【人教版】数学七年级上册-同步练习第1章1.4.2有理数的除法同步练习-含解析

合集下载

人教版七年级数学上册《第一章有理数》同步训练-附有答案

人教版七年级数学上册《第一章有理数》同步训练-附有答案

人教版七年级数学上册《第一章有理数》同步训练-附有答案【题型1】有理数1.(2022·全国·七年级课时练习)下列说法错误的是()A.0既不是正数也不是负数B.零上6摄氏度可以写成+6℃也可以写成6℃C.向东走一定用正数表示向西走一定用负数表示D.若盈利1000元记作+1000元则-200元表示亏损200元【答案】C【解析】【分析】根据有理数的概念和性质判断即可.【详解】∵0既不是正数也不是负数∴A正确不符合题意;∵零上6摄氏度可以写成+6℃也可以写成6℃∴B 正确 不符合题意;∵正方向可以自主确定∴向东走一定用正数表示 向西走一定用负数表示 是错误的∴C 不正确 符合题意;∵盈利1000元记作+1000元 则-200元表示亏损200元∴D 正确 不符合题意;故选:C .【点睛】本题考查了有理数的基本概念 熟练掌握有理数的基本概念是解题的关键.【变式1-1】2.(2022·全国·七年级专题练习)在3- 3π1.62 0四个数中 有理数的个数为() A .4 B .3 C .2 D .1【答案】B【解析】【分析】根据有理数的定义进行判断即可.【详解】 解:在3- 3π1.62 0四个数中 3- 1.62 0是有理数∴有理数的个数为3故选:B .【点睛】本题主要考查了有理数的识别 熟练掌握有理数的定义是解决本题的关键.【题型2】有理数的分类1.(2022·全国·七年级课时练习)有理数-3 0.23 -85 206 -4 5中 非正整数有() A .6个 B .5个 C .4个 D .3个【答案】D【解析】【分析】根据有理数的分类 求解即可 非正整数包括负整数和零 也就是非正数中的整数.【详解】解:有理数-3 0.23 -85 206 -4 5中 非正整数有385,4---,共3个 故选D【点睛】本题考查了非正整数 理解非正整数包括负整数和零 也就是非正数中的整数是解题的关键.【变式2-1】2.(2020·山西省运城市实验中学七年级期中)把下列各数填在相应的大括号内:0.5 5- 2 47- 0 134- 29 2020 5.6⋅ 正数集合:{ …}; 分数集合:{ …}; 非负整数集合:{ …}.【答案】0.5 2 292020 5.6⋅; 0.5 47- 134- 29 5.6⋅; 0.5 2 0292020 5.6⋅ 【解析】【分析】 根据正数 负数 分数 非负整数的定义进行分类即可解决问题.【详解】解:正数集合:{ 0.5 2 292020 5.6⋅ …};分数集合:{0.547-134-29 5.6⋅…};非负整数集合:{0.5 2 0 292020 5.6⋅…}.所以集合里分别填:0.5 2 292020 5.6⋅;0.547-134-29 5.6⋅;0.5 2 0 292020 5.6⋅【点睛】本题考查了有理数的分类解题的关键是熟练掌握有理数的分类方法属于中考常考题型.【题型3】数轴表示数1.(2020·黑龙江·集贤县第七中学七年级期中)画出数轴并表示下列有理数并用“>”把它们连起来.4- 3 1.5 0122 -.【答案】数轴是表示见解析3>1.5>0>-212>-4.【解析】【分析】首先在数轴上确定表示各数的点的位置再根据在数轴上表示的有理数右边的数总比左边的数大用“>”号把这些数连接起来即可.【详解】解:如图所示:用“>”把它们连起来为:3>1.5>0>-212>-4.【点睛】此题主要考查了有理数的比较大小关键是正确在数轴上确定表示各数的点的位置.【变式3-1】2.(2020·黑龙江·虎林市实验中学七年级期中)a、b是有理数它们在数轴上的对应点的位置如图所示把a、-a、b、-b按从小到大的顺序排列为()A.-b<-a<a<b B.-a<-b<a<b C.-b<a<-a<b D.-b<b<-a<a【答案】C【解析】【分析】先根据a b两点在数轴上的位置判断出a、b的符号及其绝对值的大小再比较出其大小即可.【详解】解:∵由图可知a<0<b|a|<b∴0<-a<b-a<b<0 0b a-<<∴b a a b-<<-<故C正确.故选:C.【点睛】本题考查的是有理数的大小比较熟知数轴上各点所表示的数的特点是解答此题的关键.【题型4】数轴上两点之间的距离1.(2019·广东·广州市第二中学七年级阶段练习)如图:A、B两点在数轴上表示的数分别为a b则A B 两点间的距离不正确的是()A.﹣b+a B.|a﹣b| C.b﹣a D.|a|+|b|【答案】A【解析】【分析】根据A、B两点在数轴上的位置进行计算.【详解】解:A B两点间的距离=b﹣aA、由题意知﹣b+a<0 故本选项符合题意;B、由题意知|a﹣b|=b﹣a故本选项不符合题意;C、由题意知b﹣a故本选项不符合题意;D、由题意知|a|+|b|=﹣a+b故本选项不符合题意;故选:A.【点睛】本题考查了数轴上两点间的距离能够正确理解A、B两点间的距离的几何意义是解题的关键.【变式4-1】2.(2020·湖南·常德市第七中学七年级期中)数轴上一点A表示的数为-7 当点A在数轴上滑动2个单位后所表示的数是_________.【答案】-9或-5【解析】【分析】分向右滑动和向左滑动两种情况讨论求解即可.【详解】解:∵数轴上一点A表示的数为-7∴当点A在数轴上向左滑动2个单位后所表示的数是-7-2=-9;当点A在数轴上向右滑动2个单位后所表示的数是-7+2=-5故答案为:-9或-5.【点睛】本题主要考查了用数轴表示有理数利用分类讨论的思想求解是解题的关键.【题型5】相反数1.(2020·黑龙江·虎林市实验中学七年级期中)25-的相反数是()A.25B.52-C.52D.0【答案】A 【解析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】根据只有符号不同的两个数互为相反数进行解答即可得.解:25-的相反数是25故A正确.故选:A【点睛】本题主要考查了相反数掌握相反数的定义是解题的关键.【变式5-1】2.(2022·黑龙江·哈尔滨市萧红中学校期中)数轴上A、B表示的数互为相反数并且两点间的距离是12 在A、B之间有一点P P到A的距离是P到B的距离的2倍求P点表示的数_______.【答案】2±【解析】【分析】直接利用相反数的定义得出A B表示的数据再利用P到A的距离是P到B的距离的2倍得出P点位置.【详解】解:数轴上A、B表示的数互为相反数并且两点间的距离是12∴A表示-6 B表示6 或者A表示6 B表示-6①当A表示-6 B表示6时在A、B之间有一点P P到A的距离是P到B的距离的2倍∴P A=8 PB=4∴点P表示的数是:2;②A表示6 B表示-6时在A、B之间有一点P P到A的距离是P到B的距离的2倍∴P A=8 PB=4∴点P表示的数是:-2;故答案为:2±.此题主要考查了数轴以及互为相反数的定义 正确得出A B 点位置是解题关键.【题型6】绝对值1.(2021·湖北恩施·一模)﹣2的绝对值为( )A .﹣12B .12C .﹣2D .2【答案】D【解析】【分析】直接利用绝对值的性质化简得出答案.【详解】解:﹣2的绝对值为:2故选:D .【点睛】本题考查化简绝对值 解题的关键是掌握绝对值的定义.【变式6-1】2.(2021·辽宁本溪·七年级期中)化简:3π4π---=____________.【答案】2π7-【解析】【分析】根据绝对值的定义即可得.【详解】 解:3π4π3427πππ---=--+=-;故答案为:2π7-【点睛】此题考查了绝对值 掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.专项训练一.选择题1.(2019·贵州安顺·中考真题)-2019的相反数是( )A .2019B .-2019C .12019 D .12019-【答案】A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:-2019的相反数是2019.故选:A .【点睛】本题考查了相反数的定义 解答本题的关键是熟练掌握相反数的定义.2.(2021·贵州安顺·中考真题)如图 已知数轴上,A B 两点表示的数分别是,a b则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --【答案】C【解析】【分析】根据数轴上两点的位置 判断,a b 的正负性 进而即可求解.【详解】解:∵数轴上,A B 两点表示的数分别是,a b∴a <0 b >0∴()b a b a a b -=--=+故选:C .【点睛】本题考查了数轴 绝对值 掌握求绝对值的法则是解题的关键.3.(2022·全国·七年级课时练习)数轴上 点A 对应的数是6- 点B 对应的数是2- 点O 对应的数是0.动点P 、Q 从A 、B 同时出发 分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中 下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ = 【答案】A【解析】【分析】设运动时间为t 秒 根据题意可知AP=3t BQ=t AB=2 然后分类讨论:①当动点P 、Q 在点O 左侧运动时 ②当动点P 、Q 运动到点O 右侧时 利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t 秒 由题意可知: AP=3t BQ=tAB=|-6-(-2)|=4 BO=|-2-0|=2①当动点P 、Q 在点O 左侧运动时PQ=AB-AP+BQ=4-3t+t=2(2-t)∵OQ= BO- BQ=2-t∴PQ= 2OQ ;②当动点P 、Q 运动到点O 右侧时PQ=AP-AB-BQ=3t-4-t=2(t-2)∵OQ=BQ- BO=t-2∴PQ= 2OQ综上所述在运动过程中线段PQ的长度始终是线段OQ的长的2倍即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离解题时注意分类讨论的运用.4.(2022·全国·七年级课时练习)已知1|3|a=-则a的值是()A.3 B.-3 C.13D.13+或13-【答案】D【解析】【分析】先计算出3-然后根据绝对值的定义求解即可.【详解】解:∵133 a=-=∴13 a=±∴13 a=±故选:D.【点睛】本题考查绝对值方程的求解理解绝对值的定义是解题关键.5.(2021·全国·七年级课时练习)A为数轴上表示3的点将点A沿数轴向左平移7个单位到点B再由B 向右平移6个单位到点C则点C表示的数是()A.0 B.1 C.2 D.3【答案】C【解析】【分析】根据向左平移为减法向右平移为加法利用有理数的加减法运算计算即可.【详解】376=2-+∴点C 表示的数是2故选:C .【点睛】本题主要考查有理数加减法的应用 正确的计算是关键.6.