飞机铝合金零件腐蚀机理与防护

飞机铝合金零件腐蚀机理与防护
飞机铝合金零件腐蚀机理与防护

据统计,铝和铝合金要占一架飞机总重量的70%,而飞机的结构件大部分是由铝合金材料构成。铝合金构件的损伤形式有多种,如疲劳断裂、裂纹、变形、磨损等,其中腐蚀是最常见的损伤形式之一。由于腐蚀造成的事故占飞机全部损伤事故的20%,这个问题在老龄飞机上变现的尤为突出。由于腐蚀问题的存在,往往缩短飞机结构件的使用寿命,甚至还危及飞行安全。如1988年Aloha航空公司的波音737飞机发生空中事故,经过事故调查后认为:由于机身增压舱纵向蒙皮搭接接头处一排铆钉孔,在服役的热带海洋环境和循环增压载荷作用下,引起了不可检测的多条腐蚀疲劳裂纹,从而引起事故。因此,腐蚀问题不容忽视,这就需要我们在航空维修过程中加强检查与控制。

飞机结构件的腐蚀是飞机在使用环境中随着时间推移而发生的化学累积性损伤。作为电化学反应,必须同时具备三个条件才能发生,即活性金属、腐蚀环境(介质)和导电通路。同时,它又作为与时间有关的损伤,需要一定时间的累积才能发生,并且要求在一定的损失范围之内就进行维护和修理。一般民航和军航的飞机维修规定:腐蚀损失深度不超过蒙皮厚度的10%。

腐蚀的种类很多,通过对飞机铝合金材料构件腐蚀情况的统计和分析得知,点蚀、剥蚀缝隙腐蚀这三类是腐蚀的主要表现形式。其中,点蚀改变飞机结构的应力分布,引起局部应力集中,从而形成腐蚀疲劳裂纹;剥蚀和缝隙腐蚀使蒙皮、桁条等构件的厚度减薄,大大降低材料的强度,增大应力,最终导致构件裂纹,甚至断裂。

在飞机结构修理中,构件中存在应力腐蚀裂纹是一个常遇到的实

际问题。例如,1L-18飞机上翼面处的大量B94铝合金铆钉产生了应力腐蚀裂纹。应力腐蚀裂纹通常都很小,宽度较窄,没有引起人们注意的特征,又因常被腐蚀产物覆盖,所以很难发现,有时需要采用无损探伤技术进行检查。构件发生应力腐蚀断裂时,常常是在事先没有明显预兆的情况下突然发生,因此对飞机的飞行安全危害较大。一般来说,腐蚀坑洞是应力腐蚀裂纹的主要萌生源。通常情况下,存在应力腐蚀裂纹构件的表面,常有不同程度的腐蚀痕迹。当然,由交变应力引起的疲劳裂纹以及焊接裂纹、热处理裂纹也可转化为应力腐蚀裂纹。应力腐蚀裂纹具有较多的二次裂纹,这种现象在铝合金、镁合金、高强度钢及钛合金中都可看到。主裂纹的扩展方向垂直于最大正应力的方向。从宏观看应力腐蚀断裂的断口一般有三个区:1.开裂源区。该区的断口腐蚀较为严重,开裂源的根部往往有蚀坑。2.应力腐蚀裂纹的扩展区。这是应力腐蚀裂纹缓慢扩展过程中所形成区域,;裂纹扩展过程是材料的组织与应力及介质相互作用的过程。从宏观上来看,这个过程的特性是呈脆性的,即使是具有高塑形的Cr-Ni奥氏体不锈钢也如此。由于裂纹是沿着材料的某一结晶学方向(如解理面),所以断口的粗糙不平的。而这种不平度是随着材料的组织与晶粒度而变化的。由于腐蚀产物的存在,在应力腐蚀断口上,可以明显看到,裂纹缓慢扩展区和因为构件的有效载面不能承受静应力而断裂的区域是截然不同的。3.最后一个区域就是快速拉断或撕裂区。从应力腐蚀开裂的方式来看,它的微观开裂途径通常有三种类型,即穿晶型、沿晶型和混合型。一般说来,应力腐蚀的微观开裂途径与材料的晶体结

