数格点算面积
四年级奥数题及答案-求格点图案面积

四年级奥数题及答案-求格点图案面积
【题目】以下这张图里的三个格点图案面积分别是多少?
【解析】
这三个图形都适合用格点面积公式计算面积:
格点多边形面积 = 内格点个数 + 边格点数÷ 2 - 1
这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理。
我们先来看喇叭图案:
这个图案周界上有8个格点,图内却没有格点,那么利用格点面积公式我们可以求得这个喇叭形状的面积为:0+8÷2-1=3;
接下来这只小猫的图案:
小猫图案的周界上有20个格点,而图内有2个格点,面积为:2+20÷2-1=11;
小狗图案同理:
我们可以看到小狗图案是由两个格点多边形组成,那我们可以将两个图案分开求解,先求出每个格点多边形的面积,再求出总面积。
躯干面积:0+12÷2-1=5;
尾巴面积:0+4÷2-1=1;
总面积:5+1=6。
我们在计算像小狗图案这样的有两个或以上的独立格点多边形组成的图案时,可以先求每个独立的格点多边形的面积,再进行求和计算总面积,这样可以避免数漏多个独立图形公共格点而导致计算错误。
格点面积公式

面积计算公式:皮克公式:格点多边形面积=多边形一周的格点数÷2+多边形内部格点数-1。
设格点多边形的面积为s,它各边上格点的个数和为x。
格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出s与x之间的关系式。
相关信息:
1、格点多边形的面积必为整数或半整数(奇数的一半)。
2、格点关于格点的对称点为格点。
3、格点多边形面积公式:设某格点多边形内部有格点a个,格点多边形的边上有格点b个,该格点多边形面积为S,则根据皮克公式有S=a+b/2-1。
4、格点正多边形只能是正方形。
5、格点三角形边界上无其他格点,内部有一个格点,则该点为此三角形的重心。
格点面积公式毕克定理

格点面积公式毕克定理嘿,同学们!今天咱们来聊聊一个挺有趣的数学知识——格点面积公式毕克定理。
先来讲讲我之前遇到的一件小事儿。
有一次我去公园散步,看到地上铺着那种一格一格的地砖,就像咱们数学里的格点图。
我突然就想到了毕克定理,感觉数学知识真是无处不在。
那什么是毕克定理呢?简单来说,就是计算格点多边形面积的一个好办法。
假设一个格点多边形内部有 N 个格点,边上有 L 个格点,那这个多边形的面积就等于 N + L/2 - 1 。
咱们来通过几个例子感受感受。
比如说一个简单的正方形格点图,边长是 3 个格子。
内部没有格点,边上有 4 个格点。
按照毕克定理,面积就是 0 + 4/2 - 1 = 1 ,正好就是这个正方形的面积。
再比如一个稍微复杂点的三角形格点图,内部有 3 个格点,边上有6 个格点。
那它的面积就是 3 + 6/2 - 1 = 5 。
有些同学可能会问了,这毕克定理有啥用呢?用处可大啦!比如说在一些数学竞赛中,如果遇到求格点图形面积的题目,用毕克定理就能快速又准确地得出答案。
而且呀,毕克定理还能帮助我们更好地理解图形和数量之间的关系。
通过计算格点图形的面积,我们能更深入地感受数学的奇妙和规律。
在实际生活中,也能看到毕克定理的影子呢。
比如设计师在设计一些图案的时候,可能就会用到格点和毕克定理来计算面积和比例,确保设计的美观和合理。
同学们,数学的世界就像一个大宝藏,毕克定理只是其中的一颗小宝石。
只要咱们用心去探索,就能发现更多有趣又实用的知识。
就像我在公园里看到的那些地砖格点,它让我在平常的生活中也能想到数学。
咱们学习数学,不只是为了考试,更是为了能在生活中发现它的美,用它来解决问题,让生活变得更有趣、更有条理。
希望大家以后看到格点图形的时候,都能想起毕克定理,用它来算出面积,感受数学的魅力!。
格点法求面积的公式

面积计算公式:皮克公式:格点多边形面积=多边形一周的格点数÷2+多边形内部格点数-1
设格点多边形的面积为s,它各边上格点的个数和为x。
格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出s与x之间的关系式。
格点的起源
格点问题起源于以下两个问题的研究:
1、狄利克雷除数问题,即求x>1时D2(x)=区域{1≤u≤x,1≤v≤x,uv≤x}上的格点数。
1849年,狄利克雷证明了D2(x)=xlnx+(2ν一1)x+△(x),这里ν为欧拉常数,△(x)=O(x0.5)。
这一问题的目的是要求出使余项估计△(x)=O(x)成立的又的下确界θ0。
2、圆内格点问题,设x>1,A2(x)=圆内μ+ν≤x上的格点数。
高斯证明了A2(x)=πx+R(x),这里R(x)=O(x^1/2),求使余项估计R(x)=O(x)成立的λ的下确界α的问题,称之为圆内格点问题或高斯圆问题。
数学实践活动教案10数格点算面积

