化工热力学第1章解答
化工热力学第三版课后习题答案全

化工热力学第三版课后习题答案第一章比较简单略第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。
解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程22.522.560.5268.314190.60.427480.42748 3.2224.610c cR T a Pa m K mol P -⨯===⋅⋅⋅⨯53168.314190.60.086640.08664 2.985104.610c c RT b m mol P --⨯===⨯⋅⨯ ∴()0.5RT aP V b T V V b =--+()()50.5558.314323.15 3.22212.46 2.98510323.1512.461012.46 2.98510---⨯=--⨯⨯⨯+⨯=19.04MPa (3) 普遍化关系式323.15190.61.695r c T T T === 124.699 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =654.61012.46100.21338.314323.15cr r r PV Z P P P RT -⨯⨯⨯===⨯迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。
化工热力学课后习题答案

化工热力学课后习题答案化工热力学课后习题答案解析与实践化工热力学是化学工程专业中的重要课程,它涉及到热力学原理在化工过程中的应用。
课后习题是学生巩固知识、提高能力的重要途径。
本文将针对化工热力学课后习题答案进行解析,并结合实际工程案例进行讨论。
第一题:某化工过程中,液体从100°C冷却至30°C,求其冷却前后的焓变化。
解析:根据热力学知识,焓变化可以通过温度变化和相变潜热来计算。
在这个过程中,液体从100°C冷却至30°C,因此焓变化可以表示为:ΔH = mcΔT + mL其中,m为液体的质量,c为液体的比热容,ΔT为温度变化,L为相变潜热。
实际案例:在化工生产中,液体冷却过程常常会伴随着热量的释放。
比如在冷却塔中,热水经过冷却塔顶部的喷淋装置,通过与空气的接触,将热量传递给空气,使水的温度降低。
这个过程中,热水的焓发生了变化,而释放的热量则被转化为冷却塔底部的冷却水。
第二题:某反应器中,气体从1MPa膨胀至0.1MPa,求其膨胀过程中的焓变化。
解析:气体的膨胀过程可以看作是绝热膨胀,根据绝热过程的热力学关系,焓变化可以表示为:ΔH = C_pΔT其中,C_p为气体的定压比热容,ΔT为温度变化。
实际案例:在化工生产中,气体的膨胀过程常常会伴随着功的输出。
比如在天然气输送管道中,高压天然气经过减压阀膨胀至低压,释放出的能量可以用来驱动压缩机或者发电机,实现能量的转换和利用。
通过以上两个习题的解析和实际案例的讨论,我们可以看到化工热力学的知识在实际工程中的重要性。
掌握热力学原理和应用是化学工程师必备的基本能力,通过课后习题的答案解析和实践案例的讨论,可以帮助学生更好地理解和应用这些知识,提高工程实践能力,为将来的工程实践打下坚实的基础。
化工热力学习题及详细解答

化工热力学习题及详细解答习题 (2)第1章绪言 (2)第2章 P-V-T关系和状态方程 (4)第3章均相封闭体系热力学原理及其应用 (8)第4章非均相封闭体系热力学 (13)第5章非均相体系热力学性质计算 (19)第6章例题 (27)答案 (40)第1章绪言 (40)第2章 P-V-T关系和状态方程 (44)第3章均相封闭体系热力学原理及其应用 (51)第4章非均相封闭体系热力学 (68)第5章非均相体系热力学性质计算 (87)附加习题 (103)第2章 (103)第3章 (104)第4章 (107)第5章 (109)习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
2. 封闭体系的体积为一常数。
3. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
4. 理想气体的焓和热容仅是温度的函数。
5. 理想气体的熵和吉氏函数仅是温度的函数。
6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
8. 描述封闭体系中理想气体绝热可逆途径的方程是γγ)1(1212-⎪⎪⎭⎫ ⎝⎛=P P T T (其中ig Vig P C C =γ),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
9. 自变量与独立变量是一致的,从属变量与函数是一致的。
10. 自变量与独立变量是不可能相同的。
二、填空题1. 状态函数的特点是:___________________________________________。
化工热力学课后答案

欧阳歌谷创编 2021年2月化工热力学课后谜底(填空、判断、画图)欧阳歌谷(2021.02.01)第1章 绪言一、是否题1.封闭体系的体积为一常数。
(错) 2.封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相关闭体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3.理想气体的焓和热容仅是温度的函数。
(对)4.理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5.封闭体系的1mol 气体进行了某一过程,其体积总是变更着的,可是初态和终态的体积相等,初态和终态的温度辨别为T1和T2,则该过程的⎰=21T T V dT C U ∆;同样,对初、终态压力相等的过程欧阳歌谷创编 2021年2月有⎰=21T T P dT C H ∆。
(对。
状态函数的变更仅决定于初、终态与途径无关。
) 二、填空题1.状态函数的特点是:状态函数的变更与途径无关,仅决定于初、终态 。
2.封闭体系中,温度是T 的1mol 理想气体从(Pi ,Vi)等温可逆地膨胀到(Pf ,Vf),则所做的功为()f i rev V V RT W ln =(以V 暗示)或()i f rev P P RT W ln = (以P 暗示)。
3.封闭体系中的1mol 理想气体(已知igPC ),按下列途径由T1、P1和V1可逆地变更至P2,则A 等容过程的 W= 0 ,Q=()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,∆U=()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H=1121T PP C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W=21ln P P RT -,Q=21ln P P RT ,∆U= 0 ,∆H= 0 。
第2章P-V-T关系和状态方程一、是否题欧阳歌谷创编 2021年2月1.纯物质由蒸汽酿成液体,必须经过冷凝的相变更过程。
(错。
可以通过超临界流体区。
)2.当压力年夜于临界压力时,纯物质就以液态存在。
化工热力学第一章 习题解答