构、合金成分、热处理状态以及构件所处的介质环境与应力状态有关。铝合金的应力腐蚀开裂途径几乎总是沿着晶界的。这是因为铝合金沿晶界沉淀物或紧靠晶界有一层薄层富合金元素或贫合金元素区,从而晶界与晶粒基体有很大的电位差,使晶界成为铝合金应力腐蚀敏感的区域。

腐蚀疲劳是指构件在交变应力和腐蚀介质联合作用下发生的疲劳破坏。交变应力和腐蚀介质联合作用要比期中一个单独作用更加有害。严格来说,除了在真空和惰性介质中工作的构件外,所有的疲劳破坏都是腐蚀疲劳破坏。特别是对于铝合金来说,潮湿空气就是一种严重的腐蚀环境。因此,飞机长期服役后,某些铝合金构件就可能发生腐蚀疲劳破坏,尤其是Al-Zn-Mg,铝合金对潮湿空气更加敏感,更容易发生腐蚀疲劳破坏。腐蚀疲劳的S-N曲线具有明显的特征。腐蚀环境与交变载荷同时作用,会使长寿命的疲劳强度降低很多,在干燥空气中可能出现比较平缓的长寿命S-N特性,但在腐蚀疲劳条件下就不会出现。这也是说腐蚀疲劳曲线没有水平段。由于潮湿空气就是铝合金的严重腐蚀环境,所以在一般湿度条件测得的铝合金S-N曲线,没有明显的水平段,即没有明显的疲劳极限。

通常,腐蚀疲劳裂纹往往萌生在腐蚀坑洞处,例如,An-24机机翼油箱上壁板的边缘裂纹就萌生在面板边缘表面的蚀坑处。构件在交变载荷作用下产生的表面滑移,会使金属表面膜发生反复破裂,从而在构件表面上出现许多活性区域,进而形成腐蚀坑洞。因此,在腐蚀环境下,构建表面可形成多个疲劳源。构件表面的腐蚀疲劳裂纹可多

条同时存。这也就是说,在一条腐蚀疲劳裂纹附近,有可能形成许多条表面次裂纹,并扩展到比较深的深度,这些次裂纹彼此大体上相互平行地向内扩展,在达到一定长度之后,便停止扩展,只有主裂纹继续扩展,并导致构件断裂。因此,主裂纹附近出现多条次裂纹的现象,是腐蚀疲劳断裂的表面特征之一。一般来说,腐蚀疲劳的表面裂纹比机械疲劳裂纹宽些。但是,在表面以下,逐渐变细,貌似常见的疲劳裂纹。这表明,当裂纹前缘远离表面时,腐蚀环境的影响会明显降低。应当指出,某些合金的应力腐蚀裂纹只能在特定腐蚀环境下才会发生,但是,腐蚀疲劳裂纹则可发生在差不多所有易于遭到一般性腐蚀介质的材料上。腐蚀疲劳裂纹多半是穿晶的,但也有沿晶的,这主要取决于材料的特性和工作条件。铝合金在低频和大应力幅下,其腐蚀疲劳裂纹可能是沿晶的,不过这种情况多发生在材料的短横向。在多数情况下,单纯的机械疲劳与腐蚀疲劳的鉴别可用断口是否有腐蚀产物覆盖作为鉴别依据。利用扫描电镜、电子控针以及其他化学分析方法,对断口表面的腐蚀产物进行成分分析,鉴别腐蚀介质的成分,这是腐蚀疲劳断裂分析工作的常用分析方法。但是,腐蚀疲劳断口上的腐蚀产物往往也给分析工作带来极大的不便。在一些情况下,由于断口腐蚀严重,以致使断口的宏观和微观形貌特征遭到破坏,给确定构件断裂性质带来一定困难。在腐蚀产物的下面仍然保留着疲劳特征的情况下,应采取适当的清洗剂仔细清洗断口,将覆盖于断口上面的腐蚀产物清洗干净之后,再观察断口的疲劳特征。

