数值传热学陶文铨第四章作业(完整资料).doc
计算传热学_高等教育-实验设计

坐标系不同,控制方程的形式不尽相同
必要的简化与化简
2.1 控制方程
传热的三种模式(Modes of heat transfer)
热传导(Thermal conduction) 热对流(Thermal advection)
对流换热(Convection heat transfer) 辐射换热(Radiation heat transfer)
数值方法
分析解法与实验研究
分析解法
成本最低 结果最理想 影响因素表达清楚 缺点:局限与非常简单的问题 成本较低:数值实验 适用范围宽 缺点:可靠性差,表达困难 可靠 成本高
数值方法
实验研究
将三种方法有 机结合,互为 补充,必然会 取得相得益彰 的效果
第2讲
传热问题的数学描述
1) 2)
将上面的数学模型无量纲化,并给出其分析解; 取β=1, 就 PeL=(ρuL)/Γ=1、10、100 三种情况分别用三点中心差分格式、迎风格式、幂律格式和 QUICK 格式进行计算,并与分析解比较(计算时节点数目可取为 10 ~ 20) ; 3) 改变参数β,譬如取β=10,重复 2)中的计算; 分析 2)和 3)中得到的结果,对各种格式进行比较。
Tf h A B
Tf h
δ
δ
计算传热学习题之三
考虑下述一维稳态对流-扩散问题,
d d dU ( ρuU ) = (Γ )+s dx dx dx U x=0 = U 0 U
x=L
= UL
其中 u 是流速,Γ和ρ均为常数,而 s 是 x 的单值函数,
s = 0.5 β U 0 −U L L
传热学第四版课后作业答案(杨世铭-陶文铨)]
![传热学第四版课后作业答案(杨世铭-陶文铨)]](https://img.taocdn.com/s3/m/5b92aceb9b89680203d8251d.png)
1-9 一砖墙的表面积为122m ,厚为260mm ,平均导热系数为1.5W/(m.K )。
设面向室内的表面温度为25℃,而外表面温度为-5℃,试确定次砖墙向外界散失的热量。
解:根据傅立叶定律有:WtA9.207626.05)(25125.1=--⨯⨯=∆=Φδλ1-12 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w =69℃,空气温度t f =20℃,管子外径 d=14mm ,加热段长 80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式()f w t t rlh q -=π2所以()f w t t d qh -=π=49.33W/(m 2.k)1-20 半径为0.5 m 的球状航天器在太空中飞行,其表面发射率为0.8。
航天器内电子元件的散热总共为175W 。
假设航天器没有从宇宙空间接受任何辐射能量,试估算其表面的平均温度。
解:电子原件的发热量=航天器的辐射散热量即:4T Q εσ=4A QT εσ=∴ =187K 热阻分析 ;;2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。
已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。
为安全起见,希望烘箱炉门的 外表面温度不得高于50℃。
设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。
环境温度=2f t 25℃,外表面总传热系数)./(5.922K m W h =。
解:热损失为()()22111f f BBA A fwf t t h t t h t t q -+-=+-=λδλδ又50=fw t ℃;B A δδ=联立得m m B A 039.0;078.0==δδ2-9 双层玻璃窗系由两层厚为6mm 的玻璃及其间的空气隙所组成,空气隙厚度为8mm 。
《传热学》第四章 导热数值解法基础

边界
2.第二类边界条件:
Байду номын сангаас
Δx=Δy时简化为:
绝热边界:
3.第三类边界条件:
Δx=Δy时简化为:
其他情况的节点方程 ——见教材表4-1
外拐角与内拐角节点
对流边界内部拐角节点热平衡:
节点方程式推导实例 ——对流边界外部拐角节点
Δx=Δy时简化为:
数值导热离散方程组=内节点离散方程+边界节点离散方程
二、常用计算软件
1.MATLAB——矩阵计算软件
matlab软件主界面
2.FLUENT——流体流动通用数值计算软件
3. FLUENT AIRPAK ——人工环境系统分析软件,暖通空调专业和传热学领域必备软件
AIRPAK模拟温度场
第四章重点: 1.有限差分方程的建立 2.高斯-赛德尔迭代方法
谢谢观看
《传热学》
第四章 导热数值解法基础
本章研究的目的 ——利用计算机求解难以用 分析解求解的导热问题 基本思想 ——把原来在时间、空间坐 标系中连续的物理量的场, 用有限个离散点的值的集合 来代替,通过求解按一定方 法建立起来的关于这些值的 代数方程,来获得离散点 上被求物理量的值。 研究手段——有限差分法
数值导热离散方程组内节点离散方程边界节点离散方程三节点离散方程组的求解迭代法迭代法的原理离散方程组的求解方法消元法方程过多时计算机内存不足迭代法假定初值根据假定的初值求新值并重复此步骤若干次两次计算值足够接近认为达到真实值简单迭代法每次迭代时使用上次迭代的结果允许误差简单迭代法的缺点由于每次迭代中使用与真实值偏差较大的上次迭代的旧值使运算过程接近真实值的时间增加高斯赛德尔迭代法将本次迭代的最新结果立刻代入本次迭代过程计算其他未知值高斯赛德尔迭代法的优点由于每次迭代中使用与真实值偏差较小的本次迭代的新值使运算过程接近真实值的时间缩短第三节非稳态导热的数值计算一显式差分格式研究对象一维非稳态导热问题一维非稳态导热内节点差分方程
数值传热学陶文铨主编第二版习题答案

