3,(1)xf x x f x x +<⎧=⎨≥⎩ ,则3(1log 5)f -+=(A ) 15 (B) 53 (C )5 (D)1512、(肇庆市2017届高三第二次模拟)下列函数在其定义域上既是奇函数又是减函数的是(A )()2xf x = (B )()sin f x x x =(C )1()f x x(D )x x x f -=)(13、(珠海市2017届高三上学期期末)(肇庆市2017届高三第二次模拟)若定义域为R 的偶函数()y f x =满足()()2f x f x +=-,且当[]0,2x ∈时,()22f x x =-,则方程()sin f x x =在[]10,10-内的根的个数是 ▲ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省13市2017届高三上学期期末考试数学(理科)分类汇编:圆锥曲线一、选择、填空题1、(潮州市2017届高三上学期期末)已知抛物线y 2=2px (p >0)的焦点成F ,过点F 且倾斜角为45°的直线l 与抛物线在第一、第四象限分别交于A 、B ,则等于( )A.3B .7+4C .D .22、(珠海市2017届高三上学期期末)已知双曲线221C 1164x y =:-,双曲线22222C 1(00)x y a b a b=>>:-,的左、右焦点分别为F 1,F 2,M 是双曲线C 2 一条渐近线上的点,且OM ⊥MF 2,若△OMF 2的面积为 16,且双曲线C 1,C 2的离心率相同,则双曲线C 2的实轴长为A .4B .8C .16D .323、(佛山市2017届高三教学质量检测(一))已知双曲线)0(1:2222>>=-a b by a x C 的右焦点为F ,O 为坐标原点,若存在直线l 过点F 交双曲线C 的右支于B A ,两点,使0=⋅,则双曲线离心率的取值范围是________4、(广州市2017届高三12月模拟)已知双曲线:C 12222=-bx a y (0,0>>b a )的渐近线方程为x y 21±=, 则双曲线C 的离心率为(A) 25 (B) 5 (C) 26 (D) 65、(惠州市2017届高三第三次调研)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) (A ) 3 (B ) 2 (C )2 (D )3 6、(江门市2017届高三12月调研)过抛物线()焦点的直线与抛物线交于两点,以为直径的圆的方程为,则A .B .C .D .7、(揭阳市2017届高三上学期期末)设椭圆22221(0)x y a b a b+=>>的两焦点与短轴一端点组成一正三角形三个顶点,若焦点到椭圆上点的最大距离为,a b 为实半轴长和虚半轴长,焦点在y 轴上的双曲线标准方程为 .8、(茂名市2017届高三第一次综合测试)过双曲线()0,012222>>=-b a by a x 的右焦点2(,0)F c 作圆222a y x =+的切线,切点为M ,延长2M F 交抛物线24y cx =-于点,P 其中O 为坐标原点,若21()2OM OF OP =+,则双曲线的离心率为( )A .7224- B .7224+ C .231+ D .251+9、(清远市清城区2017届高三上学期期末)已知双曲线c :,以右焦点F 为圆心,|OF|为半径的圆交双曲线两渐近线于点M 、N (异于原点O ),若|MN|=,则双曲线C 的离心率 是( )A B C .2 D 1 10、(汕头市2017届高三上学期期末)圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a ( )A .34-B .43- C .3 D .2 11、(韶关市2017届高三1月调研)已知点A 是双曲线)0,0(12222>>=-b a by a x 右支上一点,F 是右焦点,若AOF ∆(O 是坐标原点)是等边三角形,则该双曲线离心率e 为(A)(B)(C) 1+ (D) 1+二、解答题1、(潮州市2017届高三上学期期末)已知点A 、B 分别是左焦点为(﹣4,0)的椭圆C :22221(0)x y a b a b+=>>的左、右顶点,且椭圆C 过点P (,).(1)求椭圆C 的方程;(2)已知F 是椭圆C 的右焦点,以AF 为直径的圆记为圆M ,过P 点能否引圆M 的切线?若能,求出这条切线与x 轴及圆M 的弦PF 所对的劣弧围成的图形面积;若不能,说明理由.2、(珠海市2017届高三上学期期末)在平面直角坐标系xOy 中,椭圆G 的中心为坐标原点,左焦点为F 1(-1,0), 离心率e =2. (1)求椭圆G 的标准方程;(2)已知直线l 1: y =kx +m 1与椭圆G 交于 A ,B 两点,直线l 2: y =kx +m 2(m 1≠m 2)与椭圆G 交于C ,D 两点,且| AB |=|CD |,如图所示. ①证明:m 1+m 2 =0;②求四边形ABCD 的面积S 的最大值.3、(佛山市2017届高三教学质量检测(一))已知椭圆)0(1:2222>>=+b a b y a x C 过点)1,2(M ,且离心率为23(Ⅰ)求椭圆C 的方程;(Ⅱ)设)1,0(-A ,直线l 与椭圆C 交于Q P ,两点,且AQ AP =,当OPQ ∆(O 为坐标原点)的面积S 最大时,求直线l 的方程4、(广州市2017届高三12月模拟)已知动圆P 与圆221:(2)49F x y ++=相切,且与圆1)2(:222=+-y x F 相内切,记圆心P 的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)设Q 为曲线C 上的一个不在x 轴上的动点,O 为坐标原点,过点2F 作OQ 的平行 线交曲线C 于,M N 两个不同的点, 求△QMN 面积的最大值.5、(惠州市2017届高三第三次调研)已知椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为()()121,0,1,0F F -,点A ⎛ ⎝⎭在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M N 、时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ = ?