图形专项(1)
二年级数学上册期末复习图形应用题专项练习题 (1)

二年级数学上册期末复习图形应用题专项练习题1、六一儿童节这天,王老师打算从下面4名同学中任选2名同学表演节目,有几种不同的选法?2、任选两个球,一共有多少种不同的选法?3、虎虎、聪聪、闹闹3人一起到理发店理发,理发师只有一位,所以只能一个个顺次理发,3个小朋友的理发顺序有几种?请分别用序号表示出来。
4、一根旗杆8米,4根旗杆多少米?5、一本书的厚度2厘米,9本书的厚度是多少厘米?6、白布有多少米?7、8、9、有一些猴,每只猴吃3颗松果,一共有多少颗松果?□○□=□(颗)10、一部电视剧上月4日开始播放,周六周日休息,26日结束。
一共播放多少天?□×□+□=□(天)11、如图,停车场里停放了多少辆小汽车?□○□=□(辆)开走了8辆后,车站里现在还有多少辆小汽车?□○□=□(辆)12、右图中,这堆木块共有多少个?13、做6 根这样的跳绳,需要多少米绳?14、爸爸妈妈和爷爷奶奶为小明过生日,他们买了很多东西。
8元 5元 3元 50元 4元 6元(1)他们一家有5口人,给每人准备一顶,需要多少钱?(2)每个大人吃一个,小明吃一个,要花多少钱?(3)买这些东西和一个,付出100元,够吗?15、争星比赛。
(1)小红得了多少颗星?(2)小军得了多少颗星?(3)他们三人一共得了多少颗星?16、你知道蚯蚓的身体有多长吗?17、小动物赛跑。
(1)蜗牛离终点还有多少厘米?(2)蚂蚁比小虫子多爬多少厘米?小红家 新华书店汽车站 文化宫49厘米50厘米 48厘米18、如右图,小红要去新华书店买书,有两种走法,哪条最近,近多少米?19、游乐园规定,身高1米的孩子买全票。
小亮的身高是95厘米。
他再长几厘米就需要买全票了?20、一根彩带长19米,第一次用去4米,第二次用去6米,还剩下多少米?21、 小亮参加6 0米赛跑,已经跑了40米,还剩多少米没有跑?22、一块三角地,第一条边长7米,第二条边长6米,第三条边长10米,三条边一共长多40厘米少米?23、两根绳子长为45厘米的绳子接为一条,每根接头处用去5厘米,接后绳子长多少厘米?。
二年级数学下册认识图形测试题(1)

二年级数学下册认识图形测试题(1)一、判断题(每道小题12分共24分)1. 下面图形, 哪些是角? 哪些不是角? 画出√或×.2. 下面哪几个图形是直角?是的画√, 不是画×.二、填空题(1-2每题12分, 第3小题16分, 第4小题24分, 共64分)1. 下面图形各有几个角, 在()里填几.2. 下面图形中哪些角是直角? 有几个, 填在()里.3. 下面图形中有()直角.4. 数一数下图有()个正方形, 有()个长方形, 有()个直角.三、其它题( 12分)从指定的一点起, 画一个角, 并说出角的各部分名称..二年级第一学期数学《角的认识》检测试题一、判断题( 18分)用三角板量一量, 下面哪个角是直角, 在()里画√, 哪个不是画×.二、填空题(第1小题10分, 2-5每题18分, 共82分)1. 量一量下面的两个角哪个大哪个小, 在()里标出.2. 在下面的图形中各有几个角?3. 下面的图形里有几个直角?4. 在下面的图形里加一条线段, 把它分成一个正方形和一个三角形.加线后的图形中有()个直角5.下图中( )个直角二年级第一学期数学《角的认识》检测试题一、我会填。
1、一条红领巾有( )个角,一面国旗有( )个角。
2、一个长方形中有()个直角,两块手帕有()个直角。
3、三角板上有()个角,其中最大的那个角是()角。
4、一个角有()个顶点,()条边。
5、请你给右图的角的各部分填上名称。
二、我能做好。
1、判断下面的图形哪些是角,是角的在□里画√,不是的画×。
()()()()()()2、用三角板比比下面哪个角是直角,是直角的画△,不是直角的画○。
□□□□□3、用三角板比比下面哪个角大哪个角小,大的画△,小的画○。
□□□□三、我会数。
数一数,下面图形中各有几个角,填在()里。
()()()()四、我会画。
1、画一个角。
2、在方格纸上画一个直角。
五、动脑筋。
1、一张正方形纸有4 个角,用剪刀剪去一个角,还剩几个角,你有几种答案?画一画。
幼儿数学图形拼组专项练习题 (一)

幼儿数学图形拼组专项练习题 (一)
幼儿数学图形拼组是幼儿教育中常见的一种练习方式。
通过对不同形
状的图形进行组合,既可以训练孩子们的观察力和创造力,也可以提
升他们的数学能力和空间认知能力。
以下是一些幼儿数学图形拼组专
项练习题供大家参考。
一、基础形状组合题
1. 下图中有6个不同的基础形状,请用它们拼出一只猫的形状。
2. 下图中有5个不同的基础形状,请用它们拼出一个简单的太阳形状。
3. 下图中有7个不同的基础形状,请用它们拼出一个小鸟的形状。
二、复杂形状组合题
1. 下图中有多个不同形状的图形,请用它们拼出一只大象的形状。
2. 下图中有多个不同形状的图形,请用它们拼出一只小熊的形状。
3. 下图中有多个不同形状的图形,请用它们拼出一只蝴蝶的形状。
三、奇妙形状组合题
1. 下图中有多个不同形状的图形,请用它们拼出一个奇妙的舞台形状。
2. 下图中有多个不同形状的图形,请用它们拼出一座奇妙的城堡。
3. 下图中有多个不同形状的图形,请用它们拼出一张奇妙的飞船照片。
通过以上的数学图形拼组专项练习题,幼儿们可以加强对基础形状的
认知,提高对复杂形状的组合能力和对空间的认知能力。
同时,这些
题目也可以培养幼儿的观察力和创造力,让他们在玩中学习,增加知
识的乐趣。
在玩数学图形拼组的同时,家长和老师也应该给予幼儿适当的指导和
鼓励,帮助他们理解题目、解决问题,增强他们对数学的兴趣和热爱。
通过这种以游戏为基础的学习方式,幼儿们可以度过快乐的童年时光,为未来的数学学习打下坚实的基础。
小升初数学重点题型训练9-图形题(一)(解析版)【推荐】

