运放与比较器的用法

合集下载

比较器和运放模拟量输出和微电流实例

比较器和运放模拟量输出和微电流实例

比较器和运放模拟量输出和微电流实例
【原创实用版】
目录
1.比较器和运放的基本概念
2.模拟量输出和微电流实例的原理
3.比较器和运放在模拟量输出和微电流实例中的应用
4.实例的具体实现和注意事项
正文
一、比较器和运放的基本概念
比较器和运放是电子电路中常用的两种元件,它们在信号处理、信号放大和滤波等方面有着广泛的应用。

比较器是一种特殊的运算放大器,它的主要作用是比较两个输入信号的大小,并根据大小关系输出相应的信号。

比较器通常有两种输出方式,即模拟量输出和数字量输出。

运放,全称运算放大器,是一种能够对信号进行放大、滤波、积分等操作的电子元件。

运放在电路中的应用非常广泛,它可以用于信号放大、滤波、模拟信号处理等。

二、模拟量输出和微电流实例的原理
模拟量输出是指比较器或运放在输出信号时,输出的信号是连续的模拟信号。

这种输出方式可以提供更丰富的信号信息,但同时也需要更复杂的电路设计。

微电流实例是指在电路中,通过比较器或运放对微小电流进行检测和处理的实例。

这种实例通常需要使用特殊的电路设计和元器件,以保证电路的稳定性和精度。

三、比较器和运放在模拟量输出和微电流实例中的应用
在模拟量输出和微电流实例中,比较器和运放通常被用于信号处理和信号检测。

例如,在微电流检测中,可以通过比较器或运放对微小电流进行放大和滤波,然后通过模拟量输出的方式输出检测结果。

运放电压比较器电路

运放电压比较器电路

运放电压比较器电路1. 引言运放电压比较器电路是一种常见的电路,用于将输入信号与一个参考电压进行比较,并输出高或低电平。

本文将介绍运放电压比较器电路的工作原理、常见的电路实现方式以及应用领域。

2. 工作原理运放电压比较器电路主要由运放、参考电压和反馈电阻等组成。

运放是一个高增益的电压放大器,它的输出电压取决于输入电压和其内部反馈电阻的连接方式。

当输入电压大于参考电压时,运放输出高电平;当输入电压小于参考电压时,运放输出低电平。

运放电压比较器电路的工作原理可以简单描述如下:1.将输入信号与参考电压接入运放的非反馈输入端;2.运放比较输入信号与参考电压的大小,输出相应的高或低电平。

3. 电路实现方式运放电压比较器电路可以有多种实现方式,下面介绍两种常见的实现方式。

3.1 非反相比较器非反相比较器是最简单的运放电压比较器电路。

它的电路图如下:+Vcc|Rf|Vin --|---|--- output| |Vref -| || |GND在非反相比较器中,输入信号Vin与参考电压Vref分别通过电阻Rf接入运放的非反馈输入端和反馈输入端。

当Vin大于Vref时,运放输出高电平;当Vin小于Vref时,运放输出低电平。

3.2 反相比较器反相比较器是另一种常见的运放电压比较器电路。

它的电路图如下:+Vcc|Rf|Vin --|---|--- output|||___Vref -||GND在反相比较器中,输入信号Vin被接入运放的非反馈输入端,而参考电压Vref通过一个电阻Rf连接到运放的反馈输入端。