(2019·黑龙江·中考真题)实效m n 在数轴上的对应点如图所示 则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数 且m <n 由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数 且m <n |m|>|n|A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选C .【点睛】此题考查有理数的大小比较 关键是根据绝对值的意义等知识解答.二、填空题7.(2020·四川乐山·中考真题)用“>”或“<”符号填空:7-______9-.【答案】>【解析】【分析】两个负数 绝对值大的其值反而小 据此判断即可.【详解】解:∵|-7|=7 |-9|=9 7<9∴-7>-9故答案为:>.【点睛】此题主要考查了有理数大小比较的方法 要熟练掌握 解答此题的关键是要明确:两个负数 绝对值大的其值反而小.8.(2021·江苏常州·中考真题)数轴上的点A 、B 分别表示3-、2 则点__________离原点的距离较近(填“A ”或“B ”).【答案】B【解析】【分析】先求出A 、B 点所对应数的绝对值 进而即可得到答案.【详解】解:∵数轴上的点A 、B 分别表示3-、2 ∴33,22-== 且3>2∴点B 离原点的距离较近故答案是:B .【点睛】本题主要考查数轴上点与原点之间的距离 掌握绝对值的意义 是解题的关键.9.(2022·全国·七年级课时练习)如图 数轴上点A B C 对应的有理数分别是a b c2OA OC OB == 且24a b c ++=- 则a b b c -+-=______.【答案】8【解析】【分析】根据2OA OC OB ==得2c a b =-=- 代入24a b c ++=-即可求出a 和c 的值 再根据绝对值的性质化简a b b c -+- 即可求出结果.【详解】解:∵2OA OC OB ==∴2c a b =-=-∵24a b c ++=-∴4a c c -+=- 即4a =-∴4c = ∴()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点睛】本题考查数轴的性质和绝对值的性质 解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.10.(2019·山东德州·中考真题)33x x -=- 则x 的取值范围是______.【答案】3x ≤【解析】【分析】根据绝对值的意义 绝对值表示距离 所以30x -≥ 即可求解;【详解】根据绝对值的意义得 30x -≥3x ∴≤;故答案为3x ≤;【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键.11.(2020·湖北·云梦县实验外国语学校七年级期末)若有理数a b c 在数轴上的位置如图所示 则|a -c |-|b +c |可化简为_________ .【答案】a b --##b a --【解析】【分析】根据数轴上的点的位置 判断a -c 和b +c 的符号 然后根据绝对值的意义求解即可.【详解】根据题意得a-c<0 b+c>0所以|a﹣c|﹣|b+c|=c-a-(b+c)=c-a-b-c=-a-b故答案为-a-b.【点睛】此题主要考查了数轴上点与绝对值的化简关键是根据数轴上点的位置求出代数式的符号.三、解答题12.(2020·广东·龙门县华南师范大学附属龙门学校七年级期末)把下列各数在数轴上表示出来 3.5 -3.5 0 2 -0.5 -2 0.5. 并按从小到大的顺序用“<”连接起来.【答案】数轴见解析-3.5<-2<-0.5<0<0.5<2<3.5;【解析】【分析】先根据数轴表示数的方法表示各数再按从左向右的顺序排列即可.【详解】在数轴上表示从小到大的顺序是:用“<”连接起来-3.5 <-2 <-0.5 <0 <0.5<2<3.5.【点睛】此题主要考查了有理数与数轴关键是正确在数轴上表示各数.13.(2022·全国·七年级专题练习)如图数轴上点A B M N表示的数分别为-1 5 m n且AM=23AB点N是线段BM的中点求m n的值.【答案】m=3 n=4或m=-5 n=0【解析】【分析】根据题意得:AB=6.再由AM=23AB可得AM=4.然后分两种情况讨论即可求解.【详解】解:∵数轴上 点A B 表示的数分别为-1 5∴AB =6.∵AM =23AB∴AM =4.①当点M 在点A 右侧时∵点A 表示的数为-1 AM =4∴点M 表示的数为3 即m =3.∵点B 表示的数为5 点N 是线段BM 的中点∴点N 表示的数为4 即n =4.② 当点M 在点A 左侧时∵点A 表示的数为-1 AM =4∴点M 表示的数为-5 即m =-5.∵点B 表示的数为5 点N 是线段BM 的中点∴点N 表示的数为0 即n =0.综上 m =3 n =4 或m =-5 n =0.【点睛】本题主要考查了数轴上两点间的距离 熟练掌握数轴上两点间的距离 并利用分类讨论思想解答是解题的关键.14.(2022·全国·七年级课时练习)阅读下面材料:如图 点A 、B 在数轴上分别表示有理数a 、b 则A 、B 两点之间的距离可以表示为a b -根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与2-的两点之间的距离是________.(2)数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为________.(3)代数式8x +可以表示数轴上有理数x 与有理数________所对应的两点之间的距离;若85x += 则x =________.【答案】(1)5;(2)7x ;(3)-8;-3或-13;【解析】【分析】(1)根据材料计算即可;(2)根据材料列代数式即可;(3)将8x +化为()8x --即可;根据绝对值的性质计算求值即可;(1)解:数轴上表示3与2-的两点之间的距离是3-(-2)=5;(2)解:数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为7x ;(3) 解:∵8x +=()8x -- ∴代数式8x +可以表示数轴上有理数x 与有理数-8所对应的两点之间的距离; 若85x += 则当(x+8)>0时 x +8=5 x =-3当(x+8)<0时 x +8=-5 x =-13故答案为:-8;x =-3或-13;【点睛】本题考查了数轴上两点之间的距离 绝对值的化简(正数的绝对值是它本身 零的绝对值是零 负数的绝对值是它的相反数);掌握绝对值的意义是解题关键.15.(2022·河南·郑州外国语中学七年级期末)数轴是一个非常重要的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如:从“形”的角度看:|31|-可以理解为数轴上表示 3 和 1 的两点之间的距离;|31|+可以理解为数轴上表示 3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为: 4-(-3) .根据以上阅读材料探索下列问题:(1)数轴上表示 3 和 9 的两点之间的距离是 ;数轴上表示 2 和﹣5 的两点之间的距离是 ;(直接写出最终结果)(2)①若数轴上表示的数 x 和﹣2 的两点之间的距离是 4 则 x 的值为 ;②若 x 为数轴上某动点表示的数 则式子|1||3|x x ++-的最小值为 .【答案】(1)6 7;(2)①-6或2;②4【解析】【分析】(1)直接根据数轴上两点之间的距离求解即可;(2)①根据数轴上两点之间的距离公式列绝对值方程 然后解方程即可;②由于所给式子表示x 到-1和3的距离之和 当x 在-1和3之间时和最小 故只需求出-1和3的距离即可.(1)解:数轴上表示 3 和 9 的两点之间的距离是|9-3|=6 数轴上表示 2 和﹣5 的两点之间的距离是|2-(-5)|=7故答案为:6 7;(2)解:①根据题意 得:|x -(-2)|=4∴|x +2|=4∴x +2=-4或x +2=4解得:x =-6或x =2故答案为:-6或2;②∵|1||3|x x ++-表示x 到-1和3的距离之和∴当x 在-1和3之间时距离和最小 最小值为|-1-3|=4故答案为:4.【点睛】本题考查数轴上两点之间的距离 会灵活运用数轴上两点之间的距离解决问题是解答的关键.16.(2018·全国·七年级专题练习)如图 一个点从数轴上的原点开始 先向右移动3个单位长度 再向左移动5个单位长度 可以看到终点表示的数是-2.已知点A B 是数轴上的点 请参照图并思考 完成下列各题.(1) 若点A 表示数2- 将A 点向右移动5个单位长度 那么终点B 表示的数是 此时 A B 两点间的距离是________.(2)若点A 表示数3 将A 点向左移动6个单位长度 再向右移动5个单位长度后到达点B 则B 表示的数是________;此时 A B 两点间的距离是________.(3)若A 点表示的数为m 将A 点向右移动n 个单位长度 再向左移动t 个单位长度后到达终点B 此时A 、B 两点间的距离为多少?【答案】(1) 3 5 ;(2) 2 ; 1 ;(3)n t -【解析】【详解】试题分析:(1)由数轴上面的点表示的数查出结果即可 并根据绝对值求出两点间的距离;(2)由数轴上面的点表示的数查出结果即可 并根据绝对值求出两点间的距离;(3)结合(1)和(2)的距离与平移的关系直接列式即可(距离为两次移动的单位长度的差的绝对值). 试题解析:(1)(1) 3 5 ;(2) 2 ; 1 ;(3)n t -17.(2022·全国·七年级课时练习)如图 数轴上的三个点A B C 分别表示实数a b c .(1)如果点C 是AB 的中点 那么a b c 之间的数量关系是________;(2)比较4b -与1c +的大小 并说明理由;(3)化简:|2||1|||--+++a b c .【答案】(1)2c =a +b (答案不唯一)(2)4-<b 1c +;理由见解析(3)3a b c ---【解析】【分析】(1)利用C 是AB 的中点得到AC =BC 可得a c c b -=- 化简即可;(2)通过数轴得出a b c 的大小关小 从而得出b -4和c +1的大小;(3)先判断a -2 b +1 c 的正负 然后根据绝对值的性质化简即可.(1)∵C 是AB 的中点 且数轴上的三个点A B C 分别表示实数a b c∴AC =BC∴a c c b -=-∴2c =a +b故答案是:2c =a +b ;(2)4-<b 1c + 理由如下:由数轴知:01a << 10c -<< 1b <-∴b -4<-5 c +1>0∴4-<b 1c +;(3)由数轴知:01a << 10c -<< 1b <-∴a -2<0 b +1<0 ∴()()2121213a b c a b c a b c a b c --+++=---+-=-+---=---.【点睛】本题考查了数轴的意义 绝对值以及有理数大小的比较 掌握绝对值的性质以及有理数的加减法则是解题的关键.第21 页共21 页。