小升初数学重点题型训练9图形题(一)(解析版)系列一1. 根据对称轴在右图中画出图形的另一半。
思路分析:本题考查了画对称图形的知识。
画对称图形时,找出A的对称点A',B的对称点B',再把对称点按图形要求连起来。
名师详解:参考答案:易错提示:注意画对称图形,要先画出关键的对称点。
2. 用数对表示出A、B两点与关于对称轴对称的点A'、B'的位置。
A( ) B ( ) A'( ) B' ( )思路分析:本题考查了用数对表示物体位置的知识。
先根据画出的对称图,找出A的对称点A',B的对称点B',在用数对表示位置时,第一个数表示第几列,第二个数表示第几行,表示出各数。
名师详解:根据用数对表示位置的方法A(3,8) B(5,3) A'(9,8)B'(7,3)。
参考答案:A(3,8) B(5,3) A'(9,8)B'(7,3)易错提示:注意用数对表示物体时,列在前,行在后。
系列二1. 下面的角是()角,是()度角。
以这个角的两边为邻边作一个平行四边形,且作出它的一条高。
思路分析:本题考查学生测量和画图的实际操作能力。
量角时要用量角器的中心点对齐角的顶点,用量角器的0刻度线对齐角的一条边,然后看角的另一条边指向量角器的哪个刻度,然后读数;画平行四边形时,画平行线,截取线段即可,作其中一条边上的垂线就是它的高。
名师详解:用量角器量得角是50°,小于90°,是锐角;画平行四边形时(如右图),先过A点作BC的平行线,截取线段AD=线段BC,然后连接CD就完成了平行四边形;然后过A点作BC的垂线,线段AE就是平行四边形的高。
参考答案:锐角 50(如右图)易错提示:读数时要看清是读外圈的读数还是内圈的读数。
ABCDE2. 把下面左边的图形放大成原图形的2倍,形状不变,画在右边的方格纸中。
系列三1. 下面是湖州市近几年接待旅游人数统计图。
五年级下册第三讲《图形与几何(一)》期末专项训练

第一节:图形与几何(一)从一个方向观察物体【例1】判断。
无论从哪个方向看物体,最多可以看到物体的三个面。
()思路引导如观察一个长方体,从一个面看时,只能看到一个面,从一条棱看时,能看到两个面,从一个顶点看时,能看到三个面,且最多能看到三个面。
正确解答:无论从哪个方向看物体,最多可以看到物体的三个面。
原题干说法正确。
故答案为:√观察物体时,关键是位置的确定,观察同一物体,站在不同的位置,所看的形状也会有所不同。
【变式1】19060837仔细观察下面的几何体,该形状是从()观察到的。
A.正面B.上面C.左面D.右面【例2】判断。
根据从一个方向看到的图形拼摆几何体,摆法不止一种。
思路引导根据从一个方向看到的图形拼摆几何体,有部分图形被遮挡,而且数量不确定,所以摆法也会不止一种,举例子说明即可。
正确解答:根据从一个方向看到的图形拼摆几何体,摆法不止一种;如:用5个小正方体摆几何体时,从上面看到的是;摆法有:、、等,原题说法正确;故答案为:√此题考查了观察物体的知识,关键能够理解只从一个角度观察认识物体是不完整的。
【变式2】题号:19037731判断。
一个几何体从前面看到的图形是,这个几何体一定是由4个小正方体摆成的。
()从三个方向观察物体【例3】画出从不同方向看到的下面物体的形状。
思路引导从正面看,看到两层,下面一层有两个正方形,上面一层一个正方形,并且右侧对齐;从上面看,看到两列,第一列有一个正方形,第二列有三个正方形,并且上面对齐;从左面看,看到两层,下面一层有三个正方形,上面一层有一个正方形,并且左侧对齐。
正确解答:画图如下:本题考查观察物体,明确从不同方向观察到的形状是解题的关键。
根据从不同方向看到的图形,画出三视图的画法即可。
【变式3】题号:18934987由几个相同的小正方体搭成一个立体图形,从上面看到如下图,正方形上所标数字表示该位置上所用的小正方体的个数,请在下面方格中画出该立体图形从正面和左面看到的图形。
新初中数学几何图形初步专项训练及解析答案(1)

新初中数学几何图形初步专项训练及解析答案(1)一、选择题1.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.2.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.3.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)【答案】D【解析】【详解】解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,此时△ABC的周长最小,∵点A、B的坐标分别为(1,4)和(3,0),∴B′点坐标为:(-3,0),则OB′=3过点A作AE垂直x轴,则AE=4,OE=1则B′E=4,即B′E=AE,∴∠EB′A=∠B′AE,∵C′O∥AE,∴∠B′C′O=∠B′AE,∴∠B ′C ′O=∠EB ′A∴B ′O=C ′O=3,∴点C′的坐标是(0,3),此时△ABC 的周长最小.故选D .4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】连接BP 、BE ,∵AB=AC ,BD=BC ,∴AD ⊥BC ,∴PB=PC ,∴PC+PE=PB+PE ,∵PB PE BE +≥,∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,∵AD 也是中线,∴点P 是△ABC 的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.5.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.上述说法中,正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.