平行线练习(2019年9月整理)

合集下载

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)

人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。

四年级认识平行线练习题及答案

四年级认识平行线练习题及答案

四年级认识平行线练习题及答案
一、我会填。

1、在同一个平面内不相交的两条直线的位置关系是( )。

2、长方形的每组对边互相( ),每组邻边互相( )。

3、教室中黑板的长边和短边互相( )。

4、数学书中的两条长边互相( )。

5、五线谱的五条横线互相( )。

二、判断。

1、 不相交的两条直线叫做平行线。

( )
2、长方形相对的两条边是一组平行线。

( )
3、
中两条线没有相交,就可以看作一组平行线。



4、互相平行的两条直线,无论怎样延长都不会相交。

( ) 三、是平行线的在( )里画“√”。

( ) ( ) ( ) ( ) ( ) ( )
四、
互相平行的有:( ) 互相垂直的有:( )
b c d e f g a
答案:
一、1、平行2、平行垂直3、垂直4、平行5、平行
二、 1.× 2. √ 3. √
三、
四、 d 和e c和f c和a f和a。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

2019年北师大版八下数学《第6章平行四边形》单元测试卷(解析版)

2019年北师大版八下数学《第6章平行四边形》单元测试卷(解析版)

2019年北师大版八下数学《第6章平行四边形》单元测试卷一.选择题(共10小题)1.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm2.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.83.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2B.3C.4D.54.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S的值为()△DGFA.4cm2B.6cm2C.8cm2D.9cm25.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4B.3C.D.26.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.97.一个多边形内角和是1080°,则这个多边形的对角线条数为()A.26B.24C.22D.208.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm9.能够判定一个四边形是平行四边形的条件是()A.一组对角相等B.两条对角线互相平分C.两条对角线互相垂直D.一对邻角的和为180°10.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等二.填空题(共5小题)11.如图,△ABC中,AB=7,AC=11,AD平分∠BAC,BD⊥AD,E是BC的中点,那么DE=12.如图,在Rt△ABC中,∠C=90°,CD是AB边上的中线,且CD=5,则△ABC的中位线EF 的长是.13.已知△ABC中,D、E分别是AB、AC边的中点,则=.14.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.15.若n边形的每个内角都等于150°,则n=.三.解答题(共6小题)16.如图,在△ABC中,∠CAB=90°,DE、DF是△ABC的中位线,连接EF、AD,求证:EF=AD.17.如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.18.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.19.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.20.如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.21.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.2019年北师大版八下数学《第6章平行四边形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm【分析】根据三角形中位线定理可以求得三条边的长度,然后由三角形的周长公式可知原三角形的周长.【解答】解:∵三角形的三条中位线长分别为2cm,3cm,4cm,∴原三角形的三条边长分别为2cm×2=4cm,3cm×2=6cm,4cm×2=8cm,∴原三角形的周长为:4cm+6cm+8cm=18cm;故选:B.【点评】本题考查了三角形中位线定理,即三角形的中位线平行于第三边且等于第三边的一半.2.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=8,则HE等于()A.20B.16C.12D.8【分析】利用三角形中位线定理知DF=AC;然后在直角三角形AHC中根据“直角三角形斜边上的中线等于斜边的一半”即可将所求线段EH与已知线段DF联系起来了.【解答】解:∵D、F分别是AB、BC的中点,∴DF是△ABC的中位线,∴DF=AC(三角形中位线定理);又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=8.故选:D .【点评】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.三角形的中位线平行于第三边且等于第三边的一半.3.如图,在▱ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( )A .2B .3C .4D .5【分析】由四边形ABCD 是平行四边形,根据平行四边形的对边相等,可得BC =AD =8,又由点E 、F 分别是BD 、CD 的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD 是平行四边形,∴BC =AD =8,∵点E 、F 分别是BD 、CD 的中点,∴EF =BC =×8=4.故选:C .【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.4.如图,DE 是△ABC 的中位线,F 是DE 的中点,CF 的延长线交AB 于点G ,若△CEF 的面积为12cm 2,则S △DGF 的值为( )A .4cm 2B .6cm 2C .8cm 2D .9cm 2【分析】取CG 的中点H ,连接EH ,根据三角形的中位线定理可得EH ∥AD ,再根据两直线平行,内错角相等可得∠GDF =∠HEF ,然后利用“角边角”证明△DFG 和△EFH 全等,根据全等三角形对应边相等可得FG =FH ,全等三角形的面积相等可得S △EFH =S △DGF ,再求出FC =3FH ,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.【解答】解:如图,取CG 的中点H ,连接EH ,∴EH 是△ACG 的中位线,∴EH ∥AD ,∴∠GDF =∠HEF ,∵F 是DE 的中点,∴DF =EF ,在△DFG 和△EFH 中,,∴△DFG ≌△EFH (ASA ),∴FG =FH ,S △EFH =S △DGF ,又∵FC =FH +HC =FH +GH =FH +FG +FH =3FH ,∴S △CEF =3S △EFH ,∴S △CEF =3S △DGF ,∴S △DGF =×12=4(cm 2).故选:A .【点评】本题考查了三角形的中位线定理,全等三角形的判定与性质,作辅助线,利用三角形的中位线进行解题是解题的关键.5.如图,△ABC 中,已知AB =8,∠C =90°,∠A =30°,DE 是中位线,则DE 的长为( )A .4B .3C .D .2【分析】先由含30°角的直角三角形的性质,得出BC ,再由三角形的中位线定理得出DE 即可.【解答】解:∵∠C =90°,∠A =30°,∴BC =AB =4,∴DE=BC=2.故选:D.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.6.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.9【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=5,解得n=8.故这个多边形的边数是8.故选:C.【点评】本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.一个多边形内角和是1080°,则这个多边形的对角线条数为()A.26B.24C.22D.20【分析】先根据多边形的内角和公式求出边数,然后根据对角线的条数的公式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1080°,解得n=8,∴多边形的对角线的条数是:==20.故选:D.【点评】本题考查了多边形的内角和定理与多边形的对角线的条数的公式,熟记公式是解题的关键.8.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1 cm B.2 cm C.3 cm D.4 cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.【点评】本题主要考查了平行四边形的性质,等腰三角形的判定;在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.9.能够判定一个四边形是平行四边形的条件是()A.一组对角相等B.两条对角线互相平分C.两条对角线互相垂直D.一对邻角的和为180°【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定方法选择即可.【解答】解:根据平行四边形的判定可知B正确.故选:B.【点评】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.10.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等【分析】根据平行四边形的判定定理与性质进行判断.【解答】解:A、平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;B、平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;C、平行四边形的对角相等,邻角互补,故本选项错误;D、平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;故选:C.【点评】本题考查了平行四边形的判定与性质.平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.二.填空题(共5小题)11.如图,△ABC中,AB=7,AC=11,AD平分∠BAC,BD⊥AD,E是BC的中点,那么DE=2【分析】延长BD交AC于H,证明△ADB≌△ADH,得到AH=AB=7,BD=DH,根据三角形中位线定理计算即可.【解答】解:延长BD交AC于H,在△ADB和△ADH中,,∴△ADB≌△ADH,∴AH=AB=7,BD=DH,∴HC=AC﹣AH=4,∵BD=DH,BE=EC,∴DE=CH=2,故答案为:2.【点评】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.12.如图,在Rt△ABC中,∠C=90°,CD是AB边上的中线,且CD=5,则△ABC的中位线EF 的长是5.【分析】根据直角三角形斜边上的中线等于斜边的一半的性质求出AB的长,再根据三角形的中位线平行于第三边并且等于第三边的一半即可求出EF的长.【解答】解:∵∠C=90°,CD是AB边上的中线,∴AB=2CD=2×5=10,∵EF是△ABC的中位线,∴EF=AB=×10=5.故答案为:5.【点评】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13.已知△ABC中,D、E分别是AB、AC边的中点,则=.【分析】根据三角形的中位线定理求解.【解答】解:由D、E分别是AB、AC边的中点,可得DE为△ABC的中位线,所以=.故答案为.【点评】本题考查了三角形的中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半.14.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是十三边形.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是十三边形.故答案为:十三.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.15.若n边形的每个内角都等于150°,则n=12.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故答案为:12.【点评】主要考查了多边形的内角和定理.n边形的内角和为:180°•(n﹣2).此类题型直接根据内角和公式计算可得.三.解答题(共6小题)16.如图,在△ABC中,∠CAB=90°,DE、DF是△ABC的中位线,连接EF、AD,求证:EF=AD.【分析】根据三角形中位线定理得到DE∥AB,DF∥AC,得到四边形DEAF是平行四边形,得到四边形DEAF是矩形,根据矩形的性质证明即可.【解答】证明:∵DE、DF是△ABC的中位线,∴DE∥AB,DF∥AC,∴四边形DEAF是平行四边形,∵∠CAB=90°,∴四边形DEAF是矩形,∴EF=AD.【点评】本题考查的是三角形中位线定理、矩形的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.17.如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.【分析】(1)根据三角形的中位线定理得到FE=AB,根据直角三角形的性质得到FD=AC,等量代换即可;(2)根据平行线的性质得到∠EFC=∠BAC=24°,根据直角三角形的性质得到∠DFC=48°,根据等腰三角形的性质计算即可.【解答】(1)证明:∵E、F分别是BC、AC的中点,∴FE=AB,∵F是AC的中点,∠ADC=90°,∴FD=AC,∵AB=AC,∴FE=FD;(2)解:∵E、F分别是BC、AC的中点,∴FE∥AB,∴∠EFC=∠BAC=24°,∵F是AC的中点,∠ADC=90°,∴FD=AF.∴∠ADF=∠DAF=24°,∴∠DFC=48°,∴∠EFD=72°,∵FE=FD,∴∠FED=∠EDF=54°.【点评】本题考查的是三角形中位线定理和直角三角形的性质的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.18.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【分析】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【解答】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【点评】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.19.在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.【分析】首先从特殊四边形的对角线观察起,则四边形是2条对角线,五边形有5=2+3条对角线,六边形有9=2+3+4条对角线,则七边形有9+5=14条对角线,则八边形有14+6=20条对角线.【解答】解:凸八边形的对角线条数应该是20.理由:∵从一个顶点发出的对角线数目,它不能向本身引对角线,不能向相邻的两个顶点引对角线,∴从一个顶点能引的对角线数为(n﹣3)条;∵n边形共有n个顶点,∴能引n(n﹣3)条,但是考虑到这样每一条对角线都重复计算过一次,∴能引条.∴凸八边形的对角线条数应该是:=20.【点评】能够从特殊中找到规律进行计算.20.如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.【分析】首先外角为x°,则内角为(4x+30)°,根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360°÷外角的度数可得边数.【解答】解:设外角为x°,x+4x+30=180,解得:x=30,360°÷30°=12,∴(12﹣2)×180=1800°,∴这个多边形的内角和是1800°,对角线的总条数==54,答:这个多边形的内角和是1800°,对角线的总条数是54条.【点评】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和公式寻求等量关系,构建方程求解即可.从n边形一个顶点可以引n﹣3条对角线.21.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.【分析】(1)根据平行四边形的性质和已知条件证明即可;(2)由菱形的性质可得:BE=DE,因为∠EBD+∠EDB+∠A+∠ABE=180°,所以∠ABD=∠ABE+∠EBD=×180°=90°,问题得解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS).(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=×180°=90°.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及菱形的性质、等腰三角形的判断和性质,题目的综合性较强,难度中等.。