七年级数学上册《第一章 有理数的乘除法》同步练习及答案-人教版

七年级数学上册《第一章 有理数的乘除法》同步练习及答案-人教版

七年级数学上册《第一章 有理数的乘除法》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.计算()42-÷的结果是( )A .2-B .2C .6-D .8-2.计算下列各式,值最大的是( )A .()12--B .()12+-C .()12⨯-D .()12÷-3.下列运算中,结果小于0的是( )A .()()820-⨯-B .()()8200-⨯-⨯C .()820-+-D .()()820---4.已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克加收2元.小红在该快递公司寄一件8千克的物品,需要付费( )A .19元B .20元C .21元D .23元5.从-5,-8,-1,2,7,3这六个数中取其中3个不同的数作为因数,则积的最大值为( ) A .42 B .80 C .280 D .560 6.对于下面两个等式①()()a b c a b c ++=++,①()()ab c ac b =,下列说法正确的是( )A .①表示加法交换律B .①表示乘法结合律C .①表示加法结合律D .①表示乘法交换律7.下列各式中,计算结果为负数的是( ) A .()()34 6.2-⨯-⨯B .()()34 5.53-⨯-⨯-⨯-C .()()()134099.8-⨯-⨯-D .()15870-⨯-⨯ 8.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中不正确的是( )A .0a b -<B .||||a b <C .0a b +>D .0.ab >二、填空题9.实数a ,b 在数轴上的对应点的位置如图所示, 用“<”或“>”填空:a b ,ab 0;三、解答题19.小明的爸爸购买了8筐板枣出售,若以每筐10kg 为基准,把超过10kg 的千克数记为正数,不足10kg 的千克数记为负数,记录如下:①3+:① 1.4-;①2+;①4-:①5+;① 3.5-;①1+;①0.5-.(1)这8筐板枣中,最重的一筐是_____kg ,比最轻的一筐重了______kg .(2)这8筐板枣的总重量是多少kg ?20.学习了有理数的乘法后,老师给同学们出了这样一道题目:“计算:()1939520⨯-,看谁算的又快又对.”有两位同学的解法如下:小文:原式79939953519920204=-⨯=-=-; 小丽:原式()()1919339539(5)519920204⎛⎫=+⨯-=⨯-+⨯-=- ⎪⎝⎭. (1)对于以上两种解法,__________的解法较好(填“小文”或“小丽”);(2)受上面解法对你的启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:1599816⎛⎫-⨯ ⎪⎝⎭. 参考答案:1.A2.A3.C4.A5.C6.C7.C8.D9. < <。

人教版七年级数学上册《1.4.2 有理数的除法》同步训练(附答案)

人教版七年级数学上册《1.4.2 有理数的除法》同步训练(附答案)

人教版七年级数学上册《1.4.2 有理数的除法》同步训练(附答案)一、单选题 1.下列运算正确的是( )A .()824÷-=B .()()422-÷-=C .011÷=D .1212÷= 2.计算12(3)3⎛⎫-÷-⨯- ⎪⎝⎭的结果是( ) A .﹣2 B .2 C .29- D .﹣183.如果一个数的倒数等于它的本身,那么这个数一定是( )A .0B .1C .-1D .±14.下列计算中正确的是( ).A .-9÷2 ×12 =-9B .6÷(13-12)=-1 C .114-114÷56=0 D .-12÷14÷14 =-8 5.两个有理数a ,b 在数轴上的位置如图,下列四个式子中运算结果为正数的式子是( )A .a +bB .a ﹣bC .abD .a b6.两个非零有理数的差为0,则它们的商为( )A .1B .1-C .0D .不能确定7.若a ,b 都是有理数,且ab ≠0,则a b a b +的取值不可能是( ) A .0 B .1 C .2 D .2-8.有理数a ,b 在数轴上的对应点如图,下列式子:①0a b >>;①b a >;①0ab <;①a b a b ->+;①1a b <-,其中错误的个数是( )A .1B .2C .3D .4二、填空题三、解答题18.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.19.下面是佳佳同学的一道题的解题过程:2÷(-1314+)×(-3)=[2÷(-13)+214÷]×(-3),①=2×(-3)×(-3)+2×4×(-3),①=18-24,①=6,①(1)佳佳同学开始出现错误的步骤是;(2)请给出正确的解题过程.20.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?1.B2.C3.D4.D5.A6.A7.B8.C。