目前,应力腐蚀开裂机理还不完全明白。因此,其防止方法还只

是一般性的或经验性德。通常,可采用下列一种或几种方法来减轻或防止应力腐蚀开裂:1.铝锌合金(例如LC4),不锈钢(例如Cr-Ni 奥氏体不锈钢和高强度结构钢(例如30crMnSiA)对应力腐蚀具有较高的敏感性。因此,在飞机结构设计过程中,应成分考虑到这一点。

2.当某一种材料处在特定的腐蚀环境中时,应力腐蚀开裂速率是受应力强度因子控制的。对于某些合金材料,例如钛合金,当应力强度因子低于某特定值时,材料或构件就不会发生应力腐蚀破坏,这一特定值就是应力腐蚀临界应力强度因子,或称门槛应力强度因子。但是,对铝合金来说,它们没有确定的值,一般来说,采用过时效或分级时效的材料,尽管静强度稍有下降,但抗应力腐蚀性能显著提高。

3.在构件成型、冷加工、焊接等一系列公益过程中,若可能带来明显的残余盈利的话,则一般应加进消除残余拉应力的热处理工艺。

4.采用喷丸、滚压等表面强化处理措施或采用超声波、振动等方法,可降低残余拉应力或引入压应力,从而提高零构件的抗应力腐蚀性能。试验结果表明,喷丸能够相当显著地提高合金材料抗应力腐蚀破坏的能力。

5.采用表面渗碳、渗氮、氰化、渗金属或合金等工艺措施,也可提高合金材料抗应力腐蚀开裂的能力。这种方法不仅直接提高了表面层的强度,而且由于强化层的存在,也提高了合金的抗蚀性,改变了表面内应力分布,产生表面压应力,因此提高了抗应力腐蚀开裂的能力。

6.紧固件孔的过大径向干涉量不仅导致疲劳寿命降低,而且对于7075-T6这样的铝合金干涉量超过3.2%时,材料对应力腐蚀敏感性增加。考虑到国产铝合金材料的化学成分,热处理和加工规范等因素,

在铆接结构中干涉量可去3%。7.热处理至抗拉强度高于1370Mpa的钢对应力腐蚀的敏感性非常明显。因此,对构件热处理、表面处理的工艺过程应严格控制。对于高强度,不合理地提高材料的抗拉强度是非常危险的。在控制热处理温度时,应当控制使其抗拉强度达到技术条件的中、下限。由30CrMnSiA高强度钢制成的米格-15比斯飞机主起落架轮叉的应力腐蚀破坏,就是由于热处理不当,抗拉强度高于技术条件的上限所造成的。8.应力集中是产生应力腐蚀的主要原因。表面缺陷和亚表面缺陷,偶然的机械划伤,构件的几何形状改变等都会引起应力集中。因此,在飞机结构设计中,应采用避免或减缓应力集中的措施。

抗腐蚀疲劳的基本措施:1.能够减轻腐蚀疲劳的主要方法,是选择一种能在使用环境中显示低腐蚀性的材料来获得较好的抗腐蚀疲劳性能。因为铝铜合金耐应力腐蚀和腐蚀疲劳的性能优于铝锌合金,所以进行飞机结构设计时,尽可能选用铝铜合金设计结构件。2.金属构件表面的拉应力是腐蚀疲劳破坏的嘴主要因素。因此,讲金属构件表面置于压应力下,是延长金属构件疲劳寿命的嘴普遍采用的方法。显然,对金属构件表面采用喷丸、滚压、渗碳、渗氮等表面强化处理工艺,使表面产生残余压应力,就可明显地提高构件的腐蚀疲劳强度。

3.在腐蚀环境中工作的零构件,采用表面镀层的方法可隔开腐蚀环境,使它不与零构件表面直接接触。通常,阳极镀层是有利的;而阴极镀层是有害的。锌和镉的镀层对钢来说属于阳极镀层,因而能改善抗腐蚀疲劳性能。锌镀层的改善效果更好。铬和镍的镀层对钢来说属于阴