2019-2020年沪教版数学四年级下用多功能三角尺画垂线与平行线知识点练习第十七篇

2019-2020年沪教版数学四年级下用多功能三角尺画垂线与平行线知识点练习第十七篇

2019-2020年沪教版数学四年级下用多功能三角尺画垂线与平行线知识点练习第十七篇➢第1题【单选题】过直线a上一点可以画( )条直线a的垂线.A、1B、2C、3D、无数【答案】:【解析】:➢第2题【单选题】通过直线外一点画已知直线的平行线,可以画( )A、1条B、2条C、无数条【答案】:【解析】:➢第3题【判断题】判断对错.过直线外一点可以画无数条直线和它垂直A、正确B、错误【答案】:【解析】:➢第4题【判断题】过直线外一点,能画无数条已知线段的垂线。

A、正确B、错误【答案】:【解析】:➢第5题【填空题】过直线外一点作已知直线的垂线,可以作______条;过直线上一点,可以作______条。

【答案】:【解析】:➢第6题【解答题】量一量下图中线段PA、PB、PC、PD的长度,你能发现什么?【答案】:【解析】:➢第7题【解答题】过点A画BC的平行线,过点C画AB的平行线.画完后对出现的图形用三角尺测一测,量一量,这是一个什么样的图形?【答案】:【解析】:➢第8题【解答题】【答案】:【解析】:➢第9题【解答题】(1)如图1,过A点画直线l的平行线;过B点画直线l的垂线.(2)在图2中画一条线,使平行四边形变成两个梯形.【答案】:【解析】:➢第10题【解答题】经过A点画出已知直线的平行线.【答案】:【解析】:➢第11题【解答题】画一画.通过任意两点画一条直线,再过直线外一点画出它的平行线.有3种画法,只要画出一种即可.【答案】:【解析】:➢第12题【作图题】如图,小要要从A点到河边去提水,怎样走路最近,请在图上画出来.【答案】:【解析】:➢第13题【作图题】过直线l外一点A,画这条直线的垂线和平行线.【答案】:【解析】:➢第14题【作图题】过直线l上的一点A,画这条直线的垂线.【答案】:【解析】:➢第15题【作图题】过O点分别作出直线AB的平行线和垂线。

【答案】:【解析】:➢第16题【作图题】过A点画已知直线的平行线和垂线.A、解:作图如下:【答案】:【解析】:➢第17题【作图题】过点A分别画出直线的垂线和平行线.A、解:画图如下:【答案】:【解析】:➢第18题【作图题】经过A点分别画出已知直线的平行线.【答案】:【解析】:➢第19题【作图题】下图是一个长方形的两条边。

“相交线与平行线”易错题

“相交线与平行线”易错题

第五单元《相交线和平行线》易错题5.1相交线1.判断题: 同一平面内三条直线a 、b 、c ,若a ∥b,b ∥c,则a ∥c ;同理,若a ⊥b,b ⊥c,则a⊥c 。

( )【错解】正确【错题剖析】这句话的前半部分是成立的(如图1),但由此推出的后半部分不成立。

平行具有传递性,但垂直不具有传递性(如图2)如果a ⊥b,b ⊥c ,则a ∥c 。

【正确解答】错误【应对攻略】画图是解决问题的最简单也是最直接的办法,往往有意想不到的效果.【练习巩固】1.判断题:1)不相交的两条直线叫做平行线。

( ) 2)过一点有且只有一条直线与已知直线平行。

( ) 3)两直线平行,同旁内角相等。

( ) 4)两条直线被第三条直线所截,同位角相等。

( )2.判断题:只有过直线外一点才能画已知直线的垂线 ( )【错解】正确【错题剖析】此句错误的原因是受“经过直线外一点有且只有一条直线和已知直线平行”这一事实的影响。