当Vin大于Vref时,运放输出低电平;当Vin小于Vref时,运放输出高电平。

4. 应用领域运放电压比较器电路广泛应用于许多领域。

以下是一些常见的应用领域:4.1 自动控制系统运放电压比较器电路可用于自动控制系统中,用于检测输入信号是否满足一定的条件并触发相应的控制动作。

例如,可以根据输入信号的大小控制某个设备的启停、调节亮度等。

第15课 比较器和运算放大器详细说明、比较器与运算放大器的驱别说明、比较器与运算放大器电路的运用说明

第15课 比较器和运算放大器详细说明、比较器与运算放大器的驱别说明、比较器与运算放大器电路的运用说明

第15课比较器和运算放大器详细说明、比较器与运算放大器的驱别说明、比较器与运算放大器电路的运用说明
比较器:LM393LM33:ILM339(4路)"特点,正大于负时,开漏输出由外部上拉为高电平”运算放大器:LM358LM324"特点,正大于负时,输出的高电平是运算的供电电压”
注:BLC#为高时表示电池电量低,这个信号会送给EC(锁定后要拔电才能去锁定)
注:比较器接地脚必须接地
ADP_SIG_DET#适配器插入检测,中间针ADP_SIG.DET#为高电平表示插入适配器
注:当插入适配器时,ADP_A_ID会有电压大约7-8V来源适配器中间针
R227为墙头草电阻:(维修中可以拆除,没有太大影响)
当4脚开漏输出时+V3AL经R228和R227和R226组成分压(同时也是2VREF经R225与这个分压形成节点分压)当4脚为低时,2REF与R225R226R227形成分压(其中R226与R227为并联到地)
注:运放接地脚可以不接地,也可以接供电(原则正大于负的时候输出VCC逻辑正小于负的时候输出GND逻辑)
注:负极输入和输出直连表示,此路不采用
注:运放的负极输入直连输出时,正极输入多少V电压,负的输出就是多少V
带分压功能的跟随器注:G极电压是平滑电平“不是PWM电路”,一般控制G极的电压会比输出的电压高1左右(MOS 半导通)。

运算放大器与比较器作用、区别及原理

运算放大器与比较器作用、区别及原理

运算放大器与比较器作用、区别及原理一、概述运算放大器和电压比较器在原理符号上确实是一样的,都有5个引脚,其中两个引脚为电源+和电源-,还有两个引脚为同相输入端(+)和反向输入端(-),最后一个引脚是输出端。

但是它们的功能是不一样的,运放的功能及用途更复杂,而比较器就相对简单得多。

二、电压比较器下面简单讲解一下比较器的基本原理,比较器的原理挺简单,目的是比较两个输入端的电压大小,若正输入端的电压为a,负输入端的电压为b,则当a>b时,输出为高电平(逻辑1);当a<b时,输出为低电平(逻辑0)。

下面结合原理图进行说明,如下图原理图,比较器输入端的电压为IN1、IN2,供电为VCC/GND,上拉电阻1K,上拉电压为VCC。

当输入电压IN1>IN2时,即正输入端的电压较高,输出高电平(VCC);当输入电压IN2>IN1时,即负输入端的电压较高,输出低电平(0V)。

比较器的用途很广,可用于比较热敏电阻、光敏传感器等电压信号,用于离散量控制,比如通过比较器采集光敏电阻的电压判断白天还是夜晚等,比较器还可以用于模拟量负反馈电路当中,比如电压调节等。

三、运算放大器运放的用途很多,基本的运放电路有同相比例放大电路、反相比例放大电路、加法器、减法器、差分比例运算电路、微分电路、积分电路等,掌握这些基本的集成运放电路原理,基本上可以区分电路图中符号一样的电路符号属于比较器还是运放。

一般情况下,运放都会在输出端与输入端之间串联一个电阻用于反馈,而一般情况下电压比较器输出端与输入端之间是没有电阻的,绝大部分电路都可以通过此区别来区分,但是也有特殊情况,这要根据具体原理具体分析了。

比如运放也可以当比较器使用,其输出端与输入端之间开环(不接反馈电阻),使用运放当比较器其别在于不用上拉电阻,当IN1>IN2时,输出电压为VCC(运放电源电压),当IN1<IN2时,输出电压为0。

总结专业基础扎实,掌握电压比较器和运放的基本电路之后,基本上直接就能够判别原理属于运放还是比较器,只有少量的特殊情况需要具体分析,通过专业知识分析其原理很快就能够判别其属于运放还是比较器。

电路中的运算放大器与比较器的原理与应用

电路中的运算放大器与比较器的原理与应用

电路中的运算放大器与比较器的原理与应用在电子领域中,运算放大器(Operational Amplifier,简称Op Amp)与比较器(Comparator)是两个非常重要的电子元件。