极镀层,用这些金属进行电镀后会产生有害的拉伸残余应力和表面毛细裂纹,还可能造成氢脆。4.氧化性涂层可隔开腐蚀介质,有利于提高抗腐蚀疲劳性能。例如,讲高强度铝合金包一层纯铝表层(包铝),能大大提高铝合金的抗腐蚀疲劳性能。如果喷丸处理与氧化性涂料结合使用,能更加提高抗腐蚀疲劳性能。5.应力集中也还是腐蚀疲劳破坏的主要原因。因此,在进行飞机结构设计时,应尽量避免和减少应力集中,;在生产和使用过程中,应避免发生机械损伤。6.疲劳试验和使用实践表明,构件的纵向抗腐蚀疲劳性能最好,而短横向抗腐蚀疲劳性能最差。所以,在进行飞机结构设计时,应充分考虑到沿材料的纵向和长横向方向受力,避免构件的短横向受较大的拉应力。

细晶强化的机理及其应用

J I A N G S U U N I V E R S I T Y 材料强化与质量评定细晶强化的机理及其应用 Fine-grain strengthening mechanism and its application 学院名称:机械工程学院 专业班级:机械1402 学生姓名:XX 指导教师姓名:XX 指导教师职称:副教授 2015年8 月

细晶强化的机理及其应用 摘要:通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性[1]。因此,在实际使用中,人们常用细晶强化的方法来提高金属的力学性能。 关键词:定义、细晶强化机制、细化晶粒本质与途径、细晶强化新方法Fine-grain strengthening mechanism and its application Abstract: polycrystal metal is usually composed of many grain, grain size can be used to represent the number of grain per unit volume, the more the number, grain is fine. Experiments show that the fine grained metal at room temperature than coarse grain metal has higher strength, hardness, plasticity and toughness . Therefore, in the practical use, people often use fine-grain strengthening method to increase mechanical properties of the metal. Keywords:definition, fine-grain strengthening mechanism, refining grain essence new methods and ways, fine-grain strengthening 1引言 通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化[2]。 细晶强化机制包括提高塑性机制和提高强度机制。提高塑性的机制是:晶粒越细,在一定体积内的晶粒数目越多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较为均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度的机制是[3]:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 细化晶粒本质[4]:形成足够多的晶核,使它们在尚未显著长大时便相互接触,完成结晶过程。

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

铝和铝合金的大气腐蚀机理优选稿

铝和铝合金的大气腐蚀 机理

1铝和铝合金的大气腐蚀机理 铝和铝合金的表面氧化膜是铝合金具有耐大气腐蚀性的主要原因.铝的氧化膜(γ- Al 2O 3)在室温的大气中就可以生成,而且非常迅速和致密,厚度为25~30.也就是说,氧化膜在 大气环境中具有自修复功能.若有水存在或者暴露在大气中几个月以后,最初形成的γ-Al 2O 3的外层转变为一薄层γ-AlOOH.然后,在γ-AlOOH 上又会覆盖上一层Al(OH)3(也可写 成Al 2O 3·3H 2O).从铝-水体系的电位-pH 图可知,Al(OH)3在较大的pH 范围内都会保持稳 定.Al(OH)3从pH=4开始溶解;当pH=2.4时,认为Al(OH)3会完全溶解(事实上,即使pH=2.0 时,铝表面的腐蚀类型仍然是孔蚀.).大部分的降雨、差不多所有的雾、表面蒸发浓缩的液层和铝表面小孔内的电解质都会使铝处于腐蚀状态.环境因素对铝的大气腐蚀的影响和其它金属相似,与环境大气的相对湿度、温度、大气中SO 2的浓度、Cl -的含量以及降水的数 量、酸度相关性较大,同时也受到O 3,NO x 及CO 2等污染组分的轻微影响.大气污染物通过干 湿沉降,使得金属表面存在着和大气中同样丰富的化学组分.暴露在大气中的铝合金表面可分为三层:铝合金及其氧化膜、腐蚀产物层和大气污染物形成的污染层或薄液膜.根据大气化学组分对铝和铝合金化学、电化学反应的不同及形成的腐蚀产物的性质不同,存在着不同的腐蚀机制. 1.氯离子的存在是引起铝和铝合金大气腐蚀的重要原因.由于铝的氯化物具有可溶性,在户外暴露的铝表面上并没有大量的氯化物层存在,只有少量的氯离子进入到腐蚀产物层.Cl -通过竟争吸附,逐渐取代Al(OH)3表面上的OH -生成AlCl 3,如方程式(1)~(3)所示: Al(OH)3+Cl -→Al(OH)2Cl+OH -(1) Al(OH)2Cl+Cl -→Al(OH)Cl 2+OH -(2) Al(OH)Cl 2+Cl -→AlCl 3+OH -(3)