若存在,求出直线的方程;若不存在,说明理由.6、(江门市2017届高三12月调研)在平面直角坐标系中,椭圆:()的离心率为, 椭圆的顶点四边形的面积为.(Ⅰ)求椭圆的方程; (Ⅱ)过椭圆的顶点的直线交椭圆于另一点,交轴于点,若、、成等比数列,求直线的方程.7、(揭阳市2017届高三上学期期末)在平面直角坐标系xOy 中,已知点A (-1, 0)、B (1,0)、C (0, -1),N 为y 轴上的点,MN 垂直于y 轴,且点M 满足AM BM ON CM ⋅=⋅ (O为坐标原点),点M 的轨迹为曲线T . (Ⅰ)求曲线T 的方程;(Ⅱ)设点P (P 不在y 轴上)是曲线T 上任意一点,曲线T 在点P 处的切线l 与直线54y =-交于点Q ,试探究以PQ 为直径的圆是否过一定点?若过定点,求出该定点的坐标,若不过定点,说明理由.8、(茂名市2017届高三第一次综合测试),x y R ∈,向量,i j分别为直角坐标平面内,x y轴正方向上的单位向量,若向量(a x i y j =+ , (b x i y j =+,且||||4a b += .(Ⅰ)求点(,)M x y 的轨迹C 的方程;(Ⅱ)设椭圆22:1164x y E +=,P 为曲线C 上一点,过点P 作曲线C 的切线=+y kx m 交椭圆E 于A 、B 两点,试证:∆OAB 的面积为定值.9、(清远市清城区2017届高三上学期期末)以椭圆()222:11x M y a a +=>的四个顶点为顶点的四边形的四条边与O :221x y +=共有6个交点,且这6个点恰好把圆周六等分. (Ⅰ)求椭圆M 的方程;(Ⅱ)若直线l 与O 相切,且与椭圆M 相交于P ,Q 两点,求PQ 的最大值.10、(汕头市2017届高三上学期期末)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;(3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.11、(韶关市2017届高三1月调研)设椭圆2222:1(0)x yC a ba b+=>>,椭圆C短轴的一个端点与长轴的一个端点的连线与圆O:224 3x y+=相切,且抛物线2y=-的准线恰好过椭圆C的一个焦点.(Ⅰ)求椭圆C的方程;(Ⅱ)过圆O上任意一点P作圆的切线l与椭圆C交于,A B两点,连接PO并延长交圆O 于点Q,求ABQ∆面积的取值范围.参考答案一、选择、填空题1、【解答】解:直线l 的方程为y=x ﹣,代入y 2=2px ,整理得4x 2﹣12px+p 2=0,解得x=p ,∴==3+2.故选C .2、C3、4、B5、【解析】设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为:x =c 或x =-c ,代入x 2a 2-y 2b 2=1得y 2=b 2(c 2a 2-1)=b 4a2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a 2=e 2-1=2,∴e = 3.6、B7、221129y x -= 8、 D 解:如图9,∵21M (OP)2O OF =+,∴M 是2F P 的中点.设抛物线的焦点为F 1,则F 1为(- c ,0),也是双曲线的焦点. 连接PF 1,OM .∵O 、M 分别是12F F 和2PF 的中点,∴OM 为 △PF 2F 1的中位线.∵OM=a ,∴|PF 1|=2 a.∵OM ⊥2PF ,∴2PF ⊥PF 1,于是可得|2PF 2b =,设P (x ,y ),则 c -x =2a , 于是有x=c-2a , y 2=-4c (c -2 a ),过点2F 作x 轴的垂线,点P 到该垂线的距离为2a. 由勾股定理得 y 2+4a 2=4b 2, 即-4c(c-2a)+4 a 2=4(c 2- a 2),变形可得c 2-a 2=ac ,两边同除以a 2有 210e e --=, 所以12e = ,负值已经舍去. 故选D . 9、C 10、A11、【解析】依题意及三角函数定义,点(cos,sin )33B c c ππ⋅ ,即1()2B c ,代入双曲线方程 2222234b c a c a b -=,又222c a b =+,得24e =+ , e =1,故选D另解,设左焦点为1F , 可题意及双曲线几何性质可得190F AF ∠=,1AF = 所以 212c e a ===二、解答题1、【解答】解:(1)由题意a 2=b 2+16,+=1,解得b 2=20或b 2=﹣15(舍), 由此得a 2=36,所以,所求椭圆C 的标准方程为=1.(2)由(1)知A (﹣6,0),F (4,0),又(,),则得=(,),=(﹣,).所以=0,即∠APF=90°,△APF 是Rt △,所以,以AF 为直径的圆M 必过点P ,因此,过P 点能引出该圆M 的切线,设切线为PQ ,交x 轴于Q 点,又AF 的中点为M (﹣1,0),则显然PQ ⊥PM ,而k PM =,所以PQ 的斜率为﹣,因此,过P 点引圆M 的切线方程为:y ﹣=﹣(x ﹣),即x+y ﹣9=0.