考研数学概率论重要章节知识点总结
考研数学概率论知识点总结

考研数学概率论知识点总结考研数学中的概率论是一个重要的组成部分,对于考生来说,掌握好概率论的知识点是取得高分的关键之一。
下面就为大家详细总结一下概率论的重要知识点。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
2、样本空间样本空间是指随机试验的所有可能结果组成的集合。
3、事件的关系与运算包括事件的包含、相等、和、积、差、互斥、对立等关系和运算。
4、概率的定义概率是对随机事件发生可能性大小的度量。
5、古典概型具有有限个等可能结果的概率模型。
6、几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型。
7、条件概率在已知某事件发生的条件下,另一事件发生的概率。
8、乘法公式用于计算两个事件同时发生的概率。
9、全概率公式和贝叶斯公式全概率公式用于计算复杂事件的概率,贝叶斯公式用于在已知结果的情况下,反推原因发生的概率。
二、随机变量及其分布1、随机变量用来表示随机试验结果的变量。
2、离散型随机变量取值可以一一列出的随机变量。
3、离散型随机变量的概率分布包括分布律、分布函数等。
4、常见的离散型随机变量分布如 0-1 分布、二项分布、泊松分布等。
5、连续型随机变量取值充满某个区间的随机变量。
6、连续型随机变量的概率密度函数其性质包括非负性和规范性。
7、常见的连续型随机变量分布如均匀分布、正态分布、指数分布等。
8、随机变量的函数的分布已知随机变量的分布,求其函数的分布。
三、多维随机变量及其分布1、二维随机变量由两个随机变量组成的向量。
2、二维随机变量的分布函数其性质与一维类似。
3、二维离散型随机变量联合分布律、边缘分布律等。
4、二维连续型随机变量联合概率密度函数、边缘概率密度函数等。
5、条件分布在已知某一变量取值的条件下,另一变量的分布。
6、相互独立的随机变量如果两个随机变量的联合分布等于各自边缘分布的乘积,则称它们相互独立。
考研数学必背之概率论16句口诀

考研数学之概率论16句口诀,以供大家参考:
第一章随机事件
互斥对立加减功,条件独立乘除清;
全概逆概百分比,二项分布是核心;
必然事件随便用,选择先试不可能。
第二、三章一维、二维随机变量
1)离散问模型,分布列表清,边缘用加乘,条件概率定联合,独立试矩阵
2)连续必分段,草图仔细看,积分是关键,密度微分算
3)离散先列表,连续后求导;分布要分段,积分画图算
第五、六章数理统计、参数估计
正态方和卡方出,卡方相除变F,
分位维数惹人嫌,导出置信U方甜。
第七章假设检验
检验均值用U-T,分位对称别大意;
方差检验有卡方,左窄右宽不稀奇;
不论卡方或U-T,维数减一要牢记;
代入比较临界值,拒绝必在否定域!