金属腐蚀与防护课后答案

《金属腐蚀理论及腐蚀控制》 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/ m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st =(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6

=0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。(2)对不锈钢在20%HNO ( 25℃)有: 3 表面积S=2π×2 .0+2π×0.015×0.004=0.00179 m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715 g/ m2?h 试样体积为:V=π×1.52×0.4=2.827 cm3 d=W/V=22.3367/2.827=7.901 g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314 m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882 g/ m2?h 试样体积为:V=π×2 2×0.5=6.28 cm3 d=W/V=16.9646/6.28=2.701 g/cm3 Vp=8.76Vˉ/d=8.76×0.7882/2.701=2.56mm/y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st =(22.3367-22.2906)/0.00179×2=12.8771 g/ m2?h Vp=8.76Vˉ/d=8.76×12.8771/7.901=14.28mm/y 对铝:Vˉ=△Wˉ/st=(16.9646-16.9250)/0.00314×40=0.3153g/ m2?h Vp=8.76Vˉ/d=8.76×0.3153/2.701=1.02mm/y 说明:硝酸浓度温度对不锈钢和铝的腐蚀速度具有相反的影响。

铝合金热处理原理

铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu 合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的

金属的电化学腐蚀与防护

第二章金属的电化学腐蚀 通常规定凡是进行氧化反应的电极称为阳极;进行还原反应的电极就叫做阴极。由此表明,作为一个腐蚀电池,它必需包括阴极、阳极、电解质溶液和电路四个不可分割的部分。而腐蚀原电池的工作历程主要由下列三个基本过程组成: 1、阳极过程:金属溶解,以离子的形式进入溶液,并把当量的电子留在金属上; 2、阴极过程:从阳极过来的电子被电解质溶液中能够吸收电子的氧化性物质所接受; 3、电流的流动:金属部分:电子由阳极流向阴极; 溶液部分:正离子由阳极向阴极迁移。 4、腐蚀电池的类型 可以把腐蚀电池分为两大类:宏观腐蚀电池和微观腐蚀电池 一、宏观腐蚀电池 1)、异金属接触电池 2)、浓差电池 3)、温差电池 二、微观腐蚀电池 在金属表面上由于存在许多极微小的电极而形成的电池称为微电池。微电池是因金属表面的电化学的不均匀性所引起的 1、金属化学成分的不均匀性 2、组织结构的不均匀性 3、物理状态的不均匀性 4、金属表面膜的不完整性 当参与电极反应的各组分活度(或分压)都等于1,温度规定为25 C,这种状态称为标准状态,此时,平衡电位Ee等于E0,故E0称为标准电位。 由于通过电流而引起原电池两极间电位差减小并因而引起电池工作电流强度降低的现象,称为原电池的极化作用。 当通过电流时阳极电位向正的方向移动的现象,称为阳极极化。 当通过电流时阴极电位向负的方向移动的现象,称为阴极极化。 消除或减弱阳极和阴极的极化作用的电极过程称为去极化作用或去极化过程 根据控制步骤的不同,可将极化分为两类:电化学极化和浓度极化 极化分类: 电化学极化:电子转移步骤最慢为控制步骤所导致 浓度极化:电子转移步骤快,而反应物从溶液相中向电极表面运动成产物自由电极表面向溶液相内部运动的液相传质成为控制步骤 电阻极化:电流通过电解质溶液和电极表面的某种类型膜而产生的欧姆降。 产生阳极极化的原因: 1、阳极的电化学极化 2、阳极的浓度极化 3、阳极的电阻极化。 析氢腐蚀以氢离子作为去极化剂的腐蚀过程,称为氢离子去极化腐蚀 吸氧腐蚀以氧作为去极化剂的腐蚀过程,称为氧去极化腐蚀 氢去极化腐蚀的特征 1、阴极反应的浓度极化小,一般可以忽略。 2、与溶液PH值关系很大。 3、与金属材料的本质及表面状态有关。 4、与阴极面积有关。