【详解】解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段AB 的长,∴①正确; ②、点A 到直线CD 的距离是线段AD 的长,∴②正确;③、根据三角形的高的定义,△ABC 边AB 上的高是线段CD ,∴③正确;④、根据三角形的高的定义,△DBC 边BD 上的高是线段CD ,∴④正确.综上所述,正确的是①②③④共4个.故选:D .【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.6.下列各图经过折叠后不能围成一个正方体的是( )A .B .C .D .【答案】D【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A 、是正方体的展开图,不符合题意;B 、是正方体的展开图,不符合题意;C 、是正方体的展开图,不符合题意;D 、不是正方体的展开图,缺少一个底面,符合题意.故选:D .【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )A .4B .3C .3.5D .2【答案】B【解析】【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴AEB EBC ∠=∠∵BE 是ABC ∠的平分线∴ABE EBC ∠=∠∴AEB ABE ∠=∠∴4AB AE ==∴743DE AD AE =-=-=故答案为:B .【点睛】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.8.已知:在Rt △ABC 中,∠C =90°,BC =1,AC =3,点D 是斜边AB 的中点,点E 是边AC 上一点,则DE +BE 的最小值为( )A .2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=3,故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.9.下列图形经过折叠不能围成棱柱的是().A.B.C.D.【答案】B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.10.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().A.B.C.D.【答案】B【解析】试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选B.点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,EG 平分∠AEF ,如果∠1=32°,那么∠2的度数是( )A .64°B .68°C .58°D .60°【答案】A【解析】【分析】 首先根据平行线性质得出∠1=∠AEG ,再进一步利用角平分线性质可得∠AEF 的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB ∥CD ,∴∠1=∠AEG .∵EG 平分∠AEF ,∴∠AEF=2∠AEG ,∴∠AEF=2∠1=64°,∵AB ∥CD ,∴∠2=64°.故选:A .【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.13.如图,在Rt ABC V 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )A .15B .30C .45D .60 【答案】B【解析】【分析】作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.【详解】作DE AB ⊥于E由尺规作图可知,AD 是△ABC 的角平分线∵90C ∠=︒,DE AB ⊥∴4DE DC ==∴△ABD 的面积1302AB DE =⨯⨯= 故答案为:B .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.14.已知直线m ∥n ,将一块含30°角的直角三角板按如图所示方式放置(∠ABC =30°),并且顶点A ,C 分别落在直线m ,n 上,若∠1=38°,则∠2的度数是( )A .20°B .22°C .28°D .38°【答案】B【解析】【分析】过C 作CD ∥直线m ,根据平行线的性质即可求出∠2的度数.【详解】解:过C 作CD ∥直线m ,∵∠ABC =30°,∠BAC =90°,∴∠ACB =60°,∵直线m ∥n ,∴CD ∥直线m ∥直线n ,∴∠1=∠ACD ,∠2=∠BCD ,∵∠1=38°,∴∠ACD =38°,∴∠2=∠BCD =60°﹣38°=22°,故选:B .【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.15.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C 与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.16.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C .D .【答案】A【解析】【分析】 根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A .【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.18.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B.【点睛】本题为最短路径问题,作对称找出点P,利用三角形相似是解题关键.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.。