1
x1=x; x=t(3,1); end tcal=t
习题 4-12 的 Matlab 程序
%代数方程形式 AiTi=CiTi+1+BiTi-1+Di mdim=10;%计算的节点数 x=linspace(1,3,mdim);%生成 A、C、B、T 数据的基数; A=cos(x);%TDMA 的主对角元素 B=sin(x);%TDMA 的下对角线元素 C=cos(x)+exp(x); %TDMA 的上对角线元素 T=exp(x).*cos(x); %温度数据 %由 A、B、C 构成 TDMA coematrix=eye(mdim,mdim); for n=1:mdim coematrix(n,n)=A(1,n); if n>=2 coematrix(n,n-1)=-1*B(1,n); end if n<mdim coematrix(n,n+1)=-1*C(1,n); end end %计算 D 矢量 D=(coematrix*T')'; %由已知的 A、B、C、D 用 TDMA 方法求解 T %消元 P(1,1)=C(1,1)/A(1,1); Q(1,1)=D(1,1)/A(1,1); for n=2:mdim P(1,n)=C(1,n)/(A(1,n)-B(1,n)*P(1,n-1)); Q(1,n)=(D(1,n)+B(1,n)*Q(1,n-1))/(A(1,n)-B(1,n)*P(1,n-1)); end %回迭 Tcal(1,mdim)=Q(1,mdim); for n=(mdim-1):-1:1 Tcal(1,n)=P(1,n)*Tcal(1,n+1)+Q(1,n); end Tcom=[T;Tcal]; %绘图比较给定 T 值和计算 T 值 plot(Tcal,'r*') hold on plot(T)
数值传热学第4章作业

习题4-2图4-22 习题4-2插图[解]一维稳态导热问题的控制方程为:0=+⎪⎭⎫ ⎝⎛S dx dT dx d λ 4-2-1 该问题的边界条件为:()⎪⎩⎪⎨⎧=-=-==2,0,1001x T T h dx dT x T f λ 4-2-2分别对节点2,3进行离散,将已知数据代入离散格式中,得到方程组:130232=-T T 4-2-375432=+-T T 4-2-4 联立式(4-2-3)、式(4-2-4),可以解出2T ,3T : 852=T ,403=T 。
下面验证总体守恒性:4-2-5右端3放出的热量为:()()30020401533=-⨯=-=f T T h Q 4-2-6在总体容积内部产生的热量为:2.0150 2.0300S Q S x =⨯∆=⨯=还需要证明左端是绝热条件: 节点2的热平衡为:21851000.550.5150757501T T xS x λ--+∆=+⨯=-+=∆ 左端绝热,所以计算结果符合总体能量守恒。
习题 4-5[解] 根据习题4-2的分析,可以得到节点2的离散方程:130232+=T T 4-5-1对于节点3,应用边界条件:()()1324330.510f f T T S T T T T xλδ--+⨯=-- 4-5-2式(4-5-2)可以整理成:()5432355751020T T T =+-- 4-5-3采用局部线性化方法,可以得到:()()()()515***444333331020102012.520T T T T T -=-+-- 4-5-4节点3的离散方程表示成:()()()51**44323335575 2.52012.52020T T T T T =++---- 4-5-5迭代求解得出:2382.82;35.64T T == 检验热平衡:内热源生成热1300φ=; 右端散热5/4210(35.6420)311.0h T φ=∆=-=左端散热382.821000.5150510.91φ-=⨯+⨯=-所以123()30031110.90φφφ-+=-+≅不作热平衡扣0.5 分。
数值传热学陶文铨第四章作业