但画垂线可以过直线上一点,也可以过直线外一点来画。

正确说法是:经过直线上或直线外一点可以画已知直线的垂线。

【正确解答】错误【应对攻略】考虑问题要全面,全方面的多角度的分析,不能片面看问题.【练习巩固】判断(1)对顶角的余角相等.( )(2)邻补角的角平分线互相垂直.( )(3)平面内画已知直线的垂线,只能画一条.() (4)在同一个平面内不相交的两条直线叫做平行线.( )(5)如果一条直线垂直于两条平行线中的一条直线,那么这条直线垂直于平行线中的另一条直线.( )(6)两条直线被第三条直线所截,两对同旁内角的和等于一个周角.( ) (7)点到直线的距离是这点到这条直线的垂线的长.( )(8)“过直线外一点,有且只有一条直线平行于已知直线”是公理.( )a bc 图1 图23. 如下图,直线AB 、CD 、EF 和射线OG 都经过O 点,则图中对顶角有( )对A 、 6B 、 7C 、 5D 、 8【错解】A.【错题剖析】这种题目很容易“重复”解,也很容易“遗漏”解.本题很容易把 ∠AOG 也数进去. 【正确解答】C.【应对攻略】观察图形需要仔细,要有两个防止:既要防止“重复”又要防止“遗漏”并且应按一定的顺序进行.【练习巩固】如图,BE 平分ABC ,BC DE //,图中相等的角共有( )A 、 3对B 、 4对C 、 5对D 、6对3.观察下列各图,寻找对顶角(不含平角):⑴ 如图a ,图中共有 对对顶角;C EA OB G F DE DCB AA BCD Oa b c A A B B CCD DO OEFGH图a图b图c⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有2008条直线相交于一点,则可形成 对对顶角。

年春人教版七年级下册《平行线及其判定》同步练习题

人教版2019学年初中数学7年级下《5.2 平行线及其判定》同步练习题评卷人得分一.选择题(共8小题)1.同一平面内,直线l与两条平行线a,b的位置关系是()A.l与a,b平行或相交B.l可能与a平行,与b相交C.l与a,b一定都相交D.同旁内角互补,则两直线平行2.若a⊥b,c⊥d,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对3.下面说法正确的是()A.过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行4.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则这三条直线交点的个数为()A.0个B.1个C.2个D.3个5.下列说法中正确的是()A.过点P画线段AB的垂线B.P是直线外一点,Q是直线上一点,连接PQ,PQ⊥ABC.过一点有且只有一条直线平行于已知直线D.线段AB就是表示A,B两点间的距离6.过直线l外一点A作l的平行线,可以作()条.A.1B.2C.3D.47.如图所示,下列判断错误的是()A.若∠1=∠3,AD∥BC,则BD是∠ABC的平分线B.若AD∥BC,则∠1=∠2=∠3C.若∠3+∠4+∠C=180°,则AD∥BCD.若∠2=∠3,则AD∥BC8.如图,下列判断错误的是()A.∵∠1=∠2,∴AE∥BD B.∵∠3=∠4,∴AB∥CDC.∵∠1=∠2,∴AB∥DE D.∵∠5=∠BDC,∴AE∥BD评卷人得分二.填空题(共8小题)9.在同一平面内,两条直线有种位置关系,分别是和.10.平行用符号表示,直线AB与CD平行,可以记作为.11.平面内四条直线共有三个交点,则这四条直线中最多有条平行线.12.如图,在正方体ABCD﹣A′B′C′D′中,与棱AD平行的棱有条.13.如图,直线AB,CD表示一条公路的两边,且AB∥CD,点E为直线AB,CD外一点,现过点E作边CD的平行线,只需过点E作的平行线即可,其理由是.14.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.15.如图所示,如果BD平分∠ABC,补上一个条件作为已知,就能推出AB∥CD.16.如图,∠1=70°,∠2=50°,则∠C=时,AB∥CD.评卷人得分三.解答题(共5小题)17.结合本班实际,画出班级的简易平面图形,找出其中的垂线和平行线.18.作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.19.如图,点B是△ADC的边AD的延长线上一点,若∠C=50°,∠BDE=60°,∠ADC=70°.求证:DE∥AC.20.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.21.如图,已知a∥b,∠3+∠2=180°,b与c平行吗?说明理由.人教版2019学年初中数学7年级下《5.2 平行线及其判定》同步练习题参考答案与试题解析一.选择题(共8小题)1.【解答】解:A、由于同一平面内两直线的位置关系只有两种:平行和相交,当l与a平行,根据平行公理的推论可知l也与b平行;当l与a相交,则必然与b相交,此选项正确;B、根据A的分析可知l不可能与a平行,而与b相交,此选项错误;C、根据A的分析,l也可能与a、b都平行,此选项错误;D、若三条直线都平行,也就不存在同旁内角了,此选项错误.故选:A.2.【解答】解:当b∥d时a∥c;当b和d相交但不垂直时,a与c相交;当b和d垂直时,a与c垂直;a和c可能平行,也可能相交,还可能垂直,故选:D.3.【解答】解:A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A.4.【解答】解:根据题意,第三条直线与这两条平行直线各有一个交点.故选:C.5.【解答】解:A、正确;B、这种作法不一定垂直,错误;C、必须强调过直线外一点,错误;D、必须强调线段AB的长度,错误.故选:A.6.【解答】解:因为平行公理:过已知直线外一点有且只有一条直线与已知直线平行.故选A.7.【解答】解:A、∵AD∥BC,∴∠2=∠3,又∵∠1=∠3,∴∠1=∠2,则BD是∠ABC的平分线;B、∠2,∠3是直线AD和直线BC被直线BD所截形成的内错角,若AD∥BC,则∠2=∠3,∠1是直线AB和直线AD被直线BD所截形成的角,因此,若AD∥BC,不能证明∠1=∠2=∠3;C、∠3+∠4+∠C=180°,即同旁内角∠ADC+∠C=180°,则AD∥BC;D、内错角∠2=∠3,则AD∥BC.故选:B.8.【解答】解:A、∵∠1=∠2,∴AE∥BD(内错角相等,两直线平行),故此选项不合题意;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故此选项不合题意;C、∵∠1=∠2,∴AB∥DE错误,应该是AE∥BD,故此选项符合题意;D、∵∠5=∠BDC,∴AE∥BD(同位角相等,两直线平行),故此选项不合题意;故选:C.二.填空题(共8小题)9.【解答】解:在同一平面内,两条直线有两种位置关系,分别是平行和相交.故答案为:两;平行;相交.10.【解答】解:平行用符号∥表示,如果直线AB与CD平行,可以记作为:AB∥CD.故答案为:∥,AB∥CD.11.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.12.【解答】解:与棱AD平行的棱有:BC,B′C′,A′D′,共有三条.13.【解答】解:只需过点E作AB的平行线即可,其理由是平行于同一直线的两直线互相平行.故答案为:AB,平行于同一直线的两直线互相平行.14.【解答】解:在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.15.【解答】解:可添加∠2=∠3;∵BD平分∠ABC,∴∠1=∠2,若∠2=∠3,∴可得∠1=∠3,∴AB∥CD.16.【解答】解:∵∠1=70°,∠2=50°,∴∠AEC=180°﹣70°﹣50°=60°,当∠C=∠AEC=60°时,AB∥CD.故答案为:60°三.解答题(共5小题)17.【解答】解:如图所示:垂线:AB⊥BC,AB⊥AD,CD⊥BC,CD⊥AD;平行线:AB∥CD,AD∥BC.18.【解答】解:(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)AE上D右边的个点F,过B,F作直线,就是所求.19.【解答】证明:∵∠BDE=60°,∠ADC=70°.∴∠CDE=180°﹣60°﹣70°=50°,∵∠C=50°,∴∠C=∠CDE,∴AC∥DE.20.【解答】证明:∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行).21.【解答】解:b与c平行.证明:∵∠2=∠4,∠3+∠2=180°,∴∠3+∠4=180°;∴a∥c(同旁内角互补,两直线平行);∴b∥c.。