沪教版一年级上册数学几何图形专项完美版
沪教版一年级上册数学几何图形专项完美版
班级:姓名:
1. 想一下,填一填。
(1)用______根小棒可以摆一个长方形;用______根小棒可以摆一个三角形。
(2)长方形有______条边,正方形有______条边,三角形有______边。
2. 动动脑,连一连。
3. 看一看,填一填。
(1)下面左边哪几个图形组合能拼成右边的图形?______和_____。
(2)下面左边哪几个图形组合能拼成右边的图形?______和_____。
4. 圈出合适的图形。
5. 画一画,使下面每个图形分成两个形状、大小完全一样的图形。
6. 在方格图中用彩笔画出一个长方形、一个正方形和一个三角形。
7. 图中共有()个正方体。
A .4
B .5
C .6
D .7
8. 填出拼图所用的图形和个数。
这朵七色花中有______个______和______个______。
9. 左边的图形是由右边的哪两个图形拼成的?请圈出来。
10. 动动脑,看一看,填一填。
有______个圆,______个长方形,______个正方形。
11. 下面的图形按虚线折起来是什么形状?连一连。
12. 我来涂一涂。
(给正方形涂上你喜欢的颜色)
13. 下图中有()个圆柱体。
A .3
B .4
C .5
D .6
14. 从右面选两个图形拼成左面的图形。
15. 下面图形是长方体的是()。
A .
B .
C .。
七年级数学上册第四单元《几何图形初步》-解答题专项测试题(培优专题)(1)
一、解答题1.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.【详解】解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.2.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:3.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
其中,上面正方体的下底面的四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1.(1)当只有两个正方体放在一起时,这两个正方体露在外面的面积和是;(2)当这些正方体露在外面的面积和超过8时,那么正方体的个数至少是多少?(3)按此规律下去,这些正方体露在外面的面积会不会一直增大?如果会,请说明理由;如果不会,请求出不会超过哪个数值?(提示:所有正方体侧面面积加上所有正方体上面露出的面积之和,就是需求的面积,从简单入手,归纳规律.)解析:(1)7;(2)4个;(3)不会,理由见解析【分析】(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(2)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,即按此规律堆下去,总面积最大不会超过9.【详解】解:(1)若只有一层(即只有一个)时,每个面的面积是1,共露出5个面,所以外露面积为:1+1×4=5;若有两层,则第二层每个侧面的面积是12,与一层相比,多了4个侧面,所以外露面积为:1+(1+12)×4=7;(3)若有三层,则第三层的每个侧面的面积是14,与两层相比,多了4个侧面,所以外露面积=1+(1+12+14)×4=8,∴这些正方体露在外面的面积和超过8,那么正方体的个数至少是4个;(3)若有n层,所以,露在外面的面积为:1+[1+12+14+……+(1)12n-]×4<1+2×4=9,∴按此规律堆下去,总面积最大不会超过9.【点睛】此题考查了立体图形的表面积问题.解决本题的关键是得到上下正方体的一个面积之间的关系,从而即可得出依次排列的正方体的一个面的面积,这里还要注意把最下面的正方体看做是5个面之外,上面的正方体都是露出了4个面.解决本题的关键是得到上下正方体的一个面积之间的关系.4.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”解析:34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.5.已知A ,B ,C 三点,他们所表示的数分别是5,-3,a.(1)求线段AB 的长度AB ; (2)若AC=6,求a 的值; (3)若d=3a ++5a -,求d 的最小值,并判定d 与AB .解析:(1)8;(2)a =11或-1;(3)8,d =AB .【分析】(1)线段AB 的长等于A 点表示的数减去B 点表示的数;(2)AC =|A 点表示的数-C 点表示的数|,然后解方程即可;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8.【详解】(1)AB =5-(-3)=8;(2)AC =5a -=6,解得:a =11或-1;即在数轴上,若 C 点在A 点左边,则a =-1,若C 点在A 点右边,则a =11;(3)要想使d 的最小,点C 一定在A 、B 两点之间,且最小值为8,所以d =AB .【点睛】本题考查了数轴上两点之间的距离,利用数轴上求线段长度的方法,找出等量关系,解决问题.6.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.7.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.8.