人教版数学七年级上册第1章 1.4.2有理数的除法 同步练习

人教版数学七年级上册第1章 1.4.2有理数的除法 同步练习

人教版数学七年级上册第1章1.4.2有理数的除法同步练习一、单1.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数(??)A、一定相等B、一定互为倒数C、一定互为相反数D、相等或互为相反数+2.下列运算中没有意义的是()A、﹣2006÷[(﹣)×3+7]B、[(﹣)×3+7]÷(﹣2006)C、(﹣)÷[0﹣(﹣4)]×(﹣2)D、2 ÷(3 ×6﹣18)+3.小虎做了以下4道计算题:①0﹣(﹣1)=1;②;③;④(﹣1)2015=﹣2015,请你帮他检查一下,他一共做对了(??)A、1题B、2题C、3题D、4题+4.下列运算正确的是()A、﹣(﹣1)=﹣1B、|﹣3|=﹣3C、﹣22=4D、(﹣3)÷(﹣)=9+5.计算:的结果是(??)A、±2B、0C、±2或0D、2+6.若a+b<0,且,则(??)A、a,b异号且负数的绝对值大B、a,b异号且正数的绝对值大C、a>0,b>0D、a<0,b<0+7.计算:1÷(﹣5)×(﹣)的结果是(??)A、1B、﹣1C、D、﹣+8. 36÷(﹣9)的值是(??)A、4B、18C、﹣18D、+﹣49.计算×(﹣8)÷(﹣)结果等于(??)A、8B、﹣8C、D、1+10.计算:﹣15÷(﹣5)结果正确的是(??)A、75B、﹣75C、3D、﹣3+11.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A、4个B、3个C、2个D、1个+12.下列是一名同学做的6道练习题:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m﹣2= ;⑤(xy2)3=x3y6;⑥22+23=25,其中做对的题有(??)A 、1道B 、2道C 、3道D 、4道+二、填空题13.计算:﹣12÷(﹣3)= . +14.如果 >0,>0,那么7ac 0. +15.计算:6÷(﹣)×2÷(﹣2)= . +16.计算:﹣2÷|﹣ |= . +17.已知:13=1= ×1×22 13+23=9= ×22×3213+23+33=36= ×32×4213+23+33+43=100= ×42×52 …根据上述规律计算:13+23+33+…+193+203= .+三、计算题18.计算:( ?+ ﹣)÷(﹣)+19.计算:(﹣3)2÷2 ﹣(﹣)×(﹣).+20.计算:(1)、(﹣36 )÷9(2)、(﹣)×(﹣3)÷(﹣1)÷3.+21.综合题。

人教版七年级上册数学第一章1.4.2《有理数的除法》同步练习1

人教版七年级上册数学第一章1.4.2《有理数的除法》同步练习1

《有理数的除法》同步练习11.有理数除法法则:(1)除以一个不等于0的数,等于乘这个数的________,用字母表示为a÷b =a·________(b≠0);(2)两个有理数相除,同号得________,异号得________,并把绝对值________.0除以任何一个不等于0的数,都得________.2.有理数的乘除混合运算:有理数的乘除是同级运算,应按从________到________的顺序进行.3.把32()()43-÷-转化为乘法是( )A .32()43-⨯B .33()42-⨯ C .32()()43-⨯-D .33()()42-⨯-4.下列运算中,正确的是( )A .14()227÷-=- B .4(24)61÷-=-C .-18÷(-3)=-6D .16()93÷-=-5.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( )A .一定相等B .一定互为倒数C .一定互为相反数D .相等或互为相反数6.(1)(-15)÷(-5)=________;(2)(-4)÷________=8; (3)1________()33÷-=-.7.化简:(1)42________ 7=-;(2)51________ 17-=-;(3)18________ 54=-;(4)27________ 36--=.8.计算:(1)8 0.1253 -÷;(2)3(3)( 2.25)8-÷-;(3)1853()() 334÷-÷-;(4)11 (2)(5)(3)23-÷-⨯-.9.如果两个数的商是-4,被除数是123-,那么除数是( )A.7 12B.28 3 -C.12 7 -D.39 25 -10.若两个数的和为负数,商也为负数,则这两个数( ) A.同为负数B.同为正数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大11.两个有理数之积是1,已知一个数是127-,则另一个数是________.12.计算:14(81)2________1549-÷⨯÷=-.13.对于有理数a 、b ,定义运算“⊗”如下:()a b ab a b ⊗=÷+,试比较大小(3)4________3(4)-⊗⊗-(填“>”“<”或“=”).14.若有理数a≠0,b≠0,则||||a b a b +的值为________. 15.计算: (1)412411-÷; (2)3(72)95-÷; (3)1339(2)()1648-÷⨯; (4)1853()()334÷-÷-; (5)14(81)2()(8)49-÷⨯-÷-; (6)1331(0.25)(1)244-÷÷-⨯-. 16.王老师在黑板上出了一道计算题11(2)(2)22-⨯÷⨯-,小明是这样解的:原式=(-1)÷(-1)=1,他这样做对吗?如果不对,请改正.17.若a >0,b >0,且1a b >,则a >b ;若a <0,b <0,且1a b>,则a <b .以上这种比较大小的方法,叫做作商比较法.试利用作商比较法,比较1517-与1719-的大小.答案1.(1)倒数1 b(2)正负相除0 2.左右3.D4.B5.D6.(1)3(2)1 2(3)1 7.(1)-6 (2)3(3)1 3 -(4)3 48.(1)3 64 -(2)3 2(3)1(4)5 3 -9.A 10.D11.7 15 -12.16 1513.<14.0或±215.(1)1 311 -(2)1 815 -(3)10 3 -(4)1(5)-2(6)-1416.不对原式122242=⨯⨯⨯=17.因为1517-<,1719-<,151********()117191717289-÷-=⨯=<,所以15171719->-。

七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)

七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)

七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.2的倒数是( )A .12 B .﹣ 12 C .2 D .﹣22.绝对值大于2且小于5的所有整数的积是( )A .﹣144B .144C .0D .73.下列计算正确的是( )A .()1103033⎛⎫÷-=⨯-=- ⎪⎝⎭ B .()()22224-÷-=-⨯=-C .()111999⎛⎫÷-=⨯-=- ⎪⎝⎭ D .()()3693694-÷-=-÷=-4.已知|x|=3,|y|=2,且xy <0,则x ﹣y 的值等于( )A .5B .5或﹣5C .﹣5D .﹣5或15.在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭6.有两根铁丝,第一根用去 25 米,第二根用去 25 ,剩下的一样长,两根铁丝原来相比() A .第一根长 B .第二根长 C .一样长 D .无法确定7.从-8,-6,-4,0,3,5,7中任取三个不同数做乘积,则最小的乘积是( )A .-336B .-280C .-210D .-1928.如图,数轴上的点A 、B 分别对应数a 、b ,下列结论正确的是( )A .<0a b +B .>0a b -C .>0abD .>0ab -9.吴与伦比设计了一个计算程序,如图,如果输入的数是1,那么输出的结果是( )A .1B .-1C .3D .-3 二、填空题10.a 的相反数是 710,则a 的倒数是 。