4-1解:采用区域离散方法A 时;网格划分如右图。
内点采用中心差分123278.87769.9T T T === 22d T T=0dx - 有 i+1i 122+T 0i i T T T x ---=∆ 将2点,3点带入321222+T 0T T T x --=∆ 即321209T T -+= 432322+T 0T T T x --=∆4321322+T 0T T T x --=∆ 即4321209T T T -+-= 边界点4(1)一阶截差 由x=1 1dT dx =,得 4313T T -= (2)二阶截差 11B M M q x x x T T S δδλλ-=++V 所以 434111. 1.36311T T T =++ 即 43122293T T -=采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ⎛⎫⎛⎫--∆= ⎪ ⎪⎝⎭⎝⎭ 所以代入2点4点有322121011336T T T T T ----= 即 239028T T -= 544431011363T T T T T ----= 即 34599 02828T T T -+=对3点采用中心差分有 432322+T 013T T T --=⎛⎫ ⎪⎝⎭ 即 2349901919T T T -+= 对于点5 由x=1 1dT dx =,得 5416T T -= (1)精确解求左端点的热流密度由 ()21x x e T e e e -=-+ 所以有 ()220020.64806911x x x x dTe e q e e dx e e λ-====-+=-=++ (2)由A 的一阶截差公式(3)由B 的一阶截差公式(4)由区域离散方法B 中的一阶截差公式:通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3解:将平板沿厚度方向3等分,如图由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为x=0, T 0=75℃x=0.1 dT =h(T-T )dx f λ-1点 ,2点采用中心差分有21022+T 0T T S xλ-+=∆ (1) 32122+T 0T T S x λ-+=∆ (2) 右端点采用一阶截差的离散231f hx T T T x h λλ⎡⎤+⎢⎥⎣⎦=⎛⎫+ ⎪⎝⎭V (3) 右端点采用二阶截差的离散代入(1)(2)(3)得1223132280.62 5.67625T T T T T T T -=--=-= 解得123278.87769.9T T T ===代入(4)得解得 12380.6380.6675.1T T T ===精确解 22d T +S=0dxλ (4) x=0, T 0=75℃ (5) x=0.1 dT =h(T-T )dxf λ- (6)代入数据积分的将 x 1=10.13⨯,x 2=20.13⨯, x 3=0.1T 1=80.56 T 2=80.56 T 3=75.1通过比较可得右端点采用二阶截差的离散更接近真实值。
【免费下载】传热学补充教材

目录
一、 教学进度计划表……………………………………...…..………….………..3 二、 思考题和练习题………………………………………………...…………….4 三、 补充习题…………………………………………………….……...…..……..4 四、 复习提纲………………………………………………………………………7 五、 计算机实习指导书…………………………………………….…….....……..11
1. 练习题一:一维稳态导热的数值计算………………………………………..11 2. 练习题二:二维稳态导热的数值计算……………………………………….14 3. 练习题三:一维非稳态导热的数值计算…………………………………….15
六、 补充内容:绕流平板的流动和换热,无量纲参数,比拟和相似………….19
1. 物理问题……………………………………………………..……………19 2. 数学模型…………………………………………………………………..19 3. 数学模型的无量纲化………………………………………………………19 4. 局部对流换热系数和平均对流换热系数……………………………………20 5. 局部阻力系数和平均阻力系数……………………………………………..22 6. 无量纲参数及其关联……………………………………………………....22 7. 比拟和相似………………………………………………………………..23
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
传热学思考题参考答案(陶文铨第四版)