铝合金强化技术的研究现状及展望

铝合金强化技术的研究现状及展望 摘要:综述了目前铝合金强化技术的研究现状和进展。简述了旋涡搅拌铸造法、压力铸造法、喷射铸造法、熔铸直接接触反应法、细晶强化法等几种铝合金强化技术工艺。简介了国内外铝合金强化技术的发展概况以及铝合金强化技术的应用,同时展望了铝合金材料的发展。 关键词:铝合金;强化技术;漩涡搅拌铸造法;细晶强化法 Study Reality and Prospect of Aluminum Alloy Reinforcing Technology Abstract:Recent research and prospect of aluminum alloy reinforcing technology are discussed. Several aluminum alloy reinforcing technical processes are described, including vortex stirring casting method, pressure casting method, injection molding method, direct contact reaction casting method, grain refining reinforcing method, and so on. The development situation and application of aluminum alloy reinforcing technology at home and abroad are introduced, the aluminum alloy material prospects for development are forecasted. Keywords:aluminum alloy, reinforce technology, vortex stirring casting method, grain refining reinforcing method

(完整版)金属腐蚀与防护课后习题答案

腐蚀与防护试题 1化学腐蚀的概念、及特点 答案:化学腐蚀:介质与金属直接发生化学反应而引起的变质或损坏现象称为金属的化学腐蚀。 是一种纯氧化-还原反应过程,即腐蚀介质中的氧化剂直接与金属表面上的原子相互作用而形成腐蚀产物。在腐蚀过程中,电子的传递是在介质与金属之间直接进行的,没有腐蚀电流产生,反应速度受多项化学反应动力学控制。 归纳化学腐蚀的特点 在不电离、不导电的介质环境下 反应中没有电流产生,直接完成氧化还原反应 腐蚀速度与程度与外界电位变化无关 2、金属氧化膜具有保护作用条件,举例说明哪些金属氧化膜有保护作用,那些没有保护作用,为什么? 答案:氧化膜保护作用条件: ①氧化膜致密完整程度;②氧化膜本身化学与物理稳定性质;③氧化膜与基体结合能力;④氧化膜有足够的强度 氧化膜完整性的必要条件:PB原理:生成的氧化物的体积大于消耗掉的金属的体积,是形成致密氧化膜的前提。 PB原理的数学表示: 反应的金属体积:V M = m/ρ m-摩尔质量 氧化物的体积: V MO = m'/ ρ ' 用? = V MO/ V M = m' ρ /( m ρ ' ) 当? > 1 金属氧化膜具备完整性条件 部分金属的?值 氧化物?氧化物?氧化物? MoO3 3.4 WO3 3.4 V2O5 3.2 Nb2O5 2.7 Sb2O5 2.4 Bi2O5 2.3 Cr2O3 2.0 TiO2 1.9 MnO 1.8 FeO 1.8 Cu2O 1.7 ZnO 1.6 Ag2O 1.6 NiO 1.5 PbO2 1.4 SnO2 1.3 Al2O3 1.3 CdO 1.2 MgO 1.0 CaO 0.7 MoO3 WO3 V2O5这三种氧化物在高温下易挥发,在常温下由于?值太大会使体积膨胀,当超过金属膜的本身强度、塑性时,会发生氧化膜鼓泡、破裂、剥离、脱落。 Cr2O3 TiO2 MnO FeO Cu2O ZnO Ag2O NiO PbO2 SnO2 Al2O3 这些氧化物在一定温度范围内稳定存在,?值适中。这些金属的氧化膜致密、稳定,有较好的保护作用。 MgO CaO ?值较小,氧化膜不致密,不起保护作用。 3、电化学腐蚀的概念,与化学腐蚀的区别 答案:电化学腐蚀:金属与介质发生电化学反应而引起的变质与损坏。 与化学腐蚀比较: ①是“湿”腐蚀 ②氧化还原发生在不同部位 ③有电流产生 ④与环境电位密切相关