它们在电路设计与应用中起着至关重要的作用。

一、运算放大器的原理与应用运算放大器是一种具有差分放大功能的电子放大器。

它通常由多个晶体管以及与之相连的电阻、电容等元件组成。

运算放大器的输出信号是其输入信号的放大倍数。

1. 基本原理运算放大器的基本电路结构由一个差分放大器和一个输出级组成。

它有两个输入端,称为非反相输入端(+)和反相输入端(-),以及一个输出端。

其基本工作模式是将输入信号放大,并输出一个与输入信号有相关性的信号。

2. 应用领域运算放大器在电路设计中有广泛的应用,包括:(1)信号放大:将弱信号放大至适当的电平,以便进行后续处理;(2)滤波器设计:根据不同的频率要求,设计低通、高通、带通等类型的滤波器;(3)振荡器设计:用于产生高频信号的振荡器电路设计;(4)比例控制与调节:用于控制系统,在反馈环路中起到稳定系统的作用。

二、比较器的原理与应用比较器是一种电子元件,用于将两个输入进行比较,并输出一个相应的逻辑电平。

它通常由运算放大器、基准电压和一个阈值元件组成。

1. 基本原理比较器的基本原理是将两个输入信号进行比较,并输出一个高、低逻辑电平。

当一个输入信号高于另一个输入信号时,输出为高电平,反之输出为低电平。

2. 应用领域比较器在电子领域中应用广泛,包括:(1)开关控制:将比较器的输出连接到开关控制电路中,根据两个输入信号的大小关系来控制开关的开关与闭合;(2)模拟电压转数字信号:将模拟电压通过比较器进行比较,并将结果输出为数字信号,用于数字电路的处理;(3)电压检测与监测:将比较器连接到电压检测电路中,用于监测输入电压是否超过设定值。

总结起来,运算放大器和比较器是电子领域中非常常见的电子元件,它们在电路设计与应用中功不可没。

运算放大器的用法

运算放大器的用法

运算放大器的用法运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于各种电路中。

它具有高增益、高输入阻抗、低输出阻抗等特点,使得它在电子设计中扮演着重要的角色。

下面将介绍一些运算放大器的常见用法。

1. 比较器:运算放大器可以用作比较器,将两个输入信号进行比较,并输出一个高电平或低电平的信号。

这种应用常见于电压比较、开关控制等场景。

2. 放大器:运算放大器最常见的用途是作为信号放大器。

通过调整反馈电阻和输入电阻的比例,可以实现不同的放大倍数。

这种应用广泛用于音频放大、传感器信号处理等领域。

3. 滤波器:运算放大器可以与电容和电感等元件组成滤波电路,实现对特定频率范围内信号的增强或抑制。

这种应用常见于音频滤波、通信系统中的滤波等场景。

4. 仪表放大器:运算放大器可以通过调整反馈网络来实现对输入信号进行精确测量和调节。

这种应用常见于仪器仪表、传感器信号调理等领域。

5. 电压跟随器:运算放大器可以实现输入电压与输出电压一致的功能,即输入电压变化时,输出电压也相应变化。

这种应用常见于自动控制系统、反馈控制等场景。

6. 信号发生器:通过在运算放大器的反馈回路中引入RC网络,可以实现正弦波、方波等不同形式的信号发生。

这种应用常见于测试仪器、音频设备等领域。

总之,运算放大器作为一种重要的电子元件,在各个领域都有广泛的应用。

它的高增益、高输入阻抗和低输出阻抗等特点使得它成为了电子设计中不可或缺的工具。

无论是在信号处理、控制系统还是仪表测量等方面,运算放大器都发挥着重要作用,为我们提供了更加精确和稳定的电子系统。

比较器运放电路

比较器运放电路

比较器运放电路
比较器运放电路是一种常见的电子电路,它的主要作用是将输入信号与参考电平进行比较,并输出相应的电平信号。

比较器运放电路主要由比较器、运放、反馈电路和电源等组成。

比较器是比较器运放电路的核心部件,它可以将输入信号与参考电平进行比较,并输出高电平或低电平信号。

运放则是比较器运放电路的放大器,它可以将输入信号进行放大,并输出到后续电路中。

反馈电路则可以控制运放的放大倍数,从而使得比较器运放电路具有更高的稳定性和精确度。

电源则是比较器运放电路的能量来源,它可以为电路提供所需的电压和电流。

比较器运放电路在实际应用中有着广泛的用途,例如用于模拟信号处理、数字信号处理、自动控制系统等领域。

同时,比较器运放电路也是电子工程师和电子爱好者必备的基础知识之一。

- 1 -。

比较器vs运放

比较器vs运放

1、通常情况下,运放输出的是模拟量,比较器输出的是数字量
2、在某些低速的场合,运放可代替比较器;而比较器通常不能够代替运放
3、当加上负反馈后,运放具有比例传递特性,而比较器没有。