令y=0,则x=9,∴Q (9,0),又M (﹣1,0),所以S 扇形MPF ==,因此,所求的图形面积是S=S △PQM ﹣S 扇形MPF =.2、3、【解析】(1)依题意得:22411a b+=,c e a ==,又222a b c =+,…………2分 解得28a =,22b =,所以椭圆C 的方程为22182x y +=.………………4分(2)显然,直线l 的斜率k 存在.①当0k =时,可设直线l 的方程为0y y =,()00 P x y -,,()00 Q x y ,,则2200182x y +=. 所以()220000002122222y y S x y x y +-=⋅=⋅=⋅=. 当且仅当22002y y =-,即01y =时取等号,此时直线l 的方程为1y =±.…………………6分 ②当0k ≠时,可设直线l 的方程为y kx m =+,()11 P x y ,,()22 Q x y ,, 联立22182y kx mx y =+⎧⎪⎨+=⎪⎩,消去y 整理得()()222148420k x kmx m +++-=.……8分由()()()2228414420km k m ∆=-+⋅->,得2282k m +>(*),则有122814km x x k +=-+,()21224214m x x k -=+,于是可得PQ 的中点为224 1414kmm kk ⎛⎫- ⎪++⎝⎭, (9)分因为AP AQ =,所以211144014mk km k k ++=---+,化简得2143k m +=,结合(*)可得06m <<. 又O 到直线l的距离为d =,12PQ x =-=所以1122S PQ d =⋅=.………………11分即S =所以,当3m =时,S 取最大值,此时,k =l 的方程为3y =+. 综上所述,直线l 的方程为1y =±或3y =+.………………12分4、解:(Ⅰ)设圆P 的半径为R , 圆心P 的坐标为(,)x y ,由于动圆P 与圆221:(2)49F x y ++=相切,且与圆1)2(:222=+-y x F 相内切,所以动圆P 与圆1F 只能内切. …………………………………1分所以127,1.PF R PF R ⎧=-⎪⎨=-⎪⎩ …………………………………2分则4||6||||2121=>=+F F PF PF . …………………………………3分 所以圆心P 的轨迹是以点12,F F 为焦点的椭圆, 且3,2a c ==, 则2225b a c =-=.所以曲线C 的方程为15922=+y x . …………………………………4分 (Ⅱ)设112233(,), (,), (,)M x y N x y Q x y ,直线MN 的方程为2x my =+,由⎪⎩⎪⎨⎧=++=,159,222y x my x可得225920250m y my ++-=(),则1212222025,5959m y y y y m m +=-=-++. …………………………………5分所以2122124)()1(y y y y m MN -++= …………………………………6分95100952012222++⎪⎭⎫ ⎝⎛+-+=m m m m )(()22301.59m m +=+ …………………………………7分因为//MN OQ ,所以△QMN 的面积等于△OMN 的面积. …………………8分 点O 到直线2:+=my x MN的距离d =. ……………………………9分所以△QMN 的面积951301295)1(30212122222++=+⨯++⨯=⋅=m m m m m d MN S .…………………………………10分t ,则221m t =-(1)t ≥ ,()223030304545195t t S t t t t===+-++.设)1(45)(≥+=t t t t f ,则2224545)('tt t t f -=-=. 因为1≥t , 所以.045)('22>-=t t t f 所以()45f t t t=+在)+∞,1[上单调递增.所以当1t =时, ()f t 取得最小值, 其值为9. …………………………………11分所以△QMN 的面积的最大值为309. …………………………………12分 说明: △QMN 的面积951304)(212221221212++=-+=-⋅=m m y y y y y y OF S .5、解:(Ⅰ)设椭圆C 的焦距为2c ,则1c =,因为1,2A ⎛ ⎝⎭在椭圆C上,所以122a AF AF =+= ……2分因此2221a b a c ==-=,故椭圆C 的方程为2212x y +=......5分 (Ⅱ)椭圆C 上不存在这样的点Q ,证明如下:设直线的方程为2y x t =+,设()11,M x y ,()()223445,,,,,3N x y P x Q x y ⎛⎫ ⎪⎝⎭,MN 的中点为()00,D x y ,由22212y x t x y =+⎧⎪⎨+=⎪⎩消去,得229280y ty t -+-=, ……………6分 所以1229t y y +=,且()2243680t t ∆=-->, 故12029y y ty +==且33t -<<..................8分 由PM NQ = 得),()35,(2424131y y x x y x x --=-- .........9分所以有24135y y y -=-,=-+=35214y y y 3592-t ............10分(也可由PM NQ =知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,也D 为线段PQ 的中点,所以405329y t y +==,可得42159t y -=), 又33t -<<,所以4713y -<<-,与椭圆上点的纵坐标的取值范围[]1,1-矛盾。