传热学思考题参考答案第一章:1、用铝制水壶烧开水时,尽管炉火很旺,但水壶仍安然无恙。
而一旦壶内的水烧干后水壶很快就被烧坏。
试从传热学的观点分析这一现象。
答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。
2、什么是串联热阻叠加原则,它在什么前提下成立以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。
答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。
例如:三块无限大平板叠加构成的平壁。
例如通过圆筒壁,对于各个传热环节的传热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。
第二章:1、扩展表面中的导热问题可以按一维问题处理的条件是什么有人认为,只要扩展表面细长,就可按一维问题处理,你同意这种观点吗|答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。
并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。
2、肋片高度增加引起两种效果:肋效率下降及散热表面积增加。
因而有人认为随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热流量会下降,试分析该观点的正确性。
答:的确肋片高度增加会导致肋效率下降及散热表面积增加,但是总的导热量是增加的,只是增加的部分的效率有所减低,所以我们要选择经济的肋片高度。
第三章:1、由导热微分方程可知,非稳态导热只与热扩散率有关,而与导热系数无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】
2T 3T 4T 4-1
解:采用区域离散方法A 时;网格划分如右图。
内点采用中心差分123278.8
7769.9T T T ===
22
d T
T=0dx - 有
i+1i 1
2
2+T 0i i T T T x ---=∆ 将2点,3点带入
321222+T 0T T T x --=∆ 即3
21
209T T -+=
432322+T 0T T T x --=∆432132
2+T 0T T T x --=∆ 即4321
209
T T T -+-= 边界点4
(1)一阶截差 由x=1 1dT dx =,得 431
3
T T -= (2)二阶截差
11B M M q x x x
T T S δδλλ
-=++
所以 434111. 1.
36311
T T T =++
即 43122293
T T -= 采用区域离散方法B
22d T
T=0dx
- 由控制容积法
0w e
dT dT T x dT dT ⎛⎫⎛⎫
--∆= ⎪ ⎪⎝⎭⎝⎭ 所以代入2点4点有 322121011336
T T T T T ----= 即 239
028T T -= 544431011363
T T T T T ----= 即
34599
02828T T T -+=
对3点采用中心差分有 432
32
2+T 013T T T --=⎛⎫ ⎪⎝⎭
即
23499
01919
T T T -+=
对于点5 由x=1 1dT dx =,得 541
6
T T -= (1)精确解求左端点的热流密度
由
()2
1
x x
e T e e e -=
-+ 所以有 ()2200
20.64806911x x x x dT e e
q e e dx e e λ
-====-+=-=++ (2)由A 的一阶截差公式
21
0.247730.743113x T T dT
q dx
λ=-=-=
=⨯= (3)由B 的一阶截差公式
0.21640
0.649213
x dT
q dx
λ=-=-=
= (4)由区域离散方法B 中的一阶截差公式:
210.108460.6504()B B
T T dT dx x δ-⎛⎫==⨯= ⎪⎝⎭ 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡
法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3
解:将平板沿厚度方向3等分,如图
3
由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为
22d T
+S=0dx
λ
x=0, T 0=75℃
x=0.1 dT
=h(T-T )dx
f λ-
1点 ,2点采用中心差分有
210
22+T 0T T S x
λ-+=∆ (1)
3212
2+T 0T T S x
λ-+=∆ (2)
右端点采用一阶截差的离散
231f hx T T T x h λλ⎡⎤+⎢⎥⎣
⎦=⎛⎫+
⎪⎝⎭
(3)
右端点采用二阶截差的离散
232.1f x S hx T x T T x h λλλ⎡⎤
⎢⎥++⎢⎥⎢⎥
⎣
⎦=⎛⎫+
⎪⎝⎭
代入(1)(2)(3)得
1223132280.6
2 5.67625T T T T T T T -=--=-= 解得123278.8
7769.9
T T T ===
代入(4)得
12380.63
80.6675.1T T T === 3221T 18125T -=
解得 12380.63
80.6675.1
T T T ===
精确解
22d T
+S=0dx
λ (4)
x=0, T 0=75℃ (5)
x=0.1 dT
=h(T-T )dx
f λ- (6)
代入数据积分的
2250025075T x x =-++ 将 x 1=10.13
⨯,x 2=20.13
⨯, x 3=0.1
T 1=80.56 T 2=80.56 T 3=75.1
通过比较可得右端点采用二阶截差的离散更接近真实值。
4-4
解:采用区域离散方法B 进行离散,如图
3 4
控制方程为
22d T
+S=0dx
λ
x=0, T 0=75℃
x=0.1 dT
=h(T-T )dx
f λ-
对1点进行离散得1对点进行离散得32
43
482.935/2
T T T T T x
x --=
=∆∆1021
02
T T T T S x x x
λ
λ---+∆=∆∆
对2点进行离散得
()321220T T T S x
λ-++=∆
对右端点采用附加源法的
()()1//1//P P W c B B e e A A
a T a S x h x x h x δλδλ⎡⎤⎡⎤⎢⎥+=++
∆⎢⎥+⎡⎤∆+⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
本题中()p w e
a a x λδ== C S S =
代入数据,
12231280.62 5.6
T T T T T -=--=
32346.153002820.45T T -=
T 1= 82.4℃ T 2= 84.87 ℃ T 3=81.7℃ 由Fourier 导热定理
3243
/2
T T T T x x --=∆∆
得 482.935T =
4-12
function x=zhuiganfa A=[1 2 3 4 5 6 7 8 9 10];
B=[0 1 2 3 4 5 6 7 8 9];
C=[1 2 3 4 5 6 7 8 10 0];
D=[3;11;25;45;71;103;141;185;235;190]; n=length(A);
u0=0;y0=0;B(1)=0;
%追得过程
L(1)=A(1)-B(1)*u0;
y(1)=(D(1)-y0*B(1))/L(1);u(1)=C(1)/L(1); for i=2:(n-1)
L(i)=A(i)-B(i)*u(i-1);
y(i)=(D(i)-y(i-1)*B(i))/L(i);
u(i)=C(i)/L(i);
end
L(n)=A(n)-B(n)*u(n-1);
y(n)=(D(n)-y(n-1)*B(n))/L(n);
%赶的过程
x(n)=y(n);
for i=(n-1):-1:1 x(i)=y(i)-u(i)*x(i+1); end。