初中数学实践课教案10 课题数格点算面积一、活动目标(1)通过画图、列表、分析数据、寻找规律;(2) 获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识(3)通过获得成功的体验和克服困难的经历,增强应用数学的自信心二、活动重点:经历实践活动的过程,学会寻找思考问题的着眼点,掌握研究问题的方法,领悟数学思想。
三、活动难点:格点多边形的面积与图形内部及它边上的格点数之间关系的探究。
四、活动过程:本活动分为三个阶段第一阶段:课前活动一.概念认识格点多边形:方格网中的每个交点叫做格点(如左图中的点A、B、C、D、E…).显然,每一个小方格(如图中带阴影的小方格)就是一个面积单位.如果一个多边形的顶点都在格点上,那么这个多边形叫做格点多边形(如图中的多边形ABCDE)凸多边形与凹多边形:如下图a,把多边形的任何一边向两方延长,如果其他各边都在延长所得直线的同一旁,这样的多边形叫做凸多边形.而图b中的多边形不具备这种性质,称为凹多边形.二.自主探究12.我们设格点多边形的面积为S,多边形内部的格点数为N,它的边上的格点数ab为L ,写出下图中格点多边形的N 、L3.仿照2中的图在网格纸上画出符合条件的不同..格点多边形 1)画2个满足条件N=0的格点多边形,求出它们的面积S2) 画2个满足条件N=1的格点多边形,求出它们的面积S3) 画2个满足条件N=2的格点多边形,求出它们的面积S第二阶段 课内活动一.对第一阶段活动的再认识1.认识格点多边形2.识别凹、凸多边形3.归纳格点多边形面积的求法4.会数格点多边形边上及内部的格点数二.探究格点多边形的面积与边上、内部格点数的关系活动一 探究N=0的格点多边形中S 与L 之间的关系(展示所画不同类型图形)满足N=0来吗?活动二 探究N=1满足N=1活动三 探究N=2的格点多边形中S 与L 之间的关系(展示所画不同类型图形)观察上表,你又有了什么发现?活动四 自主探究N=3时S 与L 之间的关系1.示范引领:画N=3的格点多边形2.合作交流:四人一组,画图研究N=3时S 与L 之间的关系活动五 猜想N=4、5、…、10、…的格点多边形中S 与L 之间的关系活动六 归纳分析S 、N 、L 三者关系121-+=N L S三.规律的应用求下列多边形的面积四.共同交流课内活动体会。
七年级下数学拓展课——数格点算面积

当我听别人讲解某些数学问题时,常觉得很难理 解,甚至不可能理解。这时便想,是否可以将问题化 简些呢﹖往往,在终于弄清楚之后,实际上,它只是 一个更简单的问题。
——希尔伯特
再见!
的格点数,那么有 S 2 N L 2
A
即:格点多边形面积等于图形内部所包含
格点数的2倍与周界上格点数的和减去2.
C
B
B
(a)
巩固:
1、求下列格点多边形的面积(每相邻三个点“∵”或“∴” 成面积为1的等边三角形).
⑴
⑵
⑶
⑷
2、把同一个三角形的三条边分别5等分、7等分(如图1,图2),然
后适当连接这些等分点,便得到了若干个面积相等的小三角形.已 知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积 是______平方分米.
D
添补法:把不规则图形周围添
补上规则的小图形转化一个规
则的大图形,使总面积便于计
算。
(1)求下列多边形的面积
(2)不妨设S---格点多边形的面积,N--多边形内部的格 点数,L--它的边上的格点数,那么S、N、L三者之间有没 有关系呢?
图形序号 S N L
① 104
② 2.5 1 5
③
42 6
S、N、L三者之间有 怎样的关系呢?
二、探究格点多边形的面积S与内部、边上格点数(N、 L)的关系
活动五 猜想N=4、5、…、10、…的格点多边形中S与L 之间的关系 活动六 归纳总结:格点多边形中S与L之间的关系
S N L 1 2
通过上面的探究,我们发现,这种格点多边形的面积计 算起来很方便,只要数一下图形边线上的格点的数目及图形 内部的格点的数目,就可用公式算出。
数格点算面积