4、由于运放和比较器的用途不同,所以设计芯片时侧重点也不同。

5、比较器出现的时间比运放晚
6、有的比较器是电平输出,有的是开集输出/开漏输出。

7、从内部电路上讲,比较器一般应当有正反馈,以加速翻转。

8、有的比较器有施密特。

最本质的区别
运放工作在线性区,比较器工作在非线性区。

在线性区,虚短和虚断都成立;
在非线性区,这个结论就不一定成立了。

此外,比较器的作用时间一般比运放要快很多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运放与比较器的用法NE5532是双极型双运放,剩下的一个不用,可以将它们的输入端全部悬空即可,跟该运放相似的还有LM358、LM324,它们不用的输入端都可以悬空。

而对于CMOS运放,由于输入阻抗极高,若将输入端悬空,很容易受干扰,故对于像ICL7642、MC14573这类CMOS 运放,内部用不完的运放,输入端一般要接高电平或地。

1、运放可以连接成为比较输出,比较器就是比较。

2、比较器输出一般是OC,便于电平转换;比较器没有频补,Slew Rate比同级运放大,但接成放大器易自激。

比较器的开环增益比一般放大器高很多,因此比较器正负端小的差异就引起输出端变化.3、频响是一方面,另外运放当比较器时输出不稳定,不一定能满足后级逻辑电路的要求。

4、比较器为集电极开路输出,容易输出TTL电平,而运放有饱和压降,使用不便。

关于运算放大器与专用比较器的区别可分为以下几点:1.比较器的翻转速度快,大约在ns数量级,而运放翻转速度一般为us数量级(特殊高速运放除外);2.运放输入可以接成负反馈电路,而比较器不能使用负反馈,虽然比较器也有同相和反相两个输入端,但因为其内部没有相位补偿电路,如果输入负反馈,电路不能稳定工作,内部无相位补偿电路.这也是比较器比运放速度快的原因.3.运放的初级一般采用推挽电路,双极性输出,而多数比较器输出极为集电级开路结构,所以需要上拉电阻,单极性输出,容易和数字电路连接.加法器和减法器就是用运算放大器搭的运算电路.电压比较器电压比较器可以看作是放大倍数接近―无穷大‖的运算放大器。

电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):当‖+‖输入端电压高于‖-‖输入端时,电压比较器输出为高电平;当‖+‖输入端电压低于‖-‖输入端时,电压比较器输出为低电平;电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。

利用简单电压比较器可将正弦波变为同频率的方波或矩形波。

简单的电压比较器结构简单,灵敏度高,但是抗干扰能力差,因此我们就要对它进行改进。

改进后的电压比较器有:滞回比较器和窗口比较器。

运放,是通过反馈回路和输入回路的确定―运算参数‖,比如放大倍数,反馈量可以是输出的电流或电压的部分或全部。

而比较器则不需要反馈,直接比较两个输入端的量,如果同相输入大于反相,则输出高电平,否则输出低电平。

电压比较器输入是线性量,而输出是开关(高低电平)量。

一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。

可用作电压比较器的芯片:所有的运算放大器。

常见的有LM324 LM358 uA741 TL081\2\3\4 OP07 OP27,这些都可以做成电压比较器(不加负反馈)。

LM339、LM393是专业的电压比较器,切换速度快,延迟时间小,可用在专门的电压比较场合,其实它们也是一种运算放大器。

运算放大器运算放大器(常简称为―运放‖)是具有很高放大倍数的电路单元。

在实际电路中,通常结合反馈网络共同组成某种功能模块。

由于早期应用于模拟计算机中,用以实现数**算,故得名―运算放大器‖,此名称一直延续至今。

运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。

随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。

现今运放的种类繁多,广泛应用于几乎所有的行业当中。

电压比较器和运算放大器的区别比较器在最常用的简单积体电路中排名第二,仅次于排名第一的运算放大器。

在各类出版物中可以经常看到运算放大器的理论,关于运算放大器的设计和使用方法的图书也非常多,可是我们却很难找到关于比较器的理论研究,究其原因,比较器本身功能十分简单,只用于比较电压,然后根据比较结果,把输出电压设定在数位低态或高态。