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5cm ,长方形的长为8cm ,请计算修正后所折叠而成的长方体的表面积和体积.解析:(1)多余一个正方形,图形见解析;(2)表面积为:210cm 2;体积为:200cm 3.【分析】(1)根据长方体的展开图判断出多余一个正方形;(2)根据表面积=四个长方形的面积+两个正方形的面积,体积=底面积×高分别列式计算即可得解.【详解】解:(1)多余一个正方形,如图所示:(2)表面积为:225285450160210()cm ⨯+⨯⨯=+=,体积为:2358200()cm ⨯=【点睛】本题考查了几何体的展开图以及长方体的表面积、体积的求法,熟练掌握长方体的展开图是解题的关键.9.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且22AB =,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为()0t t >秒.(1)数轴上点B 表示的数是___________;点P 表示的数是___________(用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P Q 、同时出发,问多少秒时P Q 、之间的距离恰好等于2?(3)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.解析:(1)14-,85t -;(2)2.5秒或3秒;(3)线段MN 的长度不发生变化,其值为11,图形见解析.【分析】(1)根据点B 和点P 的运动轨迹列式即可.(2)分两种情况:①点P Q 、相遇之前;②点P Q 、相遇之后,分别列式求解即可. (3)分两种情况:①当点P 在点A B 、两点之间运动时;②当点P 运动到点B 的左侧时, 分别列式求解即可.【详解】(1)14-,85t -;(2)分两种情况:①点P Q 、相遇之前,由题意得32522t t ++=,解得 2.5t =.②点P Q 、相遇之后,由题意得32522t t -+=,解得3t =.答:若点P Q 、同时出发,2.5或3秒时P Q 、之间的距离恰好等于2;(3)线段MN 的长度不发生变化,其值为11,理由如下:①当点P 在点A B 、两点之间运动时: 11111()221122222MN MP NP AP BP AP BP AB =+=+=+==⨯=; ②当点P 运动到点B 的左侧时,1111()112222MN MP NP AP BP AP BP AB =-=-=-==; ∴线段MN 的长度不发生变化,其值为11.【点睛】本题考查了数轴动点的问题,掌握数轴的性质是解题的关键.10.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .解析:90,90,∠BOD ,40,同角的余角相等【分析】根据同角的余角相等即可求解.【详解】解:因为∠AOC+∠COB = 90 °,∠COB+∠BOD = 90 ° -﹣﹣﹣①所以∠AOC = ∠BOD .﹣﹣﹣﹣②-因为∠AOC =40°,所以∠BOD = 40 °.在上面①到②的推导过程中,理由依据是:同角的余角相等.故答案为:90,90,∠BOD ,40,同角的余角相等.【点睛】本题考查了余角的性质:同角(或等角)的余角相等,及角的和差关系.11.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图.(1)画直线AB 、CD 交于E 点;(2)画线段AC 、BD 交于点F ;(3)连接E 、F 交BC 于点G ;(4)连接AD ,并将其反向延长;(5)作射线BC .解析:见解析.【分析】(1)连接AB 、CD 并向两方无限延长即可得到直线AB 、CD ;交点处标点E ; (2)连接AC 、BD 可得线段AC 、BD ,交点处标点F ;(3)连接AD 并从D 向A 方向延长即可;(4)连接BC ,并且以B 为端点向BC 方向延长.【详解】解:所求如图所示:.【点睛】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.12.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN 的长度等于12a , 根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC )=12a ;(3)MN 的长度等于12b , 根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC )=12b .【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.13.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.解析:120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.14.如图所示,∠AOB =35°,∠BOC =50°,∠COD =22°,OE 平分∠AOD ,求∠BOE 的度数.解析:5°【解析】【分析】首先根据角的和差关系算出∠AOD 的度数,再根据角平分线的性质可得∠AOE =12∠AOD ,进而得到答案.【详解】∵∠AOB =35°,∠BOC =50°,∠COD =22°,∴∠AOD =35°+50°+22°=107°.∵OE 平分∠AOD ,∴∠AOE =12∠AOD =12×107°=53.5°,∴∠BOE =∠AOE -∠AOB =53.5°-35°=18.5°.