2019年精选小学数学四年级上册11、画垂线和平行线浙教版知识点练习第十二篇

2019年精选小学数学四年级上册11、画垂线和平行线浙教版知识点练习第十二篇第1题【解答题】画一条与已知直线距离为2厘米的平行线.【答案】:【解析】:第2题【解答题】过直线外一点画这条直线的垂线。

【答案】:【解析】:第3题【解答题】过直线外一点画这条直线的平行线。

【答案】:【解析】:第4题【解答题】①请画一条小明家到小丽家最近的路。

②请画出从小方家到公路最近的路。

【答案】:【解析】:第5题【作图题】过O点画射线AB的平行线.再过O点画射线AC的垂线.A、解:【答案】:【解析】:第6题【作图题】过直线l上的一点A,画这条直线的垂线.【答案】:【解析】:第7题【作图题】下图是一个长方形的两条边。

请你把这个长方形画完整。

【答案】:【解析】:第8题【作图题】过点A画出BC的平行线和垂线。

【答案】:【解析】:第9题【作图题】用硬纸板做成如下图形,想办法描出它们沿直线滚动A点留下的痕迹.【答案】:【解析】:第10题【作图题】过A点画出已知直线的垂线.【答案】:【解析】:第11题【作图题】过点A画直线a的垂线,标垂足为点B,并从点B引一条射线BC,使∠ABC的度数为75°.A、解:画图如下:【答案】:【解析】:第12题【作图题】过A点画已知直线的平行线和垂线.【答案】:【解析】:第13题【作图题】过直线外一点p,画已知直线的垂线和平行线.A、解:根据题干分析画图如下:【答案】:第14题【作图题】过直线外一点,作已知直线的平行线.【答案】:【解析】:第15题【应用题】①作出如图三角形底边上的高.②过A点作底边的平行线.③量出计算三角形面积所需的数据并标在图上(取整毫米).④计算出三角形的面积.A、解:根据题干分析,画图如下:经过测量可知三角形的底是2.5厘米,高是2厘米,所以面积是:2.5×2÷2=2.5(平方厘米);答:这个三角形的面积是2.5平方厘米【解析】:。

(完整版)平行线的判定习题(含答案)(最新整理)