很多人认为比较器类似于没有回馈引脚的运算放大器,真实情况并不是这样,当使用比较器防止负面的意外事件时,我们应该了解更多的技术背景知识。

电压比较器可以用运算放大器代替吗?在开环或高增益配置中用运算放大器代替比较器是十分常见的,虽然最好是使用专门优化的比较器,但是用运算放大器代替比较器也是可以的。

运算放大器是一种为在负反馈条件下工作设计的电子器件,设计重点是保证这种配置的稳定性,压摆率和最大带宽等其他参数是放大器在功耗与架构之间的折衷选择;相反,比较器是为无负反馈的开环结构内工作设计的,这些器件通常不是通过内部补偿的,因此速度即传播延迟以及压摆率(上升和下降时间)在比较器上得到了最大化,总体增益通常也比较小。

用运算放大器代替比较器不会使性能得到优化,而且功耗速度比将会很低。

如果反过来,用比较器代替运算放大器,情况则会更坏。

通常情况下比较器不能代替运算放大器,在负反馈条件下,比较器很可能会出现工作不稳定的情况。

运放输出级一般采用推挽电路,双极性输出。

而多数比较器输出级为集电极开路结构,所以需要上拉电阻,单极性输出,容易和数字电路连接。

总之,我们可以说,比较器和运算放大器是不能互换的,低性能设计除外。

运算放大器是否可以用作比较器?运算放大器和比较器乍看似乎可以互换,实际上,两者还是存在一些重要差异。

比较器用于开环系统,旨在从其输出端驱动逻辑电路,以及在高速条件下工作,通常比较稳定。

运算放大器的用途不同于比较器,过驱时可能会饱和,使得恢复速度相对较慢。

施加较大差分电压时,很多运算放大器的输入级都会出现异常表现,实际上,运算放大器的差分输入电压范围通常存在限制。

运算放大器输出也很少兼容逻辑电路。

但是仍有很多人试图将运算放大器用作比较器。

这种做法在低速和低分辨率时或许可行,但是大多数情况下结果并不理想。

单靠参考运算放大器数据手册不能解决将运算放大器用作比较器的所有相关问题,因为运算放大器设计的目的并非用作比较器。

最常见的问题是速度(之前已经提到过)、输入结构的影响(保护二极管、FET放大器的相位翻转等)、输出结构(并非用于驱动逻辑电路)、迟滞、稳定性,以及共模效应。

速度考虑因素大多数比较器速度都很快,不过很多运算放大器速度也很快。

为什么将运算放大器用作比较器时会造成低速度呢?比较器用于大差分输入电压,而运算放大器工作时,差分输入电压一般会在负反馈的作用下降至最低。

当运算放大器过驱时,有时仅几毫伏也可能导致过载,其中有些放大级可能发生饱和。

这种情况下,器件需要相对较长的时间从饱和中恢复,因此,如果发生饱和,其速度将比始终不饱和时慢得多(参见图1)。

过驱运算放大器的饱和恢复时间很可能远远超过放大器的正常群延迟,并且通常取决于过驱量。

由于仅有少数运算放大器明确规定从不同程度过驱状态恢复所需的时间,因此,一般说来,有必要根据特定应用的具体过驱情况,通过实验确定放大器的特性。

对这类实验的结果应持谨慎态度,通过比较器(运算放大器)的传播延迟值(用于最差条件下的设计计算)应至少为所有实验中最差值的两倍。

图1:放大器用作比较器时的放大器速度饱和效应输出考虑因素比较器的输出端用于驱动特定逻辑电路系列,运算放大器的输出端则用于在供电轨之间摆动。

通常,运算放大器比较器驱动的逻辑电路不会共用运算放大器的电源,运算放大器轨到轨摆动可能会超出逻辑供电轨,很可能会破坏逻辑电路,引起短路后还可能会破坏运算放大器。

有三种逻辑电路必须考虑,即ECL、TTL和CMOS。

ECL是一种极快的电流导引逻辑系列。

基于上述原因,当应用中涉及ECL的最高速度时,运算放大器不太可能会用作比较器,因此,通常只需注意从运算放大器的信号摆幅驱动ECL 逻辑电平,因杂散电容造成的额外速度损失并不重要。