11.计算: 1()303-⨯+= .12.在6,﹣5,﹣4,3四个数中任取两数相乘,积记为A ,任取两数相除,商记为B ,则A ﹣B 的最大值为 .13.已知 230a b ++-= ,则 ab = .14.有理数a 、b ,规定运算“★”如下:a ★b =a ×b-a-b-2,则(-3)★2= .三、计算题15.()528522514⎛⎫-+÷-⨯- ⎪⎝⎭16.计算(1)()()251236--+⨯-;(2)13212243⎛⎫-+-⨯ ⎪⎝⎭.17.计算:(1)(32)(4)(25)4-÷---⨯;(2)523(5)(7)()(12)1234-⨯-++-⨯-.18.一只蚂蚁从某点A 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+2,-3,+12,-8,-7,+16,-12(1)通过计算说明蚂蚁是否回到起点A ;(2)如果蚂蚁爬行的速度为0.5厘米/秒,那么蚂蚁共爬行了多长时间.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(超产记为正,减产记为负)((2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)赶进度期间该厂实行计件工资加浮动工资制度,即:每生产一个工艺品的工资为30元,超过计划完成任务部分的每个工艺品则在原来30元工资上再奖励5元;比计划每少生产一个则在应得的总工资上扣发3元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?参考答案:1.A 2.B 3.C 4.B 5.A 6.D 7.B 8.D 9.A10.107- 11.-112.65313.-614.-715.解: ()528522514⎛⎫-+÷-⨯- ⎪⎝⎭ 5281525214⎛⎫⎛⎫=-+⨯-⨯- ⎪ ⎪⎝⎭⎝⎭, 5281525214=-+⨯⨯, 512=-+, 32=- 16.(1)解:()()251236--+⨯-()25+1218=+-19=;(2)解:13212243⎛⎫-+-⨯ ⎪⎝⎭ 132121212243=-⨯+⨯-⨯ 698=-+-=5-.17.(1)解:原式8(100)=--8100=+108=;(2)解:原式52335(12)(12)(12)1234=+⨯-+⨯--⨯- 35589=--+31=.18.(1)解:根据题意得:+2−3+12−8−7+16−12=0答:蚂蚁能回到起点A(2)解:(2+3+12+8+7+16+12)÷0.5=60÷0.5=120(秒)答:蚂蚁共爬行了120秒.19.(1)解:周一的产量为: ()3002298+-= 个;(2)解:由表格可知:星期六产量最高,为 300(16)316++= (个) 星期五产量最低,为 300(10)290+-=(个)则产量最多的一天比产量最少的一天多生产 31629026-= (个) ;(3)解: (5)(2)(5)(15)(10)(16)(9)10++-+-+++-+++-= 个 根据题意得该厂工人一周的工资总额为:()2100103055235315510316593+⨯+⨯-⨯-⨯+⨯-⨯+⨯-⨯ 633002561575308027=+--+-+-63402= (元)。

人教版七年级数学上册 第1章 有理数 1.4.2.1 有理数的除法法则 同步练习(含答案)

人教版七年级数学上册 第1章 有理数 1.4.2.1 有理数的除法法则 同步练习(含答案)

人教版七年级上册第一章有理数1.4.2.1 有理数的除法法则同步测试一.选择题(共10小题,3*10=30)1.计算12÷(-4)的结果等于( )A .-8B .-3C .3D .82.如果a <0时, +1的值是( )A .0B .1C .2D .不能确定3.若两个有理数的商是负数,那么这两个数一定( )A .都是正数B .都是负数C .符号相同D .符号不同4.若( )×(-2)=1,则括号内填一个有理数应该是() A. 12 B .2C .-2D .-125.下列计算正确的有( )①(-8)÷2=-4;②0÷(-1100)=0;③(-16)÷(-23)=16÷23=16×32=14;④(-12)÷(-6)÷(-4)=(-12)×(-16)×(-14)=-12.A .4个B .3个C .2个D .1个6.如果a +b <0,且b a >0,那么下列结论成立的是( )A .a >0,b >0B .a <0,b <0C .a >0,b <0D .a <0,b >07.我们把2÷2÷2记作2③,(-4)÷(-4)记作(-4)②,那么计算9×(-3)④的结果为( )A .1B .3C. 4D.88.若|a |=3,|b |=13,则a ÷b 的值为( ) A .±9 B .-9C .±1D .-19.计算(-3)÷(-12)÷(-12)的结果是( ) A .-3 B .3C .-12D .1210.从-3,-1,1,5,6五个数中任取两个数相乘,若所得积中最大值为a ,最小值为b ,则a b的值为( ) A .-53B .-2C .-56D .-10二.填空题(共8小题,3*8=24)11.8÷(-4)=______;(-3)÷(-13)=____; 12.0÷(-99)=____;(-12)÷(-2)=____; 13.)若m >0,则m |m|=____;若m <0,则|m|m=______. 14. 计算(-3)÷(-12)÷(-12)的结果是( ) 15. 若|a|=4,|b|=12,且ab <0,则a÷b 的值为____; 16. 若|4-x|+|y +2|=0,则x÷y 的值为____.17. 在如图所示的运算程序中,若输出的数y =3,则输入的数x =_____.18.某冷库的室温为-4 ℃,有一批食品需要在-28 ℃冷藏,如果每小时降3 ℃,则___小时能降到所要求的温度.三.解答题(共7小题,46分)19. (6分)计算:(1)(+48)÷(-6);(2)(-6.5)÷(-0.5);(3)(-323)÷(512).20. (6分) 下面是某同学计算15÷(15-13)的运算过程: 15÷(15-13)=15÷15-15÷13=15×5-15×3=30解题过程是否有错误?若有错误,请说明原因,并更正.21. (6分) 计算:(1)(-67)÷(-27);(2)(-2467)÷6;(3)(-34)÷(-6)÷(-94).22. (6分) 列式计算:(1)已知两个数的商是-5,被除数为-55,求除数;(2)两个数的积是1,其中一个数是-237,求另一个数.23. (6分) 化简下列各分数:(1)-1255; (2)6-42;(3)-5-0.2; (4)-0.6-0.75.24. (8分) 若规定:aΔb =(-1a )÷b 2,例如:2Δ3=(-12)÷32=-13.试求(2Δ7)Δ4的值.25. (8分) (1)已知ab <0,则|a|a +b |b|=____; (2)已知ab >0,则|a|a +b |b|=____; (3)若a ,b 都是非零的有理数,那么a |a|+b |b|+ab |ab|的值是多少参考答案1-5BADDA 6-10 BAACA11. -2 ,912. 0 ,1413. 1 ,-114. -1215. -816. -217. 5或618. 819. 解:(1)原式=-(48÷6)=-8(2) 原式=6.5÷0.5=13(3) 原式=-(113÷112)=-(113×211)=-2320. 解:解题过程有错误.原因是没有按顺序进行计算,除法没有分配律.更正:15÷(15-13)=15÷(-215)=15×(-152)=-112.5 21. 解:(1)原式=67×72=3 (2) 原式=(-24-67)×16=-24×16-67×16=-4-17=-417(3) 原式=-34÷6÷94=-34×16×49=-11822. 解:(1) (-55)÷(-5)=11.答:除数为11(2)1÷(-237)=1÷(-177)=1×(-717)=-717.答:另一个数是-71723. 解:(1)原式=-25(2)原式=-17(3) 原式=25(4) 原式=45 24. 解:因为2Δ7=(-12)÷72=-17,所以(2Δ7)Δ4=-17Δ4=-1-17÷42=7225. 解:(1)0 (2)±2(3)当a>0,b>0时,原式=a|a|+b|b|+ab|ab|=aa+bb+abab=1+1+1=3;当a>0,b<0时,原式=a|a|+b|b|+ab|ab|=aa+b-b+ab-ab=1+(-1)+(-1)=-1;当a<0,b>0时,原式=a|a|+b|b|+ab|ab|=a-a+bb+ab-ab=-1+1+(-1)=-1;当a<0,b<0时,原式=a|a|+b|b|+ab|ab|=a-a+b-b+abab=-1+(-1)+1=-1.即原式的值为3或-1。