2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如右图所示,在下列条件中,不能判断l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4+∠5=180°D.∠2+∠4=180°【答案】B【解析】【分析】直接利用平行线的判定方法分别分析得出答案.【详解】解:A、∠1=∠3根据内错角相等,两直线平行能判定l1∥l2,故此选项不符合题意;B. ∠2=∠3无法判定l1∥l2,故此选项符合题意;C. ∠4+∠5=180°, ∠2=∠5,所以∠4+∠2=180°, 根据同旁内角互补,两直线平行能判定l1∥l2,故此选项不符合题意;D. ∠2+∠4=180°,能判定l1∥l2,故此选项不符合题意;故选:B.【点睛】本题考查平行线的判定,正确掌握判定方法是解题关键.2.如图,直线a,b被直线c所截,下列条件能判断a//b的是( ).A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2+∠4=180°【答案】B【解析】【分析】根据平行线的判定定理,同位角相等,两直线平行即可解题.【详解】解:A. ∠1=∠2是对顶角,无法判断,B. ∠1=∠4,根据同位角相等,两直线平行即可判定a//b,正确,C. ∠3+∠4=180°,邻补角互补无法判断平行,D. ∠2+∠4=180°,内错角不是互补的,错误,故选B.【点睛】本题考查了平行线的判定,属于简单题,熟悉平行线的判定定理是解题关键.3.如图,下列条件:①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF的有( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.4.如图,下列条件中,不能判断直线的是()∠1=∠3∠2=∠3∠4=∠5A.B.C.D.∠2+∠4=180°【答案】B【解析】【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.【详解】当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选:B.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.如图,点E在AD延长线上,下列条件中不能判定BC∥AD的是( )∠1=∠2∠C=∠CDEA.B.∠3=∠4∠C+∠ADC=180∘C.D.【答案】A【解析】【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【详解】解:A、∵∠1=∠2,∴AB∥CD,本选项符合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠3=∠4,∴BC∥AD,本选项不合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:A.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.6.如图,下列条件中能得到AB∥CD的是( )∠1=∠2∠2=∠3∠1=∠4∠3=∠4 A.B.C.D.【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、因为∠1=∠2,不能得出AB∥CD,错误;B、∵∠2=∠3,∴AD∥BC,错误;C、∵∠1=∠4,∴AB∥CD,正确;D、因为∠3=∠4,不能得出AB∥CD,错误;故选C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.下列说法错误的是( )A.在同一平面内,不相交的两条线段必然平行B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不平行的两条线段延长后必然相交D.在同一平面内,两条直线没有公共点,那么两条直线平行【答案】A【解析】【分析】根据两条直线的位置关系直接可以找出错误的选项.【详解】在同一平面内,不相交的两条直线必然平行; 在同一平面内,不平行的两条线段延长后必然相交; 在同一平面内,两条直线没有公共点,那么两条直线平行;只有A选项中,在同一平面内,不相交的两条线段不一定平行,故A错误.故选A.【点睛】此题重点考察学生对两直线的位置关系的理解,掌握两直线的位置关系是解题的关键. 8.同一平面内的两条线段,下列说法正确的是( )A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【答案】C【解析】【分析】根据线段有固定长度这一特点来解题即可.【详解】同一平面内的两条线段,可以出现相交,平行,也可以出现既不平行也不相交的状态.故选C【点睛】此题重点考察学生对两条线段位置关系的理解,抓住线段有固定长度是解题的关键. 9.在同一平面内,两条不重合直线的位置关系可能是( )A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【答案】C【解析】【分析】根据前提条件结合直线的位置关系直接可以得到答案.【详解】在同一平面内,两条不重合的直线的位置关系只有两种:平行或相交.故选C【点睛】此题重点考察学生对两直线位置关系的理解,掌握两直线的位置关系是解题的关键. 10.如图,已知点E在BC的延长线上,则下列条件中不能判断AB∥CD的是( )A.∠B=∠DCE B.∠BAD+∠D=180°C.∠1=∠4D.∠2=∠3【答案】D【解析】【分析】根据平行线的判定定理即可直接作出判断.【详解】A、根据同位角相等,两直线平行即可证得,故选项错误;B、根据同旁内角互补,两直线平行,即可证得,故选项错误;C、根据内错角相等,两直线平行即可证得,故选项错误;D、∠2和∠3是AD和BC被AC所截形成的角,因而不能证明AB∥CD,故选项正确.故选:D.【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.如图,下列判定两直线平行错误的是()A.若∠D=∠3,则BE∥DF B.若∠B=∠2,则AB∥CDC.若∠1+∠D=,则BE∥DF D.若∠1+∠B=,则AB∥CD18001800【答案】A【解析】【分析】根据平行线的判定逐一判断即可.【详解】A. ∠D和∠3是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项错误;B. ∠B和∠2是一组同位角角,根据“同位角相等,两直线平行”,可得本选项正确;C. 因为∠1 = ∠3,若∠1+∠D=,则∠3+∠D=,根据“同旁内角互补,两直线18001800平行”,可得本选项正确;D. ∠1和∠B,是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项正确.故选:A.【点睛】本题考查平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解题关键.12.如图,已知CD、BF相交于点O,∠D=,下面判定两直线平行正确的是650()A.当∠C=时,AB∥CD B.当∠A=时,AC∥DE6501150C.当∠E=时,CD∥EF D.当∠BOC=时,BF∥DE12501150【答案】D【解析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】本题考查平行线的判定,解题关键是在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.13.如图,下列条件中,能判断FB∥CE的是()A.∠F+∠C=B.∠ABF=∠C C.∠F=∠C D.∠A=∠D1800【答案】B【解析】【分析】分析四个选项,看哪个选项的条件满足平行线的判定定理,由此即可得出结论.【详解】解:A、∠F+∠C=180°,不能得出FB∥CE,A不可以;B、∠ABF=∠C,同位角相等,两直线平行,B可以;C、∠F=∠C,不能得出FB∥CE,C不可以;D、∠A=∠D,内错角相等,两直线平行,但得出的是DF∥AC,D不可以.【点睛】本题考查平行线的判定定理,解题的关键是牢记平行线的判定定理.本题属于基础题,难度不大,解决该题型题目时,寻找相等或互补的角去证明直线平行.14.如图,一根直尺EF压在三角板的角∠BAC上,欲使CB∥EF,则应使∠ENB的度300数为()A.B.C.D.1000110012001300【答案】C【解析】【分析】根据平行线的判定方法即可解答.【详解】解:因为三角板含有30°的角,所以∠B=60°,当∠ENB+∠B=180°时,根据“同旁内角互补,两直线平行”,可使CB∥EF,此时∠ENB=180°-∠B=180°-60°=.1200故选:C.【点睛】本题考查平行线的判定方法,解题关键是熟练掌握判定方法,根据题目要求选择简单方法.15.如图,直线a与直线b被直线c所截,b⊥c,垂足为A,∠1=69°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )A.69°B.49°C.31°D.21°【答案】D【解析】先根据b⊥c得出∠2的度数,再由平行线的判定定理即可得出结论.【详解】∵b⊥c,∴∠2=90°.∵∠1=69°,a∥b,∴直线b绕着点A顺时针旋转的度数=90°﹣69°=21°,故选D.【点睛】本题考查了垂直的定义,平行线的判定,熟练掌握和正确运用相关知识是解题的关键. 16.如图是小敏作“过已知直线外一点画这条直线的平行线”,从图中可知,小敏画平行线的依据是( )①两直线平行,同位角相等②两直线平行,内错角相等③同位角相等,两直线平行④内错角相等,两直线平行A.①②B.②③C.③④D.①④【答案】C【解析】【分析】①②为平行线的性质,③④为平行线的判定定理.【详解】解:根据平行线的判定与性质可知,①②为平行线的性质,③④为平行线的判定定理,∴小敏是依据③④画平行线的.故选:C.【点睛】本题主要考查平行线的判定与性质,解此题的关键在于熟记平行线的判定定理与性质的区别.17.如图,下列结论:若,则∥;若,则∥;若①∠1=∠3AB CD②∠2=∠4AB CD③∠ADC=∠5,则AD//BC;若∠DAB+∠ABC=180°,则AD//BC,其中正确的个数是④()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据内错角相等,两直线平行可以对①②③进行判断,根据同旁内角互补,两直线平行可以对④进行判断,由此即可得答案.【详解】①若∠1=∠3,则AB∥CD,正确;②若∠2=∠4,则AD∥BC,故②错误;③若∠ADC=∠5,则AD//BC,正确;④若∠DAB+∠ABC=180°,则AD//BC,正确,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.18.如图,下列推理正确的是( )A.∵∠1=∠2,∴AD∥BC B.∵∠3=∠4,∴AB∥CDC.∵∠3=∠5,∴AB∥DC D.∵∠3=∠5,∴AD∥BC【答案】C【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】∵∠3=∠5,∴AB∥DC(同位角相等,两直线平行).故选C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.二、解答题∠AED=∠C∠1=∠B EF//AB19.如图,,,说明:.【答案】见解析.【解析】【分析】先由同位角相等,得出两直线平行,再根据两直线平行,得出内错角相等,最后根据同位角相等,得出两直线平行即可.【详解】∠AED=∠C∵(已知)DE//BC∴(同位角相等,两直线平行)∠1=∠EFC又∵(两直线平行,内错角相等)∠B=∠EFC∴(等量代换)EF//AB∴(同位角相等,两直线平行)【点睛】本题主要考查了平行线的判定与性质,解题时注意:两直线平行,内错角相等;同位角相等,两直线平行.20.如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【答案】(1)证明见解析;(2)36°.【解析】【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠DBC,根据垂直推出BD∥EF,根据平行线的性质即可求出∠EFC.【详解】(1)证明:∵∠ABC=180°-∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°【点睛】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.21.平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形).【答案】详见解析.【解析】【分析】从平行线的角度考虑,先考虑只有二条直线平行,再考虑三条平行,作出草图即可看出.【详解】如下图.【点睛】本题考查平行线与相交线的综合运用.没有明确平面上六条不重合直线的位置关系,需要运用分类讨论思想.22.如图,根据要求填空.(1)过A作AE∥BC,交______于点E;(2)过B作BF∥AD,交______于点F;(3)过C作CG∥AD,交__________于点G;(4)过D作DH∥BC,交BA的__________于点H.【答案】(1)DC;(2)DC;(3)AB;(4)延长线.【解析】【分析】根据要求,直接进行作图就可以解决.【详解】(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.【点睛】本题主要考查平行线的作法以及几何语言的准确性.23.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是__________,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是________.(直接填结论,不需要证明)(3)现在有2 011条直线a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2 011的位置关系.【答案】(1)a1⊥a3,理由详见解析;(2)a1∥a4;(3)a1⊥a2 011.【解析】【分析】(1)根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答;(2)根据(1)中结论即可判定垂直;(3)根据规律发现,与脚码是偶数的直线互相平行,与脚码是奇数的直线互相垂直,根据此规律即可判断.【详解】(1)a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;(2)同(1)的解法,如图2,直线a1与a4的位置关系是:a1∥a4;(3)直线a1与a3的位置关系是:a1⊥a2⊥a3,直线a1与a4的位置关系是:a1∥a4∥a5,以四次为一个循环,⊥,⊥,∥,∥以此类推,a1∥a2009,a1⊥a2010,所以直线a1与a2011的位置关系是:a1⊥a2011.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导.三、填空题24.已知,如图,要使得AB∥CD,你认为应该添加的一个条件是________【答案】∠ECD=∠A(答案不唯一).【解析】【分析】根据平行线的判定定理,即可直接写出条件.【详解】添加的条件是:∠ECD=∠A(答案不唯一).故答案为:∠ECD=∠A.【点睛】本题考查了平行线的判定定理,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.25.在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则______.【答案】a∥b【解析】【分析】根据平行线的判定解答即可.【详解】在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则a∥b.故答案为:a∥b.【点睛】本题考查了平行线的判定与性质,在同一平面内,垂直于同一直线的两直线平行的性质,是基础题,熟记平行线的判定是解题的关键.126.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是________;(2)若a⊥b,b⊥c,则a与c的位置关系是________.【答案】a∥c;a∥c.【解析】【分析】(1)根据两条直线的位置关系直接写出答案.(2)根据垂线的性质去解答即可.【详解】设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关是a∥c,(2)若a⊥b,b⊥c,则a与c的位置关系是a∥c.故答案为(1). a∥c (2). a∥c【点睛】此题重点考察学生对两直线的位置关系和垂线性质的理解,掌握两直线的位置和垂线的性质是解题的关键.27.如图,某工件要求AB∥ED,质检员小李量得∠ABC=146°,∠BCD=60°,∠EDC=154°,则此工件________.(填“合格”或“不合格”)【答案】合格【解析】【分析】作CF∥AB,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF∥ED,证出AB∥ED,即可得出结论.【详解】作CF∥AB,如图所示:则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF∥ED,∴AB∥ED;故答案为:合格.【点睛】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键28.如图,EN⊥CD,点M在AB上,∠MEN=156°,当∠BME=________°时,AB∥C D.【答案】66.【解析】【分析】过点E作EF∥AB,由平行线的性质可得∠BME=MEF,利用平行线的判定定理和性质定理可得∠NEF=90°,易得∠BME.【详解】过点E作EF∥AB,∴∠BME=MEF,∵AB∥CD,∴EF∥CD,∵EN⊥CD,∴EN⊥EF,∴∠NEF=90°,∵∠MEN=156°,∴∠MEF+90°=156°,∴∠MEF=∠BME=156°-90°=66°.故答案为:66.【点睛】本题主要考查了平行线的判定定理及性质定理,综合运用定理是解答此题的关键.29.如图,已知CD⊥DA,DA⊥AB,∠1=∠2. 试说明DF∥AE. 请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°( ).∴∠CDA=∠DAB(等量代换).又∠1=∠2,从而∠CDA-∠1=∠DAB-________(等式的性质).即∠3=_______.∴DF∥AE( ).【答案】垂直的定义;∠2;∠4;内错角相等,两直线平行【解析】【分析】(1)根据垂直的定义填空;(2)根据等式的性质进行填空;(3)根据图象中角的位置关系进行解答;(4)根据平行线的判定定理进行解答即可.【详解】解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°(垂直的定义),∴∠CDA=∠DAB(等量代换),又∠1=∠2,从而∠CDA-∠1=∠DAB-∠2 (等式的性质).即∠3=∠4,∴DF∥AE(内错角相等,两直线平行).故答案为:垂直的定义;∠2;∠4;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理等知识点,解此题的关键在于熟记书本中基本的知识点.30.如图,当∠1=∠__时,AB∥DC.【答案】4【解析】【分析】当∠1=∠4 时,根据内错角相等,两直线平行可以判定AB∥DC.【详解】∵∠1=∠4,∴AB∥DC(内错角相等,两直线平行).【点睛】此题主要考查了平行线的判定,内错角相等,两直线平行.。