【点睛】本题考查了角平分线的性质,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.15.已知:如图,18cm AB =,点M 是线段AB 的中点,点C 把线段MB 分成:2:1MC CB =的两部分,求线段AC 的长.请补充下列解答过程:解:因为M 是线段AB 的中点,且18cm AB =,所以AM MB ==________AB =________cm .因为:2:1MC CB =,所以MC =________MB =________cm .所以AC AM =+________=________+________=________(cm). 解析:12,9,23,6,MC ,9,6,15. 【分析】根据线段中点的性质,可得AM ,根据线段的比,可得MC ,根据线段的和差,可得答案.【详解】解:∵M 是线段AB 的中点,且18cm AB =,∴19cm 2AM MB AB ===. ∵:2:1MC CB =,∴26cm 3MC MB ==. ∴9615(cm)AC AM MC =+=+=. 故答案为:12,9,23,6,MC ,9,6,15. 【点睛】本题考查了两点间的距离,利用线段中点的性质得出AM ,线段的比得出MC 是解题关键.16.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.解析:AB=12cm ,CD=16cm【分析】先设BD=xcm ,由题意得AB=3xcm ,CD=4xcm ,AC=6xcm ,再根据中点的定义,用含x 的式子表示出AE=1.5xcm 和CF=2xcm ,再根据EF=AC-AE-CF=2.5xcm ,且E 、F 之间距离是EF=10cm ,所以2.5x=10,解方程求得x 的值,即可求AB ,CD 的长.【详解】设BD=xcm ,则AB=3xcm ,CD=4xcm ,AC=6xcm .∵点E 、点F 分别为AB 、CD 的中点,∴AE=12AB=1.5xcm ,CF=12CD=2xcm . ∴EF=AC -AE -CF=2.5xcm .∵EF=10cm ,∴2.5x=10,解得:x=4.∴AB=12cm ,CD=16cm .【点睛】本题考查了线段中点的性质,设好未知数,用含x 的式子表示出各线段的长度是解题关键.17.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.18.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.解析:(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.19.如图,射线ON ,OE ,OS ,OW 分别表示以点O 为中心的北,东,南,西四个方向,点A 在点O 的北偏东45︒方向,点B 在点O 的北偏西30方向.(1)画出射线OB ,若BOC ∠与AOB ∠互余,请在图(1)或备用图中画出BOC ∠; (2)若OP 是AOC ∠的平分线,直接写出AOP ∠的度数.(不需要计算过程) 解析:(1)见解析;(2)45︒或30.【分析】(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【详解】(1)如图所示,BOC ∠与BOC '∠即为所求.(2)AOP ∠的度数为45︒或30︒.∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC 与∠AOB 互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC=60°,∵OP 是∠AOC 的角平分线,∴∠AOP=45°或30°.【点睛】本题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.20.关于度、分、秒的换算.(1)5618'︒用度表示;(2)123224'''︒用度表示;(3)12.31︒用度、分、秒表示.解析:(1)56.3︒.(2)12.54︒.(3)121836'''︒.【分析】(1)将18'转化为118()0.360⨯︒=︒即可得到答案; (2)将24''转化为124()0.460''⨯=,32.4'转化为132.4()0.5460⨯︒=︒即可得到答案; (3)将0.31︒转化为0.316018.6''⨯=,将0.6'转化为0.66036''''⨯=即可得到答案. 【详解】(1)1561856185618()56.360''︒=︒+=︒+⨯︒=︒; (2)123224︒''' 123224'''=︒++1123224()60''=︒++⨯ 1232.4'=︒+11232.4()60=︒+⨯︒ 12.54=︒;(3)12.31120.31︒=︒+︒120.3160'=︒+⨯1218.6'=︒+12180.6''=︒++12180.660'''=︒++⨯121836'''=︒++121836'''=︒.【点睛】本题主要考查了度分秒的换算,关键是掌握将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.21.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.22.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD,∠BOC;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE,∠COD,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD的补角是∠BOD;∠AOC的补角是∠BOC;(2)∵OD平分∠AOC,OE平分∠BOC,∴∠COD= 12∠AOC,∠COE=12∠BOC.