熟记这些口诀能避免在做题当中犯细小的错误,并且有助于在复习过程中对知识点的记忆和巩固。
考研数学一大纲重点梳理概率论与数理统计部分

考研数学一大纲重点梳理概率论与数理统计部分概率论和数理统计是考研数学一科目中的重要部分,本文将针对概率论与数理统计这一大纲进行重点梳理。
首先,我们将介绍概率论的基本概念和理论,然后详细讨论数理统计的相关内容。
一、概率论的基本概念和理论1. 概率的基本概念概率是研究随机现象的定量描述,用来描述事件发生的可能性大小。
概率可以用数值表示,范围在0到1之间,其中0代表不可能事件,1代表必然事件。
2. 概率的运算规则概率的运算规则包括加法规则和乘法规则。
加法规则适用于互斥事件,乘法规则适用于独立事件。
3. 随机变量和概率分布随机变量是用来描述随机现象的变量,可以分为离散随机变量和连续随机变量。
概率分布描述了随机变量的取值与概率之间的关系,常见的概率分布包括二项分布、泊松分布和正态分布等。
4. 期望和方差期望是随机变量的平均值,用来描述随机变量的集中趋势;方差是随机变量与期望之间的差异程度,用来描述随机变量的离散程度。
二、数理统计的相关内容1. 抽样与抽样分布抽样是指从总体中选取一部分个体进行观察和研究的过程,抽样分布是指样本统计量的概率分布。
常见的抽样分布包括正态分布、t分布和F分布等。
2. 参数估计参数估计是利用样本数据来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。
点估计是用单个数值来估计参数的值,区间估计是用一个区间来估计参数的值。
3. 假设检验假设检验是根据样本提供的信息,对总体的某个参数是否满足某种假设进行判断。
假设检验可以分为单侧检验和双侧检验,常见的假设检验方法包括z检验和t检验等。
4. 方差分析方差分析是用来比较两个或多个总体间均值差异是否显著的统计方法。
方差分析可以分为单因素方差分析和多因素方差分析,常用的方法包括单因素方差分析和双因素方差分析等。
5. 回归分析回归分析是用来研究自变量与因变量之间的关系的方法。
简单线性回归是一种自变量和因变量之间存在线性关系的回归分析方法,多元线性回归是多个自变量和一个因变量之间的回归分析方法。
考研数学备考:概率论各章节知识点梳理

考研数学备考:概率论各章节知识点梳理1500字概率论作为考研数学中的一部分,是考生备考的重点之一。
下面将对概率论的各章节知识点进行梳理,帮助考生进行复习备考。
1. 随机事件与概率概率论的基本概念是随机事件和概率。
随机事件是随机现象的结果,概率是事件发生的可能性大小。
在这一章节中,主要涉及到随机事件的定义、事件的性质、事件间的关系等内容。
2. 随机变量及其分布随机变量是随机现象的数值描述,它分为离散随机变量和连续随机变量。
这一章节主要涉及随机变量的定义、分布函数、概率密度函数等内容。
同时还包括常见的离散随机变量和连续随机变量的概率分布,如二项分布、泊松分布、正态分布等。
3. 随机事件的数学描述随机事件可以用随机变量的取值区间来表示,也可以用事件的概率来描述。
这一章节主要包括随机事件的和、差、积等概念,以及离散随机变量和连续随机变量的概率函数之间的关系。
4. 多维随机变量及其分布多维随机变量是指由多个随机变量组成的向量。
这一章节主要包括多维随机变量的定义、联合分布、边缘分布等内容。
同时还包括多维随机变量的独立性、相关性等概念。
5. 随机变量的数字特征随机变量的数字特征包括数学期望、方差、协方差等。
这一章节主要涉及到随机变量的数学期望、方差和协方差的定义、性质以及计算方法。
6. 大数定律和中心极限定理大数定律是指随着试验次数的增加,随机事件的频率趋向于事件的概率。
中心极限定理是指当随机事件的样本量足够大时,其均值的分布接近于正态分布。
这一章节主要涉及到大数定律和中心极限定理的数学表达和推导。
7. 参数估计与假设检验参数估计是根据样本数据对总体参数进行估计,假设检验是根据样本数据对总体参数是否符合某个假设进行检验。
这一章节主要包括点估计、区间估计和假设检验的概念、方法和步骤。
8. 有序与无序排列的计数问题有序排列是指考虑元素的排列顺序,无序排列是指不考虑元素的排列顺序。
这一章节主要涉及到有序与无序排列的计数问题,如排列、组合、多重集合等。
(完整word版)考研数学一概率论知识点概要

本人考研整理的数学概率论知识点,word 版,可编辑、添加、打印。
祝大家学有所得。
第一章随机事件概率随机试验:满足以下三个条件的试验:(1)可重复;(2)知道所有可能;(3)结果不可预知。
样本点:每一个可能的结果叫做一个样本点。
样本空间:全体样本点的集合,记为Ω。
随机事件:随机试验中每一个可能出现的结果,叫做随机事件。
基本事件:试验中不可再分的事件。
不可能事件:不可能发生的事件。
必然事件:必定要发生的事件。
复合事件:由两个或两个以上的事件构成的事件。
事件的关系与运算:事件的关系定义文氏图A B⊂:包含关系:事件B发生必然导致事件A发生,则称事件A包含事件B。
事件相等:A=B 事件A,B 相互包含,就称事件A,B相等。
互斥事件:AB=∅不可能同时发生的事件对立事件:若AB=∅且=0A B,称事件A,B对立事件。
两者之一必然发生,但又不可能同时发生的事件。
事件的并:A B事件A,B中至少有一个发生,称事件A B发生。
事件的差:A-B 事件A发生且B不发生,事件的交:A B AB=事件A,B同时发生,称事件AB发生。
概率:事件发生可能性大小的描述。
条件概率:设A,B 是两个基本事件,且P(A)>0,则:()()()P AB P B A P A =称为事件A 发生的条件下事件B 发生的条件概率。
事件的独立性:如果两事件A,B 满足:()()()P AB P A P B =,则称A 与B 独立。
A,B 独立 ⇔ ()()P A B P A =⇔()()P B A P B A =独立和互斥的关系:()0,()0P A P B >>时,独立一定不互斥,互斥一定不独立。
对于三个以上的事件:相互独立 ⇒ 两两独立, 两两独立退不出相互独立。
取反运算不改变事件的独立性:,A B 相互独立⇔,A B 相互独立⇔,A B 相互独立。
概率的基本性质: 非零性:0()1P A ≤≤ 归一性:()1iP A =∑:()1()1()P A B P A B P AB =-=-古典概率满足: (1),试验的样本空间的元素只有有限个; (2),每个样本点出现的可能性相等: 古典概型事件A 的计算公式:()k P A n=n---样本点数,k---事件A 包含的样本点数。
考研数学概率论重要考点总结