人教版数学七年级上《1.4有理数的乘除法》同步练习(含答案)

人教版数学七年级上《1.4有理数的乘除法》同步练习(含答案)

人教版数学七年级上册 同步练习第一章 有理数1.4 有理数的乘除法第1课时 有理数的乘法法则1.下列各组数中互为倒数的是( )A .4和-4B .-3和13C .-2和-12D .0和02.与-2的乘积为1的数是( )A .2B .-2 C.12 D .-123.下列算式中,积为正数的是( )A .-2×5B .-6×(-2)C .0×(-1)D .5×(-3)4.-12的倒数的相反数等于( )A .-2 B.12 C .-12 D .25.下列说法错误的是( )A .一个数同0相乘,仍得0B .一个数同1相乘,仍得原数C .一个数同-1相乘得原数的相反数D .互为相反数的两个数的积是16.对于式子-(-8),有以下理解:(1)可表示-8的相反数;(2)可表示-1与-8的乘积;(3)可表示-8的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0个B .1个C .2个D .3个7.用字母表示有理数乘法的符号法则.(1)若a >0,b >0,则ab ____0,若a >0,b <0,则ab ____0; (2)若a <0,b >0,则ab ____0,若a <0,b <0,则ab ____0;(3)若a >0,b =0,则ab ____0.8.计算下列各题:(1)(-35)×(-1); (2)(-15)×24;(3)-4.8×(-45); (4)⎝ ⎛⎭⎪⎫-119×(-0.6).9.计算:(1)(-5)×(-6)-8×(-1.25);(2)⎝ ⎛⎭⎪⎫-32×16+⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-53.10.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( )A .ab >0B .a +b <0C .|a |<|b |D .a -b >011.一辆出租车在一条东西走向的大街上行驶,这辆出租车连续送客20次,其中8次向东行驶,12次向西行驶,向东行驶每次的行程为10 km ,向西行驶每次的行程为7 km.(1)该出租车连续20次送客后,停在何处?(2)该出租车一共行驶了多少路程?12.东东有5张写着不同数字的卡片: -4 -5 0 +3 +2他想从中取出2张卡片,使这2张卡片上数字的乘积最大.你知道应该如何抽取吗?最大的乘积是多少?13. 规定运算,a b =ab +1,求下列各式的值:(1)(-2)3;(2)[(-1)2](-3).参考答案 1.C 2.D 3.B 4.D 5.D 6.A7.(1)> < (2)< > (3)=8.(1)35 (2)-360 (3)216 (4)239.(1)40 (2)34 10.D11.(1)该出租车停在出发地西面4 km 处;(2)该出租车一共行驶了164 km .12.抽取-4和-5,乘积最大,最大的乘积是20.13.(1)-5 (2)4第2课时 多个有理数相乘的法则1.下列说法中正确的是( )A .几个有理数相乘,当负因数有奇数个时,积为负B .几个有理数相乘,当积为负数时,负因数有奇数个C .几个有理数相乘,当正因数有奇数个时,积为负D .几个有理数相乘,当因数有奇数个时,积为负2.已知abc >0,a >c ,ac <0,下列结论正确的是( )A .a <0,b <0,c >0B .a >0,b >0,c <0C .a >0,b <0,c <0D .a <0,b >0,c >03.观察下面的解题过程,并根据解题过程直接写出下列各式的结果.(-10)×13×0.1×6=-10×13×0.1×6=-2.(1)(-10)×⎝ ⎛⎭⎪⎫-13×0.1×6=____; (2)(-10)×⎝ ⎛⎭⎪⎫-13×(-0.1)×6=____; (3)(-10)×⎝ ⎛⎭⎪⎫-13×(-0.1)×(-6)=____. 4.计算:(1)(-4)×5×(-0.25);(2)⎝ ⎛⎭⎪⎫-38×(-16)×(+0.5)×(-4);(3)(+2)×(-8.5)×(-100)×0×(+90);(4)-38×512×⎝ ⎛⎭⎪⎫-1115.5.计算:(1)(-10)×⎝ ⎛⎭⎪⎫-13×(-0.1)×6;(2)-3×56×145×(-0.25).6.计算:(1)(1-2)×(2-3)×(3-4)×(4-5)×…×(99-100);(2)⎝ ⎛⎭⎪⎫12 018-1×⎝ ⎛⎭⎪⎫12 017-1×⎝ ⎛⎭⎪⎫12 016-1×…×⎝ ⎛⎭⎪⎫11 001-1×⎝ ⎛⎭⎪⎫11 000-1.7.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报⎝ ⎛⎭⎪⎫11+1,第2位同学报⎝ ⎛⎭⎪⎫12+1,第3位同学报⎝ ⎛⎭⎪⎫13+1……这样得到的20个数的积为____.参考答案1.B 2.C3.(1)2 (2)-2 (3)24.(1)5 (2)-12 (3)0 (4)165.(1)-2 (2)986.(1)-1 (2)-9992 018 7.21第3课时 有理数的乘法运算律1.计算⎝ ⎛⎭⎪⎫-531×⎝ ⎛⎭⎪⎫-92×⎝ ⎛⎭⎪⎫-3115×29的结果是( ) A .-3 B .-13 C .3 D.132.下列计算中错误的是( )A .-6×(-5)×(-3)×(-2)=180B .(-36)×⎝ ⎛⎭⎪⎫16-19-13=-6+4+12=10 C .(-15)×(-4)×⎝ ⎛⎭⎪⎫+15×⎝ ⎛⎭⎪⎫-12=6 D .-3×(+5)-3×(-1)-(-3)×2=-3×(5-1-2)=-63.利用运算律计算⎝ ⎛⎭⎪⎫-993233×33时,最恰当的方案是( ) A.⎝⎛⎭⎪⎫100-133×33 B.⎝ ⎛⎭⎪⎫-100-133×33 C .-⎝ ⎛⎭⎪⎫99+3233×33 D .-⎝ ⎛⎭⎪⎫100-133×334.计算:(-8)×(-12)×(-0.125)×⎝ ⎛⎭⎪⎫-13×(-0.001)=____. 5.-23与25的和的15倍是____,-23与25的15倍的和是________.6.运用运算律简便计算:(1)999×(-15);(2)999×11845+999×⎝ ⎛⎭⎪⎫-15-999×11835.7.运用简便方法计算:(1)(-125)×(-25)×(-5)×(-2)×(-4)×(-8);(2)(-36)×⎝ ⎛⎭⎪⎫-49+56-712; (3)9989×(-18).8.逆用乘法分配律计算:(1)17.48×37+174.8×1.9+8.74×88;(2)-13×23-0.34×27+13×(-13)-57×0.34.9.观察下列等式:第1个等式:a 1=11×3=12×⎝ ⎛⎭⎪⎫1-13; 第2个等式:a 2=13×5=12×⎝ ⎛⎭⎪⎫13-15; 第3个等式:a 3=15×7=12×⎝ ⎛⎭⎪⎫15-17;第4个等式:a 4=17×9=12×⎝ ⎛⎭⎪⎫17-19.请解答下列问题:(1)按以上规律列出第5个等式:a 5=__________=__________; (2)用含n 的式子表示第n 个等式:a n =__________=______________(n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.参考答案1.B 2.C 3.D 4.-0.004 5.-4 5136.(1)-14 985 (2)07.(1)1 000 000 (2)7 (3)-1 798 8.(1)1 748 (2)-13.349.(1)19×11 12×⎝⎛⎭⎫19-111 (2)1(2n -1)(2n +1) 12×⎝⎛⎭⎫12n -1-12n +1 (3)100201第4课时 有理数的除法法则1. 16的倒数是( ) A .6 B .-6 C.16 D .-16 2.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫+12÷⎝ ⎛⎭⎪⎫-12=-1 B .