由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°.【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解.23.已知线段AB=10cm,直线AB上有一点C,BC=6cm,M为线段AB的中点,N为线段BC的中点,求线段MN的长.解析:2cm或8cm【分析】分两种情况:(1)点C在线段AB上时,(2)点C在AB的延长线上时,分别求出线段MN的值,即可.【详解】解:(1)若为图1情形,∵M为AB的中点,∴MB=MA=5cm,∵N为BC的中点,∴NB=NC=3cm,∴MN=MB﹣NB=2cm;(2)若为图2情形,∵M为AB的中点,∴MB=AB=5cm,∵N为BC的中点,∴NB =NC =3cm ,∴MN =MB +BN =8cm .【点睛】本题主要考查线段的和差倍分和线段的中点概念,根据题意,画出图形,分类讨论,是解题的关键.24.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.解析:(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析.【分析】 (1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠, 90COD ∠=︒,()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 25.作图:如图,平面内有 A ,B ,C ,D 四点 按下列语句画图:(1)画射线 AB ,直线 BC ,线段 AC(2)连接 AD 与 BC 相交于点 E.解析:答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.26.已知线段14AB =,在线段AB 上有点C ,D ,M ,N 四个点,且满足AC :CD :1DB =:2:4,12AM AC =,且14DN BD =,求MN 的长. 解析:7或3【分析】 求出AC ,CD ,BD ,求出CM ,DN ,根据MN CM CD DN =++或MN CM CD ND =+-求出即可.【详解】如图,14AB =,AC :CD :1BD =:2:4,2AC ∴=,4CD =,8BD =,12AM AC =,14DN DB =, 1CM ∴=,2DN =,1427MN CM CD DN ∴=++=++=或1423MN CM CD ND =+-=+-=. 则MN 的长是7或3.【点睛】本题考查了求出两点间的距离的应用及分类讨论的数学思想,关键是找找出线段间的数量关系.27.把一副三角板的直角顶点O 重叠在一起.(1)问题发现:如图①,当OB 平分∠COD 时,∠AOD+∠BOC 的度数是 ; (2)拓展探究:如图②,当OB 不平分∠COD 时,∠AOD+∠BOC 的度数是多少? (3)问题解决:当∠BOC 的余角的4倍等于∠AOD 时,求∠BOC 的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB 平分∠COD 得出∠BOC 及∠AOC 的度数,进而可得出结论; (2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC ,根据∠BOC 的余角的4倍等于∠AOD 即可得出结论.解:(1)∵OB 平分∠COD ,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC .∵∠AOD=4(90°﹣∠BOC ),∴180°﹣∠BOC=4(90°﹣∠BOC ),∴∠BOC=60°.考点:余角和补角;角平分线的定义.28.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.29.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线,11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050∴∠=︒-∠=︒-︒=︒,BOP AOM∠内部时(如图3-1),①当射线OP在BOC∠=∠-∠=︒-︒=︒;COP BOC BOP1005050∠外部时(如图3-2),②当射线OP在BOC∠=∠+∠=︒+︒=︒.10050150COP BOC BOP∠的度数为50︒或150︒.综上所述,COP【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.30.如图,已知平面上有四个村庄,用四个点A,B,C,D表示.(1)连接AB,作射线AD,作直线BC与射线AD交于点E;(2)若要建一供电所M,向四个村庄供电,要使所用电线最短,则供电所M应建在何处?请画出点M的位置并说明理由.解析:(1)如图所示.见解析;(2)如图,见解析;供电所M应建在AC与BD的交点处.理由:两点之间,线段最短.【分析】(1)根据射线、直线的定义进而得出E点位置;(2)根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个村庄的距离之和最小,就要使它在AC与BD的交点处.【详解】(1)如图所示:点E即为所求;(2)如图所示:点M即为所求.理由:两点之间,线段最短.【点睛】本题主要考查了作图与应用作图,关键是掌握线段的性质:两点之间,线段距离最短.。
小升初数学专项复习训练一空间与图形空间与图形专项训练1含解析
空间与图形一、选择题1.一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍。