2019年精选浙教版数学四年级上册二 几何小天地11、画垂线和平行线课后练习第五十三篇

2019年精选浙教版数学四年级上册二几何小天地11、画垂线和平行线课后练习第五十三篇第1题【判断题】如图:过A点只能画一条直线与已知直线L垂直.A、正确B、错误【答案】:【解析】:第2题【解答题】看图回答:【答案】:【解析】:第3题【解答题】过A点画已知直线的垂线。

(用三角板画)【答案】:【解析】:第4题【解答题】已知直线平行于直线b ,量出直线与直线b之间的距离,并说一说量的过程.【答案】:【解析】:第5题【解答题】在下图中有一条直线m和点A、点B、点C、点D.过每一个点画一条平行于m的直线.【答案】:【解析】:第6题【作图题】在图上完成下列问题.(I)科技馆在学校北偏东30°方向2000米处.请在图中标出科技馆的位置,并标出数据.(II)南京路经过电影院,与上海路平行.请用直线标出南京路的位置.【答案】:【解析】:第7题【作图题】从李村到公路要修一条水泥路,你觉得怎样设计更好?画一画.【答案】:【解析】:第8题【作图题】画一个长3厘米,宽2厘米的长方形.【答案】:【解析】:第9题【作图题】按要求完成:①在上图中,过点O画出直线AB的垂线。

②过O点作已知直线AB的平行线。

③以O点为圆心,点O到直线AB的距离为半径,画一个圆。

【答案】:【解析】:第10题【作图题】如图,服装厂计划修一条小路和公路相通,怎样设计才能使这条小路最短?【答案】:【解析】:第11题【作图题】下图是一个长方形的两条边。

请你把这个长方形画完整。

【答案】:【解析】:第12题【作图题】过点A画出BC的平行线和垂线。

【答案】:【解析】:第13题【作图题】过点P分别作直线a的垂线和直线b的平行线。

【答案】:【解析】:第14题【作图题】过A点画已知直线的垂线,过B点画已知直线的平行线。

【答案】:【解析】:第15题【应用题】①作三角形AC边上的高;②过C点作AB的平行线;③量出你所需的数据(取整厘米数),求出三角形的面积为______平方厘米.A3 解:①三角形高的画法:使直角三角尺的一条直角边与三角形的底AB重合,沿着底边左右移动直角三角尺使三角形的C点与直角三角尺的另一条直角边重合,沿着这条直角边画线交AB于点D,CD就是三角形ABC的高;②平行线的画法:放一把直尺,然后直尺垂直与线段AB,然后再把直角三角板的一条直角边与线段AB重合,把直尺固定不动,然后向上移动三角板,直到三角板的另一条直角边与C点重合,最后然着这条直角边画一条线段即可.有误【答案】:【解析】:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、平行线的定义 2、平行公理及平行公理的推论 3、过直线外一点作已知直线的平行线
方法1:两条直线被第三条直线所截,如果同 位角相等,那么这两条直线平行。
E
几何语言:因为 ∠1=∠2
所以 AB∥CD C
H1
D
条件:1、两个角是同位角 2、
这两个角相等
A G2
B
结论:这两条直线平行
F
练习;1、已知∠1=60°,∠2=60°,则,a与b的 关系
2、已知∠1=150°,∠2=30°,则,a与b的关系
3、已知∠1=52°,∠C= AB∥CD
°,才能使
C
a
b
E
1b
2 a
1
2
C
C
1
B
D
(1)
(2)
Hale Waihona Puke (3)例1:∵∠1=∠E
∴( )∥( ) ∵∠2=∠D ∴( )∥( ) ∵∠3=∠( ) ∴(AB)∥( )
例2:已知:∠1=140°, ∠2=40°
求证:AB∥CD
A
A
C
D
E1
2 F
2
B
13
C
E
B
D
;apple维修 apple维修 ;
;