-3÷⎝ ⎛⎭⎪⎫-13=1 C .(-5)×0÷0=0 D .2÷3×⎝ ⎛⎭⎪⎫-13=-23.如果一个数除以它的倒数,商是1,那么这个数是( ) A .1 B .2 C .-1 D .1或-14.倒数是它本身的数是___,相反数是它本身的数是____. 5.计算:(1)(-15)÷(-3); (2)(-12)÷⎝ ⎛⎭⎪⎫-14;(3)(-12)÷⎝ ⎛⎭⎪⎫-12÷(-10).6.化简下列分数:(1)-162; (2)12-48; (3)-54-6; (4)-9-0.3.7.若a +b <0,ba >0,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >08.已知a 和b 一正一负,则|a |a +|b |b 的值为( ) A .0 B .2C .-2D .根据a ,b 的值确定 9.计算:(1)⎝ ⎛⎭⎪⎫-23÷⎝ ⎛⎭⎪⎫-85÷(-0.25); (2)⎝ ⎛⎭⎪⎫-47÷⎝ ⎛⎭⎪⎫-314÷⎝ ⎛⎭⎪⎫-23;(3)(-2)÷13×(-3); (4)-2.5÷⎝ ⎛⎭⎪⎫-516×⎝ ⎛⎭⎪⎫-18÷(-4).10.若a ,b 互为相反数,c ,d 互为倒数,m 的倒数是2,求a +b -cdm 的值.11.一列数a 1,a 2,a 3,…满足条件:a 1=12,a n =11-a n -1(n ≥2,且n为整数),则a 2 016=____.参考答案1.A 2.A 3.D 4.±1 0 5.(1)5 (2)48 (3)-1256.(1)-8 (2)-14(3)9 (4)307.B 8.A 9.(1)-53 (2)-4 (3)18 (4)1410.-2 11.-1第5课时 有理数的加减乘除混合运算1.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×⎝ ⎛⎭⎪⎫-94÷(-1)=32;④(-4)÷12×(-2)=16.其中计算正确的个数为( ) A .4个 B .3个 C .2个 D .1个2.计算⎝ ⎛⎭⎪⎫-14÷⎝ ⎛⎭⎪⎫-23÷⎝ ⎛⎭⎪⎫-58的结果是( ) A .-53 B .-35 C .-56 D .-65 3.计算4÷(-1.6)-74÷2.5的值为( ) A .-1.1 B .-1.8 C .-3.2 D .-3.94.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( )A .+B .-C .×D .÷5.计算⎝⎛⎭⎪⎫316-256×(-3)-145÷⎝⎛⎭⎪⎫-35的结果是( ) A .4 B .2 C .-2 D .-4 6.计算:(1)42×⎝⎛⎭⎪⎫-17+(-0.25)÷34;(2)-1-2.5÷⎝ ⎛⎭⎪⎫-114; (3)[12-4×(3-10)]÷4.7.计算:(1)-1÷⎝ ⎛⎭⎪⎫-18-3÷⎝ ⎛⎭⎪⎫-12; (2)-81÷13-13÷⎝ ⎛⎭⎪⎫-19; (3)-1+5÷⎝ ⎛⎭⎪⎫-16×(-6); (4)⎝ ⎛⎭⎪⎫13-12÷114÷110.8.[2021·杭州]计算6÷⎝ ⎛⎭⎪⎫-12+13时,方方同学的计算过程如下:原式=6÷⎝ ⎛⎭⎪⎫-12+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.9.计算:(1)34×⎝ ⎛⎭⎪⎫-112÷⎝ ⎛⎭⎪⎫-214; (2)-34÷38×⎝ ⎛⎭⎪⎫-49÷⎝ ⎛⎭⎪⎫-23; (3)1÷⎝ ⎛⎭⎪⎫16-13×16; (4)-112÷34×(-0.2)×134÷1.4×⎝ ⎛⎭⎪⎫-35.10.如果规定符号“#”的意义是a #b =a +bab ,试求2#(-3)#4的值.11.定义运算a ⊗b =a (1-b ),下面给出了关于这种运算的几个结论: ①2⊗(-2)=6; ②a ⊗b =b ⊗a ; ③若a ⊗b =0,则a =0. 其中正确结论的序号是____.参考答案1.C 2.B 3.C 4.C 5.B 6.(1)-613(2)1 (3)107.(1)14 (2)-240 (3)179 (4)-438.方方同学的计算过程不正确,原式=-36,计算过程略. 9.(1)12 (2)-43 (3)-1 (4)-31010.254 11.①第6课时 利用计算器进行有理数的加减乘除混合运算1.在科学计算器上按顺序按3,8,×,1,5,+,3,2,=,最后屏幕上显示( )A .686B .602C .582D .5022.用计算器计算(-62.3)÷(-0.25)×940时,用带符号键(-)的计算器的按键顺序是_______________________________________________,用带符号转换键+/-的计算器的按键顺序是_____________________.3.(1)用计算器求 4.56+0.825,按键顺序及显示的结果是:4.56+________=________;(2)用计算器求(-2 184)÷14,按键顺序及显示的结果是:2184________÷________=________.4.用计算器计算下列各题:(1)-98×(-32.7);(2)36÷7.2+(-48.6)÷2.4.5.在计算器上按如图1-4-2所示的程序进行操作,表中的x与y是分别输入的6个数及相应的计算结果:按键×3=输出y(计算结果)输入x――→图1-4-2上述操作程序中所按的第三个键和第四个键应是()A.“1”和“+”B.“+”和“1”C.“1”和“-”D.“+”和“-1”6.计算(本题可用计算器计算):(1)44×441+2+1=____;(2)666×6661+2+3+2+1=____;(3)8 888×8 8881+2+3+4+3+2+1=____.7.某粮食加工厂从生产的粮食中抽出20袋检查质量,以每袋50 kg为标准,将超过的千克数记为正数,不足的千克数记为负数,结果记录如下:这20袋大米共超重或不足多少千克?总质量为多少千克?8.利用计算器进行计算,将结果填写在横线上:99 999×11=____;99 999×12=____;99 999×13=____;99 999×14=____.(1)你发现了什么规律?(2)不用计算器,你能直接写出99 999×19的结果吗?参考答案1.B2.(-)62· 3÷(-)0· 25×940=62· 3+/-÷0· 25+/-×940=3.(1)0.825 5.385(2)+/-14-1564.(1)3 204.6(2)-15.25 5.B6.(1)484(2)49 284(3)4 937 2847.这20袋大米共超重0.4 kg,总质量为1 000.4 kg.8.1 099 989 1 199 988 1 299 987 1 399 986(1)(答案不唯一)规律①:第一个因数都是99 999不变,第二个因数由11逐渐加1,积的最高两位数随着第二个因数的增加由10逐渐加1,中间三位数都是999,末尾两位数由89逐渐减1;规律②:因数的规律同上,积的最高两位数比第二个因数少1,中间三位数都是999,末尾两位数与第二个因数的和为100;(2)1 899 981。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【人教版】数学七年级上册-同步练习第1章1.4.2有理数的除法同步练习-含解析人教版数学七年级上册第1章 1.4.2有理数的除法同步练习一、单选题(共12题;共24分)1、两个不为零的有理数相除、如果交换被除数与除数的位置、它们的商不变、那么这两个数()A、一定相等B、一定互为倒数C、一定互为相反数D、相等或互为相反数2、下列运算中没有意义的是()A、﹣2006÷[(﹣)×3+7]B、[(﹣)×3+7]÷(﹣2006)C、(﹣)÷[0﹣(﹣4)]×(﹣2)D、2 ÷(3 ×6﹣18)3、小虎做了以下4道计算题:①0﹣(﹣1)=1;②;③;④(﹣1)2015=﹣2015、请你帮他检查一下、他一共做对了()A、1题B、2题C、3题D、4题4、下列运算正确的是()D、﹣49、计算×(﹣8)÷(﹣)结果等于()A、8B、﹣8C、D、110、计算:﹣15÷(﹣5)结果正确的是()A、75B、﹣75C、3D、﹣311、下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷ ×(﹣2)=16.