L=6 N=7 S=9
L=8 N=5 S=8
把一个多边形的任何一边向两方延长,如果其他各边都在延长所
得直线的同一旁,这样的多边形叫做凸多边形;
把一个多边形的一边向两方延长,如果其他各边分别位于延长 所得直线的两旁,这样的多边形叫做凹多边形.
活动七
请你在下面的网格中画出一个S=9,N=6的
格点多边形.
哥哥说:“我的地一圈只有15棵树,而弟弟的地一圈有17 棵树,弟弟的面积大!”
弟弟说:“我的地里只有16棵树,而哥哥的地里有17棵树, 哥哥的面积大!”
预备知识
如图,网格纸上画着纵、横两组平行线,相邻平行 线之间的距离相等,这两组平行线的交点称为格点.如果 一个多边形的顶点都在格点上,那么多边形叫做格点多 边形.
A E
B
C
S=
1 2
D
L+N-1
奥地利数学家皮克(Georg Alexander Pick,1859~1943)在1899年
发现了上述公式,并进行了证明.这个公式被称为“皮克定理”,该定理
被誉为有史以来“最重要100个的数学定理”之一.
活动六
请你在下面的网格中设计一个格点多边形,并利用上述定理 求出各格点多边形的面积.
0 0 0
③
边上格点数L 面积S
4
1
6
2
8
3
活动二 探究N=1的格点多边形的S与L之间的数量关系.
① 图形序号
① ② ③
② 内部格点数N
1 1 1
③
边上格点数L 面积S
4
2
5
2.5
9
4.5
活动三 探究N=2的格点多边形的S与L之间的数量关系.
① 图形序号
格点求面积知识点

格点求面积知识点一、格点的概念。
1. 定义。
- 在平面直角坐标系中,横、纵坐标均为整数的点称为格点。
例如,在坐标平面中,点(1,2)、( - 3,5)等都是格点,而像(1.5,3)就不是格点。
二、格点图形。
1. 定义。
- 顶点都是格点的多边形称为格点多边形。
比如一个三角形,它的三个顶点的坐标都是整数,这个三角形就是格点三角形;同样,四边形的四个顶点坐标都是整数时,它就是格点四边形。
三、格点求面积的方法。
1. 皮克定理(Pick's theorem)- 对于一个格点多边形,设其内部格点数为I,边界格点数为B,其面积S 满足公式S = I+(B)/(2)- 1。
- 例如,有一个格点三角形,经观察其内部格点数I = 3,边界格点数 B = 6,根据皮克定理,其面积S=3+(6)/(2)-1=3 + 3-1=5。
2. 分割法。
- 将格点多边形分割成若干个我们熟悉的图形,如三角形、矩形等。
- 比如一个格点五边形,可以通过连接格点将其分割成三个三角形。
分别求出这三个三角形的面积,然后将它们相加就得到了五边形的面积。
假设这三个三角形的面积分别为S_1 = 2,S_2=3,S_3 = 1,那么五边形的面积S = S_1+S_2+S_3=2 +3+1=6。
3. 补形法。
- 把格点多边形补成一个大的规则图形(如矩形),然后用大图形的面积减去补上去的小图形的面积。
- 例如,有一个格点凹四边形,我们可以把它补成一个矩形。
设矩形的面积为S_矩形=10,补上去的三个三角形的面积分别为S_1=1,S_2=2,S_3=1,那么凹四边形的面积S = S_矩形-S_1-S_2-S_3=10 - 1-2 - 1=6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/14
2020/5/14Fra bibliotek格点多边形.
L=8
2020/5/14
活动小结
本次活动,我们经历了画图、填表、分析数据、探求规律的 过程.发现、验证、应用了皮克定理.获取了“由简单到复杂” 探究问题的方法和经验,提高了分析问题、解决问题的能力.
解决“探求规律类问题”时,首先要多画图、列式,为总结 规律提供素材;然后要纵向、横向比较所列式子各部分的异同, 发现变量和不变量,总结出规律;最后还要验证所得规律.
A B
面积 S=17.5
E
边上的格点数
L=9
内部格点数
C
2020/5/14
D
N=14
2020/5/14
2020/5/14
2020/5/14
2020/5/14
2020/5/14
2020/5/14
定理学习
如果格点多边形的面积为S,多边形内部格点数为N,它边上的 格点数为L,那么S与N、L之间存在如下的数量关系:
A E
B
C
S=
1 2
D
L+N-1
奥地利数学家皮克(Georg Alexander Pick,1859~1943)在1899年
发现了上述公式,并进行了证明.这个公式被称为“皮克定理”,该定理
被誉为有史以来“最重要100个的数学定理”之一.
2020/5/14
2020/5/14
活动七
请你在下面的网格中画出一个S=9,N=6的
如图,网格纸上画着纵、横两组平行线,相邻平行 线之间的距离相等,这两组平行线的交点称为格点.如果 一个多边形的顶点都在格点上,那么多边形叫做格点多 边形.
A
E
B
格点 多边形
格点
C
D
2020/5/14
活动任务
若格点多边形的面积为S,多边形边上的格点数为L, 它内部的格点数为N.
试探究出S与L 、 N之间的数量关系.
数学综合与实践活动
数格点 算面积
徐州市第十三中学 董 磊
2019年10月28日
恳请各位专家同仁批评指正!
2020/5/14
哥哥说:“我的地一圈只有15棵树,而弟弟的地一圈有17 棵树,弟弟的面积大!”
弟弟说:“我的地里只有16棵树,而哥哥的地里有17棵树, 哥哥的面积大!”
2020/5/14
预备知识