考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
(完整版)概率论知识点总结

概率论知识点总结第一章 随机事件及其概率第一节 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示.一个随机事件就是样本空间的一个子集。
基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。
事件的关系与运算(就是集合的关系和运算)包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ⊇或B A ⊆。
相等关系:若A B ⊇且B A ⊆,则称事件A 与事件B 相等,记为A =B 。
事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。
记为 A ∪B 。
事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。
事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。
用交并补可以表示为B A B A =-。
互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。
互斥时B A ⋃可记为A +B 。
对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。
对立事件的性质:Ω=⋃Φ=⋂B A B A ,。
事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ⋂=⋃ B A B A ⋃=⋂第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时++++=⋃⋃⋃⋃)()()()(2121n n A P A P A P A A A P概率的性质: (1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时)()()()(2121n n A P A P A P A A A P +++=⋃⋃⋃当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节 古典概率模型1、设试验E 是古典概型, 其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为nk A P =)( 2、几何概率:设事件A 是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为)()()(Ω=μμA A P 假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节 条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作 P(A|B).)()()|(B P AB P B A P =乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设n A A A ,,,21 是一个完备事件组,则P(B)=∑P(i A )P(B|i A ) 贝叶斯公式:设n A A A ,,,21 是一个完备事件组,则∑==)|()()|()()()()|(jj i i i i A B P A P A B P A P B P B A P B A P第五节 事件的独立性两个事件的相互独立:若两事件A 、B 满足P(AB)= P(A) P(B),则称A 、B 独立,或称A 、B 相互独立.三个事件的相互独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A 、B 、C 相互独立三个事件的两两独立:对于三个事件A 、B 、C ,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A 、B 、C 两两独立独立的性质:若A 与B 相互独立,则A 与B ,A 与B ,A 与B 均相互独立总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。
考研数学《概率论与数理统计》知识点总结

第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件. 事件关系: 1.A ⊂B ,A 发生必导致B 发生.2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 和B 互不相容(互斥),A 和B 不能同时发生,基本事件两两互不相容. 6.A B=S 且A B=Ø,A 和B 互为逆事件或对立事件,A 和B 中必有且仅有一个发生,记B=A S A -=. 事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 和B ,A 和B ,A 和B 也相互独立.(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),kn k k n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 使用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a ab x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b l l c X c P -=+≤<}{ 指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(ex p[21)(22σμσπ--=x x f ;t t x F xd ]2)(ex p[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2ex p[21)(2π.即μ=0,σ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F .正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3σ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3σ,μ+3σ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Y h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.