第一章习题解答一、问答题:1-1化工热力学与哪些学科相邻?化工热力学与物理化学中的化学热力学有哪些异同点?【参考答案】:高等数学、物理化学是化工热力学的基础,而化工热力学又是《化工原理》、《化工设计》、《反应工程》、《化工分离过程》等课程的基础和指导。
化工热力学是以化学热力学和工程热力学为基础。
化工热力学与化学热力学的共同点为:两者都是利用热力学第一、第二定律解决问题;区别在于:化学热力学的处理对象是理想气体、理想溶液、封闭体系;而化工热力学面对的是实际气体、实际溶液、流动体系,因此化工热力学要比化学热力学要复杂得多。
1-2化工热力学在化学工程与工艺专业知识构成中居于什么位置?【参考答案】:化工热力学与其它化学工程分支学科间的关系如下图所示,可以看出,化工热力学在化学工程中有极其重要的作用。
1-3化工热力学有些什么实际应用?请举例说明。
【参考答案】:①确定化学反应发生的可能性及其方向,确定反应平衡条件和平衡时体系的状态。
(可行性分析)②描述能量转换的规律,确定某种能量向目标能量转换的最大效率。
(能量有效利用)③描述物态变化的规律和状态性质。
④确定相变发生的可能性及其方向,确定相平衡条件和相平衡时体系的状态。
⑤通过模拟计算,得到最优操作条件,代替耗费巨大的中间试验。
化工热力学最直接的应用就是精馏塔的设计:1)汽液平衡线是确定精馏塔理论板数的依据,可以说没有化工热力学的汽液平衡数据就没有精馏塔的设计;2)精馏塔再沸器提供的热量离不开化工热力学的焓的数据。
由此可见,化工热力学在既涉及到相平衡问题又涉及到能量有效利用的分离过程中有着举足轻重的作用。
1-4化工热力学能为目前全世界提倡的“节能减排”做些什么?【参考答案】:化工热力学是化学工程的一个重要分支,它的最根本任务就是利用热力学第一、第二定律给出物质和能量的最大利用极限,有效地降低生产能耗,减少污染。
因此毫不夸张地说:化工热力学就是为节能减排而生的!1-5化工热力学的研究特点是什么?【参考答案】:化工热力学的研究特点:(1)从局部的实验数据加半经验模型来推算系统完整的信息;(2)从常温常压的物性数据来推算苛刻条件下的性质;(3)从容易获得的物性数据(p、V、T、x)来推算较难测定或不可测试的数据(y,H,S,G);(4)从纯物质的性质利用混合规则求取混合物的性质;(5)以理想态为标准态加上校正,求取真实物质的性质。
第一章 化学热力学基础 习题解答

第一章 化学热力学基础1-1 气体体积功的计算式 dV P W e ⎰-= 中,为什么要用环境的压力e P ?在什么情况下可用体系的压力体P ?答: 在体系发生定压变化过程时,气体体积功的计算式 dV P W e ⎰-= 中,可用体系的压力体P 代替e P 。
1-2 298K 时,5mol 的理想气体,在(1)定温可逆膨胀为原体积的 2 倍; ( 2 )定压下加热到373K ;(3)定容下加热到373K 。
已知 C v,m = 28.28J·mol -1·K -1。
计算三过程的Q 、W 、△U 、△H 和△S 。
解 (1) △U = △H = 0kJ V V nRT W Q 587.82ln 298314.85ln 12=⨯⨯==-= 11282.282ln 314.85ln -⋅=⨯==∆K J V V nR S (2) kJ nC Q H m P P 72.13)298373(,=-==∆kJ nC U m V 61.10)298373(,=-=∆W = △U – Q P = - 3.12 kJ112,07.41298373ln )314.828.28(5ln -⋅=+⨯==∆K J T T nC S m P (3) kJ nC Q U m V V 61.10)298373(,=-==∆kJ nC H m P 72.13)298373(,=-=∆W = 0112,74.31298373ln 28.285ln -⋅=⨯==∆K J T T nC S m V 1-3 容器内有理想气体,n=2mol , P=10P θ,T=300K 。
求 (1) 在空气中膨胀了1dm 3,做功多少? (2) 膨胀到容器内压力为 lP θ,做了多少功?(3)膨胀时外压总W f dl p A dl p dVδ=-⋅=-⋅⋅=-⋅外外外解:(1)此变化过程为恒外压的膨胀过程,且Pa P e 510=J V P W e 1001011035-=⨯⨯-=∆-=- (2)此变化过程为恒外压的膨胀过程,且Pa P e 510=n R T P n R T P n R T P V V P V P W e 109)10()(12-=--=--=∆-=θθ J 6.4489300314.82109-=⨯⨯⨯-= (3) Vn R T P dP P P e =≈-= 1221ln ln 12121P P nRT V V nRT dV V nRT dV P W V V V V e ==-=-=⎰⎰ kJ PP 486.11101ln 300314.82-=⨯⨯⨯=θ1-4 1mol 理想气体在300K 下,1dm 3定温可逆地膨胀至10dm 3,求此过程的 Q 、W 、△U 及△H 。
化工热力学第一,二三章完整!!!答案.