A、2B、6C、8【答案】C【解析】长方体的体积=长×宽×高,长、宽和高都扩大2倍,则体积就扩大了2×2×2=8倍,根据此选择即可。
2.正方体的棱长扩大2倍,它的表面积就()。
A.扩大2倍B.扩大4倍C.扩大6倍【答案】B【解析】根据正方体的表面积计算公式,棱长扩大2倍,则表面积扩大:2×2=4倍,根据此选择即可。
3.用两个棱长是1分米的正方体小木块拼成一个长方体,拼成的长方体的表面积是()。
A.增加了B.减少了C.没有变【答案】B【解析】把小正方体拼成一个长方体后,减少了2个小正方形的面积,因此拼成的长方体的表面积比原来减少了。
4.做一个长方体抽屉,需要()块长方形木板。
A.4 B.5 C.6【答案】B【解析】长方体抽屉没有上面一个面,因此一共有5个面,需要5块长方形木板,根据此选择即可。
5.用一根长()铁丝正好可以做一个长6厘米、宽5厘米、高3厘米的长方体框架。
A.28厘米 B.126平方厘米 C.56厘米 D.90立方厘米【答案】C。
【解析】长方体有4条长,4条宽和4条高,求出棱长之和,即可求出需要多少铁丝,即:(6+5+3)×4=56厘米,根据此选择即可。
6.我们在画长方体时一般只画出三个面,这是因为长方体()。
A.只有三个面 B.只能看到三个面 C.最多只能看到三个面【答案】C【解析】把长方体放在桌面上,最多可以看到3个面。
根据此选择。
7.将一个正方体钢坯锻造成长方体,正方体和长方体()。
A.体积相等,表面积不相等B.体积和表面积都不相等.C.表面积相等,体积不相等.【答案】A【解析】将一个正方体钢坯锻造成长方体,形状改变,体积不变。
8.一个正方体的棱长之和是12a厘米,它的棱长是()厘米。
A.6aB.aC.2aD.12a【答案】B【解析】棱长之和÷12=棱长9.一个正方体的棱长是8分米,它的棱长总和是()分米。
北师大版六年级数学下册专项分类必刷卷—— 图形与几何(一)(含答案)
专项分类必刷卷 (十一) 图形与几何(一)(基础卷)建议用时:40分钟满分:50+10分一、填空题。
(每空1分,共9分)1.将长20cm、宽14cm的长方形纸对折,变成两个同样大小的长方形,长方形的长可以是( )cm,也可以是( )cm。
2.一个平行四边形相邻两条边的长度分别是15cm和10cm。
一条底边上的高是12cm,这个平行四边形的周长是( ) cm,面积是( )cm²。
3.“外方内圆”是我国古代建筑中常见的设计,也蕴含着为人处事的道理。
如图,外面正方形的边长为10dm,那么正方形内最大圆的半径是( )dm,这个圆的周长是( )dm,面积是( )dm²。
4.一个圆锥形的沙堆,底面直径是6m,高是2.5m,这堆沙子的体积是( )m³。
5.一个高30cm的圆锥形容器,盛满水倒入和它等底等高的空圆柱形容器中后水面高度是( )cm。
二、选择题。
(每题2分,共8分)1.下列说法中,正确的有( )个。
①萌萌画了一条4 cm长的射线。
②强强在黑板上画了两条线段,如果它们不相交,那么它们一定互相平行。
③有一组对边平行的四边形是梯形。
④一个三角形三个内角的度数比是2:3:5,那么它是一个直角三角形。
A.1B.2C.3D.42.下列图形中,( )不是正方体的展开图。
3.用一根铁丝,先围成一个正方形,展开后再围成一个圆形,两次围成图形的面积( )。
A.相等B.正方形的面积大C.圆的面积大D.无法比较4.油漆 4 根圆柱形柱子,就是油漆柱子的( )。
A.体积B.表面积C.侧面积D.容积三、计算题。
(共8分)1.求图中涂色部分的面积。
(单位:cm)(4分)2.求图中立体图形的体积。
(单位:cm)(4分)四、操作题。
(共9分)1.量出∠AOB的度数,并分别过P点画出AO的平行线,BO 的垂线。
(6分)2.画出如图所示的物体从不同方向看到的形状。
(3分)五、解决问题。
(共16分)1.沙漏是古代计量时间的工具之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识图形专项
1.在一个正方形上剪去一个三角形,剩下的可能是什么图形?请你画一画,并把剩下的图形用铅笔涂上颜色,再填一填是什么图形。
剩下的是()剩下的是()剩下的是()
2.在一张长方形纸上剪去一个三角形,剩下的可能是什么图形?请你画一画,并把剩下的图形用铅笔涂上颜色。
剩下的是五边形剩下的是四边形剩下的是三角形
3.在一张长方形纸上剪去一个角,剩下的可能是什么图形?请你画一画,并把剩下的图形用
剩下的是()剩下的是()剩下的是()
4.在一张正方形纸上剪去一个角,剩下的可能是什么图形?请你画一画,并把剩下的图形用铅笔涂上颜色。
剩下的是四边形剩下的是三角形剩下的是五边形
四个三角形
两个五边形两个四边形两个四边形两个五边形一个三角形和一个四边形
(注意:1、2、3、4、8、9题的意思是一样的。
)
8.在一个长方形上剪去一个三角形,剩下的可能是什么图形?请你画一画,并把剩下的图形用铅笔涂上颜色,再填一填是什么图形。
剩下的是()剩下的是()剩下的是()9. 在一个平行四边形上剪去一个三角形,剩下的可能是什么图形?请你画一画,并把剩下的图形用铅笔涂上颜色,再填一填是什么图形。
剩下的是()剩下的是()剩下的是()9.把下面的图形按要求分成两个图形。
(1
(3
两个三角形三个三角形三个三角形一个三角形和一个四边形
11.在点子图上画出一个四边形、五边形和六边形,一个长方形、正方形和平行四边形。
··································································································································································。