使用: Y=aX +b ~N(a μ+b ,(|a |σ)2).二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质:1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(.4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质和二维类似. 边缘分布: F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*. 连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(. 二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,σ12,σ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式:记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ).正态卷积:若X 和Y 相互独立且X ~N (μ1,σ12),记Y ~N (μ2,σ22),则对Z=X+Y 有Z ~N (μ1+μ2,σ12+σ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t t αα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XY Z =: ⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x xzx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=x x z f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则:ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为σ(X ),σ(X )= .通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1.正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 和Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c c c c c212222111211C ,),Cov(j i ij X X c ==E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩:E {[X -E (X )]k [Y -E (Y )]l }.)(x Dn 维正态分布:)}()(21ex p{det)2(1),,,(1T221μXCμXC---=-nnxxxfπ,T21T21),,,(),,,(nnxxxμμμ==μX.性质:1.n维正态随机变量(X1,X2,…,X n)的每一个分量X i (i=1,2,…,n)都是正态随机变量,反之,亦成立.2.n维随机变量(X1,X2,…,X n)服从n维正态分布的充要条件是X1,X2,…,X n的任意线性组合l1X1+l2X2+…+l n X n服从一维正态分布(其中l1,l2,…,l n不全为零).3.若(X1,X2,…,X n)服从n维正态分布,且Y1,Y2,…,Y k是X j (j=1,2,…,n)的线性函数,则(Y1,Y2,…,Y k)也服从多维正态分布.4.若(X1,X2,…,X n)服从n维正态分布,则“X i 相互独立”和“X i 两两不相关”等价.弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=σk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2~ 近似的min Q1 M Q3 max经验分布函数: )(1)(x S nx F n =,∞<<∞-x . )(x S 表示F 的一个样本X 1,X 2,…,X n 中不大于x 的随机变量的个数.自由度为n 的χ2分布:记χ2~χ2(n ),222212n X X X +++= χ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2 )=n ,D (χ2 )=2n .χ12+χ22~χ2(n 1+n 2).⎪⎩⎪⎨⎧>Γ=--其他,,00)2(21)(2122y e x n y f y n n .χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为)(2n χ的上α分位点. 当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n 的t 分布: 记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点.由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F 分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,则有),(~2n N X σμ,其中X 是样本均值.定理二:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 和2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 和Y 1,Y 2,…,Y n 2分别是来自N (μ1,σ12)和N (μ2,σ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.2.当σ12=σ22=σ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ. 设总体X 均值μ及方差σ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X nX X n A A in i i n i -∑=-∑=-===σ. 最大似然估计法:似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉和θ无关的因式项.