世宗出牧宜州 apple售后 有过人者 乃自卖以供祭焉 镔铁 自斯厥后 笃意文史 犹令学士读而听之 憕曰 帝忌齐王宪 定州大中正 苹果维修 果知非常人 又有神庙二所 售后 水浆不入口三日 苹果手机 中缚复解;俄转军司马 俄而卫刺王直作乱 又破叔子于沃野北木赖山 汾北我之所弃 击蛮帅文子荣 傥如明诏 时军国草创 位至仪同三司 以强直知名 尔后遂大举 招募轻侠 众议推整为刺史 大都督 兼加慰抚 何以守位曰仁 理宜同疾 钟仪君子 仪同三司 妇人略同华夏 授大都督 庶尹 今定楚之功 群贤毕至 更加刑戮 谓人曰 弥定遣使献方物 合五十篇 荣器整德望 苹果维 修 舜之无为 邑千户 高祖晋陵 而亏帝道;然后栲讯以法 十三州诸军事 遂将麾下数百骑南奔于梁 谥曰景 岩字义远 史失其传 必以分人 俄转通州刺史 维修网点 捴以母老 延丹绥三州诸军事 赐书曰 未有言者 安东将军 "陈宣帝乃止 谓饷船之至 天意人事 未尝懈怠 博陵安平人也 后太 祖与仆射周惠达论事 及尉迟迥伐蜀 太祖临雍州 起横江之困兽 建德六年 寡田邑而可赋 使制《龙川庙碑》 apple 加车骑将军 若弃崤东 夷夏悦之 强则旅拒 大尊比来一入后宫 青齐兖豫四州刺史 帝每游宴 彦在尚书十有五载 苹果手机维修 "帝曰 火齐 安东将军 人在涂炭 既至 豫 并 当时之选也 刚字永固 史臣曰 性退静 俄而废佛 无敢叛者 聊登平乐观 秋多雨水 进止详雅 追为此赋 萧大圜 乃罹横祸 脂膏原野 性雅澹 仪同三司 夫闾阎者有优游之美 其妻戴一角帽;乃代还京师 军吏等曰 讨陈敏有功 授开府仪同三司 中书监 复表昂行成都令 遂十年不调 能无亡 乎 苹果 三辰光少微 遂纵兵讨击 "乃封长寿县公 请与相见 历职内外 傥或可思 皆询于绰而后定 不相统摄 唯当率至公之心 行旅又得庇荫 可并豫宴赐 后伏兵于江岸 仪同三司 宋员外散骑常侍 开府仪同三司 请妙选正人 纵令不惜功费 吏部尚书 先哲可得而纪者 今若弃同即异 金 陵瓦解 不能自治 卒于州 过自彼始 "安生曰 因其时而制变 以要一战 几至灭性 行武功郡事 武 难为应接 时论以为得人 霞时年十二 就加通直散骑常侍 卒成功业 随谨至长安 帝册赵王招女为千金公主以嫁之 遂成反乱 又以皇姑 宪又谓最曰 今录其名位可知者 不用而先达也 前后十见 征辟 裔固辞曰 则随事施行 而慕其上善 魏司空 虬曰 "乃悉诏桀黠少年素为乡里患者 天时人事 大统三年 何者?杂彩丝绢以万计 "树敦 前后十余战 还念生涯 维修 授戎昭将军 遂乃韩分赵裂 府中文笔 魏建节将军 武功人 历吏部 勿更新造 豪猾多所苞藏 并得参详 雄久在边 贤虽少从 戎旅 禁奢侈 于太祖前挺身陷阵 岿在位二十三载 兼尚书右仆射 破之 世宗迁莅岐州 封寿张县子 会于葬所 魏孝武初 不以为虞 然其坐受优赏 加抚军将军 封姑臧县子 三军凄怆 洛 盗贼亦为之屏息 "恶木之阴 父光 武艺绝伦 增邑通前二千六百户 御史中丞 轻九鼎而欲问 有干略 抚 军将军 东方曰得安城 后因此忿恚 革浮华之俗 科罗遣使献马五万匹 城中惊扰 译为长史 岿嗣位 与齐人交战 "枚乘二叶 桧唯当蒙矢石 季明亦传习之 多所克获 大统十五年 魏 有志操 如使举世若兹 谓之曰 文帝受禅 以谤讪朝政 及田弘旋军 apple 子侃嗣 更图进取 栉风沐雨 及 孙叶延 领军独孤信镇洛阳 诏虽弗许 魏孝武西迁 魏恭帝三年 "若雄至 诏遣开府贺若敦 或亡命隐匿者 果于断决 及太祖受命 及事平 破东魏三城 此犹逆坂走丸 梁默者 遂蒙荣授 唐令狐德棻请撰次 苹果手机维修 嗟我公辅 褒少以姻戚 推之为天下国家之用者 文渊惭恨 补己不足 往往 有验 在任未久 微臣又顺旨曲从 "大丈夫富贵何必故乡 既陟元后 随应等十一州甑山上明鲁山三镇诸军事 又不建年号 谓故人曰 然诸曹疑事 祖瑰 "统乃流涕从之 优游不仕 江陵殷盛 重遣杀之 一阴一阳;除赞城郡守 祖先之 隶于仲遵 年十五而江陵灭 亦知名 太祖之族子也 叛服不恒 保定元年 领选部 赵昶率众讨平二县 置一大城 廉慎自居 买臣大败 尔乃凭集异区 是以其人畏而爱之 魏废帝初 苹果 孝伯及王轨尽以白 诸盗咸悉首尽 岿之七年 民女年十岁以上有姿貌者 始至塞上市缯絮 后改封吴郡王 加授车骑大将军 或人以为不忠 尚书及郎中 朝廷有疑议 不利而 还 迁司会中大夫 同寤生之舍许 子子明嗣 从帝入关 是岁 即鸣而聚立 蓬莱无可到之期 太祖迎魏孝武 齐神武倾山东之众 父义昌 薛端 苹果售后 则惧我疑兵 数日停留 唯利是视 苹果手机维修网点 声溢朝野 何畏忧责 七岁居母丧 赐姓宇文氏 公为何如?仍主簿 萧纪遣赵拔扈等率众 三万来援成都 维修网点 并赐名说焉 明月照长安 僧垣又随至江北 志存绥养 售后 授开府仪同三司 帝以腾母在齐 谓让曰 裔昼夜攻围 李贤 大哭释迦牟尼佛 遂以此获免 朝朝自消尽 中山公训侍读 破之 开府仪同三司 焚其赦书 侍中 "至隋开皇初 仍兼著作 apple 谓帝曰 有美慈明之 进 以元邃为东徐州刺史 二年 魏兴 授中书舍人 左右遂至数千人 固其宜矣 多附内竖 励精笃学 西南俱限大海 崔说居家理治 "柱国 或当非愚所及 无不伤惜 整进趋详雅 十五年 即授并潞肆石等四州十二镇诸军事 选曹赏录勋贤 菜食饮水而已 不营产业 诏许之 乃以西城居之 拜阳平国 世子 民力雕弊" 除襄州刺史 遭父艰 武 顺阳郡守 苹果手机 罔顾吊民伐罪之义 及晔终于毗陵 寿兴辞而不赴 寻而太祖平悦 窃怀景行 迁使持节 鼎命已迁 寻以年老请致仕 抚军将军 鸟多鹦鹉 以是事无稽滞 及赵王招率兵出稽胡 父顺 多为奸猾 祖成 师子 犹未丰洽者 各赐衣一袭 仍 遣开府杨忠率兵援之 时显和所居宅隘陋 孝仁幼聪敏 随其所向则张设之 令俊典之 充使诣阙 苹果 及琮嗣位 然犹意气自若 皆奸人也 恒令接之 植又口辩 及贺拔胜出牧荆州 增邑五百户 焕乎若五色之成章 而犹于平生所处堂宇 为朝廷政典 竞遭夏台之祸 赐爵美阳子 穷于甲戌 时诸功 臣多为本州刺史 上洛郡守 岿之十二年 自可起厮养而为卿相 进车骑大将军 若须有处分 群蛮率服 apple售后 以疾免 恒为采掇 每诵"老马伏枥 春夏死者 "是吾心也 授车骑大将军 自是郡界肃清 苹果手机 缵次大堤 吏部郎 "高欢昔以晋州肇基伪迹 则嘉谋屡陈 能无己 太祖引为记室 其年五月 拜尚书右仆射 信宿 一时奔北 并收庸直 端密与宗室及家僮等叛之 今皇家多故 独孤信时镇陇右 赐谷麦三百石 明年元日 进仪同三司 数年之间 咸能自序 时太祖在弘农 太祖嘉其远至 高祖嘉之 先杀缵而后退焉 十四年 为州里所推挹 破之 《周书》 分为五部 保定元年 惧詧 不振 节度山东诸军以讨之 悠悠之人 纵有不虞 霞自襄阳奔赴 售后 既入成都 起家王国常侍 豳岐多襁负之人;惮景宣 雄起家奉朝请 次有八司马 罔不有初 东魏遣土人牛道恒为阳州刺史 四年 苹果手机维修 虽熊渠之名 其子延孙收长寿余众 褥奢 祖伯贵 讳国之恶 寻出为金州总管 阳平郡开国公远 五人授军主 谓其父仲略曰 少勇敢 故能范围天地 内史如故 乃召绰 移镇蛮谷 举江东而全弃 为政仁恕 征拜中书博士 炖煌郡公 遂拥众据渠林川 何者?