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。
(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。
其中B 用Pitzer 的普遍化关联法计算。
[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c c cR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.152.9846104.05310V -⨯=+⨯⨯ 350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅ 第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。
化工热力学第三版(完全版)课后习题答案解析

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。
U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。
H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。
U = 0 ,错误!未找到引用源。
H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题
第1章 绪言
一、是否题
1. 孤立体系的热力学能和熵都是一定值。
(错。
G S H U ∆∆=∆=∆,,0,0但和
A ∆,0=U ∆,=T ∆)2ln R =,
G =∆2. 3. 4. 5. ) 6. V )的自变
7. 1
T P
无关。
)
8. 描述封闭体系中理想气体绝热可逆途径的方程是
γ
γ)
1(1212-⎪⎪⎭
⎫
⎝⎛=P P T T (其中ig
V ig P C C =γ),
而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
)
9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致) 10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致) 三、填空题
1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的
以V 表示)
(以P 表示)。
4. 封闭体系中的1mol 理想气体(已知ig
P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则
A 等容过程的 W = 0 ,Q =()1121T P P R C ig P
⎪⎪⎭⎫ ⎝⎛--,∆U =()112
1T P P R C ig P ⎪⎪⎭
⎫
⎝⎛--,∆H = 112
1T P P C ig P ⎪
⎪⎭
⎫ ⎝⎛-。
B 等温过程的 W =2
1ln
P P RT -,Q =2
1ln
P P RT ,∆U = 0 ,∆H = 0 。
Q = 0
,∆
5. 1cm 2,
6. 7. 8. =8.314 J mol -1 K
-1
1. t A 、B 两
室。
两室装有不同的理想气体。
突然将隔板移走,使容器内的气体自发达到平衡。
计算
该过程的Q 、W 、U ∆和最终的T 和P 。
设初压力是(a )两室均为P 0;(b )左室为P 0,右室是真空。
解:(a )不变P T U W Q ,;0,0,0===∆
(b) 05.0,,;0,0,0P P T U W Q ====即下降一半不变∆
2. 常压下非常纯的水可以过冷至0℃以下。
一些-5℃的水由于受到干扰而开始结晶,由于
结晶过程进行得很快,可以认为体系是绝热的,试求凝固分率和过程的熵变化。
已知冰
的熔化热为333.4J g -1和水在0~-5℃之间的热容为4.22J g -1 K -1。
解:以1克水为基准,即
由于是等压条件下的绝热过程,即021=+==H H H Q P ∆∆∆,或
(
)()()0631
.00
4.3345022.410
10
5
=→=-++⨯⨯→
=-+⎰
-x x H
x dT C fus
P ∆J
T
H x
dT T
C S S S fus
P 4
15
.27315
.2682110
13.715
.2734.3340631
.015
.26815.273ln
22.41
-⨯=-⨯=∆-=∆+∆=∆⎰
3. 某一服从P (V-b )=RT 状态方程(b 是正常数)的气体,在从1000b 等温可逆膨胀至
解:
4. 下列方程
1
1
5. 一个0.057m 3气瓶中贮有的1MPa 和294K 的高压气体通过一半开的阀门放入一个压力恒
定为0.115MPa 的气柜中,当气瓶中的压力降至0.5MPa 时,计算下列两种条件下从气瓶中流入气柜中的气体量。
(假设气体为理想气体)
(a)气体流得足够慢以至于可视为恒温过程;
(b)气体流动很快以至于可忽视热量损失(假设过程可逆,绝热指数4.1=γ)。
解:(a )等温过程 66
.11294
314.8570005.0294
314.85700011
121
11=⨯⨯-
⨯⨯=
-=
RT V P RT V P n ∆mol
(b)绝热可逆过程,终态的温度要发生变化
18.24115.02944
.11
4.11
1212=⎪
⎭
⎫
⎝⎛⨯=⎪⎪⎭
⎫
⎝⎛=--r
P P T T γK
11
.918
.241314.8570005.0294
314.857000
12
121
11=⨯⨯-⨯⨯=
-
=
RT V P RT V P n ∆mol
五、图示题
1. 下图的曲线T a 和T b 是表示封闭体系的1mol 理想气体的两条等温线,56和23是两等压线,
而64和31是两等容线,证明对于两个循环1231和4564中的W 是相同的,而且Q 也是相同的。
解:
)a
b T T Q -123
123W 0
=U ∆ )
a Q 456 456W
所以
123
456Q Q =。