只需采用三个电阻即可,如图2所示。

图中选用了R1、R2和R3,当运算放大器输出为正值时,栅级电平为–0.8 V,当输出较低时,栅级电平为–1.6 V。

ECL有时候采用正电源而不是负电源(即另外一个供电轨接地),采用的基本接口电路相同,但是数值必须重新计算。

图2:驱动ECL逻辑电路的运算放大器比较器虽然CMOS和TTL输入结构、逻辑电平和电流差别很大(尽管有些CMOS明确规定可以采用TTL输入电平工作),但由于这两种逻辑电路都在逻辑0(接近0 V)和逻辑1(接近5 V)时工作,因此非常适合采用相同的接口电路。

图3:驱动TTL或CMOS逻辑电路的运算放大器比较器最简单的接口采用单个N沟道MOS晶体管和一个上拉电阻RL,如图3所示。

用NPN晶体管、RL,外加一个晶体管和二极管也可以组成类似的电路。

这些电路简单、廉价且可靠,还可以连接多个并联晶体管和一个RL,实现―线或‖功能,但是0-1转换的速度取决于RL 值和输出节点的杂散电容。

RL值越低,速度越快,但是功耗也会随之增加。

通过采用两个MOS器件、一个P沟道和一个N沟道,可以组成一个只需两个器件的CMOS/TTL接口,每种状态下都没有静态功耗(参见图4)。

图4:内置CMOS驱动器的运算放大器比较器此外,只需改变器件的位置,就可以设置成反相或同相。

但是,当两个器件同时打开时,开关过程中势必会产生较大的浪涌电流,除非采用集成高通道电阻的MOS器件,否则就可能需要使用限流电阻来减小浪涌电流的影响。

该图和图3中的应用所采用的MOS器件栅源击穿电压VBGS在每个方向都必须大于比较器的输出电压。

MOS器件中常见的栅源击穿电压值VBGS > ±25 V,这一数值通常绰绰有余,但是很多MOS器件内置栅级保护二极管,会减小这一数值,所以这些器件不应采用。

输入考虑因素对于用作比较器的运算放大器,还需考虑与其输入相关的多种影响因素。

工程师对所有运算放大器和比较器做出的第一级假设是:它们具有无穷大的输入阻抗,并且可视为开路(电流反馈(跨导)运算放大器除外,这种运算放大器同相输入端具有高阻抗,但反相输入端只有几十欧姆的低阻抗)。

但是很多运算放大器(尤其是偏置补偿型运算放大器,如OP-07及其很多后继产品)都内置保护电路,以防止大电压损坏输入器件。

其它运算放大器则内置更复杂的输入电路,在施加的差分电压小于几十毫伏时只具有高阻抗,或者在差分电压大于几十伏时可能会损坏。

因此,将运算放大器用作比较器时,如果施加大差分电压,必须仔细研究数据手册,才能确定输入电路的工作方式。

(采用集成电路时,务必研究数据手册,确保其非理想特性(每个集成电路都存在一些非理想特性)兼容推荐的应用——本文中这点尤为重要。

)图5所示为内置防止大差分电压输入二极管的运算放大器。

当然,有一些比较器应用不存在大差分电压,即使存在,比较器输入阻抗相对而言也不太重要。

这种情况适合将运算放大器用作比较器,其输入电路表现为非线性,但是涉及的问题必须考虑,不能忽视。

图5:具有保护功能的运算放大器输入结构对BIFET运算放大器而言,如果其输入接近其中一个电源(通常为负电源),几乎都会表现异常。

相关文档
最新文档