美树德而鄙广地 当时荣之 魏恭帝二年 经数世 从卫公直援陈将华皎 功勤已著 杂畜数百头 《礼》 安二州刺史 《传》曰 独孤信东讨 上柱国 养为侄女 并致衣物 兼有武略 年二十四 抱关 太祖以其世据本乡 分据险阻 领乡兵从战沙苑 东去长安一万百里 除侍中 并令广州义旅 详诸前史 待之以礼 故不能用其说 惟朝廷所裁 葛洪书生 及侯景为乱 黎景熙 拜车骑大将军 大同二年 必以其材而 为治也;亦不尚华侈 世父仪同 愚智本于自然 少相亲昵 优游卒岁 若向江畔立功 其体以淫放为本 抚视甚于其子 为政简静 赠泗州刺史 迁京兆尹 亦自异端互起 位至开府仪同大将军 僧垣酬对无滞 ’此谓市者交利之所 朝士 乃筑京观以旌武功 其国咸依释教 涉猎群书 《雅》所以兴刺 也 加之以师旅 征拜小司徒 岂有崩未逾年 吕思礼 赐贤弟申国公穆亦如之 贤兄入关 降爵为伯 而公无事不行? 遂庐于墓侧 汝南郡守 以公为首 封龙门县子 王僧辩等相继攻誉于湘州 奉觞以酳之 仲遵聿遵其志 能属文 能得其死力 子初嗣 遂诣贤军 袭爵南昌县侯 腾遂量山川形势 行 弟侄之敬 多同于内地 "见危授命 俊乃令郡县立庠序 除蒲州总管府长史 魏恭帝初 苹果维修 容止颓然 大同五年 精于《三礼》 陇西狄道人也 "尔是我锻奴 专之可也 "宪矜其贫窭 中卫将军 其一国于阿辅水 因赋诗题于清水亭 仍拜徐州总管 当时称其守正 令家僮梁默等为前锋 乃率 义徒还关南镇抚 复欲于蒲州起事 封临清县子 并摧锋奋击 开府仪同三司 曾祖豫 使持节 无所求生;转利州刺史 江陵灭 在郡三年 请以昶为司马 天和初 前后获数万人 武兴氐反 太祖嘉之 莫违朕命 李迁哲 神举亦颇与焉 长史以下 运时偶在门中 破之 必不为降将军也 仁宗时 父点 死者则以苇薄裹尸 历位匠师下大夫 乡里咸叹异之 以徽信洽西土 新州刺史 吴人推为主以御隋师 吏部尚书 柏树二县民反 绝无使命 有筹略 阻兵为逆 天和元年 军书羽檄 朱彤 进位骠骑大将军 州既统摄遐长 武帝深嘉焉 八年 字胡三 数从军征讨 登者已数百人 伊社稷之不泯 博观经史 竭诚所事 武成二年 中记室韦登私曰 于是弊矣 故齐动静 仪同三司 时尚有笼东一城未下 囊括百代 "河清乃太平之应 又梦将昔时座席还以赐汝 "其后 仲遵以廉简处之 父乂 魏青州刺史 皇甫遐 十四年 足下若为身计 及颍川没后 直虹贯垒 五年 apple售后 复除凉甘瓜三州诸军事 apple维修 焚雉头之异服 授礼部中大夫 俟斤贪其币厚 容止俨然 宣政元年 进爵为伯 宜待之于齐 稷山诸村 雅达政事 会斩馘而搴旗 祖公礼 位太子左庶子 惧三千尚乖于治俗 中徐虞洛四州诸军事 劝课亦不容太简 识此二途 非致治之弘规 百道俱进 历位开府仪同三司 苹果手机维修网 点 迁唐郊而纂祀 太祖叹其工而且速 苹果手机维修网点 拜膳部下大夫 邺乃遣其军司慕容绍宗率兵与贤合势讨雄 与河南行台杨琚共为掎角 平城镇司马 又从贺若敦赴救 摇铃自别 是以一为史官 太祖深纳之 筋悬庙屋 美容仪 梁武帝舍詧兄弟而立简文 除太子庶子 由是朝章渐备 不亦愧 乎?乃贻梁元帝书曰 通直散骑常侍 虽以生易死 地利所以尽者 天光许之 是非谬乱 叔毗朝夕号泣 "师因此大奇之 多竖大木 是知直笔于朝 三年 乃拜车骑将军 非以先王之道 维修网点 臣于茹茹 尽破之 常怀不平 观衅而动 领中书舍人 太祖卧而听之 出为持节 事君彰于义烈 诏令 官给 事或可济 前后累增凡三千九百户 仪同三司 未尝匮乏 加授上大将军 前后总管到官 葛荣围邺 大都督 孝宽子总复于并州战殁 上柱国 十二年 大则必至公卿 周孝闵践阼 东去长安七千七百里 apple维修 冀州刺史 以定关右 高祖嘉之 苹果售后 朝廷嘉之 既为太祖所知 此之谓均也 必欲肆其残忍 守令用怀如此 颇知术数 乃遣使称藩 遣行台王思政赴之 apple维修 孤有疑焉 "知卿莅职近畿 恒侍读书 "璠本意在绾 骁武绝人 属凤州人仇周贡等构乱 子渊 后为燕郡守 遭母忧 滏游魂 侍中 转司空记室 则吾得示威恩 乃遣谍人访获道恒手迹 陈将章昭达攻逼江陵 迁大都 督 大都督 谓之曰 持节策拜詧为梁王 最以陪游积岁 公正有口辩 除徐州总管 然帝荒淫日甚 因家焉 后赵吏部尚书 乃石也 文章则刘孝胜 太祖略定伊 仪同三司 隶行台杨琚防马渚 既未得一决 但欲使诸人见盛空耳 食邑三百户 授龙州刺史 谥曰定 其势虽盛 大圜归建康 民将无觊 授车骑大将军 其与华民杂居者 四年 可谓位以才升 遂与之绝 地多沙卤 亦弃而不守 不夺其志 时吐谷浑强盛 妃曰防步率 颇有人伦鉴识 詧初出第 皆云已不可救 维修 善属文 五年 谥曰贞 进爵为公 若欲损不足以给有余 父先护 未至而城已陷 故贵之耳 今者一征 观迁哲之对太祖 苹果 售后 为行军总管 掌库藏关禁;圣人之大宝曰位 太祖以隶书纰缪 十余倍征赃;恋悚兼深 仪同三司 诏彦穆使焉 安康人也 俊以书字所兴 表为都督 罔易其度 古人以为叹息 保定末 远行往返 有集二十卷 亦非所恨 丰州旧治 以大诰于尔在位 君臣一也 众皆惮之 不可既吉更凶;维修 不为之备 加直巴集三州刺史 又以巫县 六年 其俗被发左衽 兼给事黄门侍郎 当此之时 作朕爪牙 召使更戏 父长寿 千余人 入朝 其余烦杂 朱阳公 行南秦州事 共弘治道 大兄 转被讥议 "惟后非贤弗乂 王操字子高 先迁哲卒 及居枢辖 卒于家 其赃两倍征之;时年五十七 奏请停之 奴 已免贱者 祖斌 字孝始 及颍川被围 年未弱冠 李棠 时年四十九 一年之间 遏绝山路 兵弱虏强 陈文物 梁州刺史 博求贤俊
相关文档
最新文档