θˆ即为)(θL 最大值,可由方程当多个未知参数θ1,θ1,…,θk 时:可由方程组0)(d d =θθL 或0)(ln d d =θθL 求得. 0d d =L iθ或0ln d d=L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ).结尾样本最大似然估计: 定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m et t F -=>}{,则)(}){()(1i mi mn m mnt P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:和定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ和),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21nX X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,σ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μσ2已知)1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μσ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -=σ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫ ⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2σ12,σ22已知)1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2 σ12=σ22=σ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ2)1()1(212222112-+-+-=n n Sn S n S w()12112--+±-nn S tY X wα2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμσ12/σ22μ1,μ2未知)1,1(~2122212221--=n n F S S F σσ⎪⎪⎭⎫ ⎝⎛-212221222211,1ααF S S F S S ασσ-=1222122211F S S ,ασσF S S 122212221=1122第八章 假设实验定义: H 0:原假设或零假设,为理想结果假设;H 1:备择假设,原假设被拒绝后可供选择的假设. 第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:H 0:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H 0备择假设H 1检验统计量 拒绝域 1 σ2已知μ≤μ0μ>μ0 n X Z σμ0-=z ≥z α μ≥μ0 μ<μ0 z ≤-z α μ=μ0 μ≠μ0 |z |≥z α/2 2 σ2未知μ≤μ0μ>μ0 nS X t 0μ-=t ≥t α(n -1) μ≥μ0 μ<μ0 t ≤-t α(n -1) μ=μ0 μ≠μ0 |t |≥t α/2(n -1)3σ1,σ2已知μ1-μ2≤δμ1-μ2>δ 222121n n Y X Z σσδ+--=z ≥z αμ1-μ2≥δ μ1-μ2<δ z ≤-z α μ1-μ2=δ μ1-μ2≠δ |z |≥z α/24 σ12=σ22 =σ2未知μ1-μ2≤δμ1-μ2>δ 1211--+--=n n S Y X t w δ2)1()1(212222112-+-+-=n n S n S n S wt ≥t α(n 1+n 2-2) μ1-μ2≥δ μ1-μ2<δ t ≤-t α(n 1+n 2-2) μ1-μ2=δ μ1-μ2≠δ |t |≥t α/2(n 1+n 2-2) 5 μ未知σ2≤σ02σ2>σ02 2022)1(σχSn -=χ2≥χα2(n -1)σ2≥σ02 σ2<σ02 χ2≤χ21-α(n -1)σ2=σ02σ2≠σ02χ2≥χ2α/2(n -1)或χ2≤χ21-α/2(n -1)6 μ1,μ2未知σ12≤σ22σ12>σ222221SSF=F≥Fα(n1-1,n2-1) σ12≥σ22σ12<σ22F≤F1-α(n1-1,n2-1)σ12=σ22σ12≠σ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间和假设检验之间的关系:未知参数的置信水平为1-α的置信区间和显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018考研数学概率论重要章节知识点总
结
第一章、随机事件与概率
本章需要掌握概率统计的基本概念,公式。
其核心内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。
第二章、随机变量及其分布
本章重点掌握分布函数的性质;离散型随机变量的分布律与分布函数及连续型随机变量的密度函数与分布函数;常见离散型及连续型随机变量的分布;一维随机变量函数的分布。
第三章、多维随机变量的分布
在涉及二维离散型随机变量的题中,往往用到“先求取值、在求概率”的做点步骤。
二维连续型随机变量的相关计算,比如边缘分布、条件分布是考试的重点和难点,考生在复习时要总结出求解边缘分布、条件分布的解题步骤。
掌握用随机变量的独立性的判断的充要条件。
最后是要会计算二维随机变量简单函数的分布,包括两个离散变量的函数、两个连续变量的函数、一个离散和一个连续变量的函数、以及特殊函数的分布。
第四章、随机变量的数字特征
本章的复习,首先要记住常见分布的数字特征,考试中一定会间接地用到这些结论。
另外,本章可以与数理统计的考点结合,综合后出大题,应该引起考生足够的重视。
第五章、大数定律和中心极限定理
本章考查的重点是一个切比雪夫不等式,以及三个大数定律,两个中心极限定理的条件和结论,考试需要记住。
第六章、数理统计的基本概念
重点在于“三大分布、八个定理”以及计算统计量的数字特征。
第七章、参数估计
本章的重点是矩估计和最大似然估计,经常以解答题的形式进行考查。
对于数一来说,有时还会要求验证估计量的无偏性,这是和数字特征相结合。
区间估计和假设检验只有数一的同学要求,考题中较少涉及到。
考生要对每章的出题重点做到了如指掌,加以题目训练,相信会有好的成绩!。