其中正确的个数()A、4个B、3个C、2个D、1个12、下列是一名同学做的6道练习题:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m﹣2= ;⑤(xy2)3=x3y6;⑥22+23=25、其中做对的题有()B、2道C、3道D、4道二、填空题(共5题;共5分)13、计算:﹣12÷(﹣3)=________.14、如果>0、>0、那么7ac________0.15、计算:6÷(﹣)×2÷(﹣2)=________.16、计算:﹣2÷|﹣|=________.17、已知:13=1= ×1×2213+23=9= ×22×3213+23+33=36= ×32×4213+23+33+43=100= ×42×52…根据上述规律计算:13+23+33+…+193+203=________.三、计算题(共4题;共30分)18、计算:(+ ﹣)÷(﹣)19、计算:(﹣3)2÷2 ﹣(﹣)×(﹣).20、计算:(1)(﹣36 )÷9(2)(﹣)×(﹣3 )÷(﹣1 )÷3.21、综合题.(1)计算:﹣14﹣16÷(﹣2)3+|﹣|×(1﹣0.5)(2)化简:4xy﹣3y2﹣3x2+xy﹣3xy﹣2x2﹣4y2.答案解析部分一、单选题1、【答案】D【考点】有理数的除法【解析】【解答】解:如果交换被除数与除数的位置、它们的商不变、这两个数一定相等或互为相反数.故选D.【分析】两个不为零的有理数相除、如果交换被除数与除数的位置、根据有理数的除法运算法则、可知它们的商互为倒数、又它们的商不变、由倒数是它本身的数是±1、可知它们的商为±1、从而得出被除数与除数相等或互为相反数.2、【答案】A【考点】有理数的除法【解析】【解答】解:A、﹣2006÷[(﹣)×3+7]=﹣2006÷(﹣7+7)=﹣2006÷0、因为0做除数无意义、所以符合题意; B、[(﹣)×3+7]÷(﹣2006)=0、正确;C、÷[0﹣(﹣4)]×(﹣2)= 、正确;D、= 、正确;故选:A.【分析】根据0做除数无意义、即可解答.3、【答案】C【考点】有理数的加法、有理数的减法、有理数的乘方、有理数的除法【解析】【解答】解:①0﹣(﹣1)=0+1=1、正确;② 、正确;③、正确;④(﹣1)2015=﹣1、故本选项错误;他一共做对了3题.故选C.【分析】根据有理数混合运算的法则分别计算出各小题即可.4、【答案】D【考点】相反数、绝对值、有理数的乘方、有理数的除法【解析】【解答】解:A、﹣(﹣1)=1、故本选项错误;B、|﹣3|=3、故本选项错误;C、﹣22=﹣4、故本选项错误;D、(﹣3)÷(﹣)=9、故本选项正确.故选D.【分析】根据相反数的意义判断A;根据绝对值的意义判断B;根据有理数乘方的意义判断C;根据有理数除法法则判断D.5、【答案】C【考点】有理数的除法【解析】【解答】解:当a>0、b>0时、+ = + =2、当a>0、b<0时、+ = + =0、当a<0、b<0时、+ = + =﹣2、当a<0、b>0时、+ = + =0、故选:C.【分析】此题分成四种情况①a>0、b>0;②a>0、b <0;③a<0、b<0;④a<0、b>0分别进行计算即可.6、【答案】A【考点】有理数的加法、有理数的除法【解析】【解答】解:∵<0、∴a、b异号、又∵a+b<0、∴负数的绝对值较大.故选A.【分析】根据有理数的除法法则确定a和b是异号、然后根据加法法则即可确定.7、【答案】C【考点】有理数的乘法、有理数的除法【解析】【解答】解:1÷(﹣5)×(﹣)=1×(﹣)×(﹣)= 、故选:C.【分析】根据有理数的除法、即可解答.8、【答案】D【考点】有理数的除法【解析】【解答】解:原式=﹣36÷9=﹣4、故选D【分析】原式利用有理数的除法法则计算即可得到结果.9、【答案】A【考点】有理数的乘法、有理数的除法【解析】【解答】解:×(﹣8)÷(﹣) =(﹣1)÷(﹣)=8.故选:A.【分析】从左往右依次计算即可求解.10、【答案】C【考点】有理数的除法【解析】【解答】解:﹣15÷(﹣5)=3、故选C【分析】利用有理数的除法法则计算即可.11、【答案】C【考点】有理数的乘法、有理数的除法【解析】【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6、故原题计算错误;②(﹣36)÷(﹣9)=4、故原题计算错误;③×(﹣)÷(﹣1)= 、故原题计算正确;④(﹣4)÷ ×(﹣2)=16、故原题计算正确、正确的计算有2个、故选:C.【分析】根据有理数的乘法和除法法则分别进行计算即可.12、【答案】B【考点】有理数的混合运算、同类项、合并同类项、零指数幂、负整数指数幂【解析】【解答】解:①(﹣3)0=1、正确;②a3+a3=2a3、故此选项错误;③(﹣a5)÷(﹣a3)=a2、故此选项错误;④4m﹣2= 、故此选项错误;⑤(xy2)3=x3y6、正确;⑥22+23=12、故此选项错误;故选:B.【分析】分别利用合并同类项法则以及零指数幂的性质以及积的乘方运算法则等知识判断得出答案.二、填空题13、【答案】4【考点】有理数的除法【解析】【解答】解:原式=12÷3=4、故答案为:4 【分析】原式利用同号两数相除的法则计算即可得到结果.14、【答案】>【考点】有理数的乘法、有理数的除法【解析】【解答】解:∵>0、>0、∴a与b同号、b与c同号、即a与c同号、则7ac>0、故答案为:>【分析】利用有理数的乘除法则判断即可.15、【答案】12【考点】有理数的乘法、有理数的除法【解析】【解答】解:6÷(﹣)×2÷(﹣2) =﹣12×2×(﹣)=12;故答案为:12.【分析】根据有理数的除法法则先把除法转化成乘法、再根据有理数的乘法法则进行计算即可得出答案.16、【答案】-3【考点】绝对值、有理数的除法【解析】【解答】解:﹣2÷|﹣|=﹣2 =﹣2× =﹣3、故答案为:﹣3.【分析】根据有理数的除法、即可解答.17、【答案】44100【考点】有理数的混合运算、探索数与式的规律【解析】【解答】解:(1)∵13= ×12×22、 13+23=×22×32、13+23+33= ×32×42、∴13+23+33+…+193+203= ×202×212=44100;故答案为:44100.【分析】观察不难发现、从1开始的连续自然数的立方和等于自然数的个数的平方乘比个数大1的数的平方、再除以4.三、计算题18、【答案】解:(+ ﹣)÷(﹣) =(+ ﹣)×(﹣9)= ×(﹣9)+ ×(﹣9)﹣×(﹣9)=﹣1﹣1.5+4.5=2【考点】有理数的混合运算【解析】【分析】根据有理数的混合运算的运算方法、应用乘法分配律、求出(+ ﹣)÷(﹣)的值是多少即可.19、【答案】解:原式=9× ﹣=4﹣=【考点】有理数的混合运算【解析】【分析】原式先计算乘方运算、再计算乘除运算、最后算加减运算即可得到结果.20、【答案】(1)解:原式=﹣(36+ )× 、 =﹣(36× + × )、=﹣4(2)解:原式=﹣(× × × )、 =﹣【考点】有理数的乘法、有理数的除法【解析】【分析】(1)根据有理数除法法则:除以一个不等于0的数、等于乘这个数的倒数进行计算即可;(2)首先根据除法法则统一成乘法、然后再确定结果的符号、然后计算即可.21、【答案】(1)解:原式=﹣1﹣16÷(﹣8)+ × =﹣1+2+ =1(2)解:原式=(4+1﹣3)xy+(﹣3﹣4)y2+(﹣3﹣2)x2=2xy﹣7y2﹣5x2【考点】有理数的混合运算、同类项、合并同类项【解析】【分析】(1)首先计算乘方、再算乘除法、最后算加减即可;(2)根据合并同类项的法则:把同类项的系数相加、所得结果作为系数、字母和字母的指数不变进行计算即可.。

相关文档
最新文档