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

金属的电化学腐蚀与防护测试题(含答案)

金属的电化学腐蚀与防护测试题(含答案) 《金属的电化学腐蚀与防护》 一、选择题 1. 为了防止钢铁锈蚀,下列防护方法中正确的是 A. 在精密机床的铁床上安装铜螺钉 B. 在排放海水的钢铁阀门上用导线 连接一块石墨,一同浸入海水中 C. 在海轮舷上用铁丝系住锌板浸在海水里 D. 在地下输油的铸铁管上接直流电源的负极 2. 以下现象 与电化学腐蚀无关的是 A. 黄铜(铜锌合金)制作的铜锣不易产生铜绿 B. 生铁比软铁芯(几乎是纯铁)容易生锈 C. 铁制器件附有铜制配件,在接触处易生铁锈 D. 银制奖牌久置后表面变暗 3. 埋在地下的铸铁输油管道,在下列各种情况下被腐蚀的速度最慢的是 A. 在含铁元素较多的酸性土壤中 B. 在潮湿疏松透气的土壤中 C. 在干燥 致密不透气的土壤中 D. 含碳粒较多、潮湿透气的中性土壤中 4. 下列各方法中能对金属起到防止或减缓腐蚀作用的是①金属表面涂抹油漆②改变金属的内部结构③保持金属表面清洁干燥④在金属表面进行电镀⑤使金属表面形成致密的氧化物薄膜 A.①②③④ B.①③④⑤ C.①②④⑤ D.全部 5. 下列对金属及其制品的防护措施中,错误的是 A. 铁锅用完后,用水刷去其表面的油污,置于潮湿处 B. 通过特殊工艺,增加铝制品表面的氧化膜 C. 对于易生锈的铁制品要定期刷防护漆 D. 把Cr、Ni等金属加入到普通钢里制成不锈钢 6. 为研究金属腐蚀的条件和速率,某课外小组学生用金属丝将三根大小相同的铁钉分别固定在图示的三个装置中,再放置于玻璃钟罩里保存一星期后,下列对实验结束时现象描述不正确的是 A.装置Ⅰ左侧的液面一定会上升 B.左侧液面装置Ⅰ比装置Ⅱ的低 C.装置Ⅱ中的铁钉腐蚀最严重 D.装置Ⅲ中的铁钉几乎没被腐蚀 7. 下列关于金属腐蚀正确的是: A. 金属在潮湿的空气中腐蚀的实质是:M + n H2O === M(OH)n + n/2 H2↑ B. 金属的化学腐蚀的实质是:M ?C ne- = Mn+ ,电子直接转移给氧化剂 C. 金属的化学腐蚀必须在酸性条件下进行 D. 在潮湿的中性环境中,金属的电化学腐蚀主要是吸氧腐蚀 8. 随着人们生活质量的不断提高,废电池必须进行集中处理的问题被提上议事日程,其首要原因是 A.利用电池外壳的金属材料 B.防止电池中汞、镉和铅等重金属离子对土壤和水源的污染 C.不使电池

铝合金热处理原理及工艺

铝合金热处理原理及工艺 3.1铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P (Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时

最新整理《金属的电化学腐蚀与防护》教学设计讲课稿

《金属的电化学腐蚀与防护》教学设计三维目标: 知识与技能:1.了解金属腐蚀及其危害。 2.了解金属电化学腐蚀的原因及反应原理。 3.了解金属防护的一般方法,特别是电化学防护的方法。 过程与方法:事例引入,激发兴趣;分组实验,总结结论,典型题例,强化理解。 情感态度与价值观:通过生活事例引发学生思考,体现化学与生活的紧密联系,激发学生的探索精神,并让学生体会到学以致用的科学精神。 教学重点:金属的电化学腐蚀及金属的电化学防护。 教学难点:金属发生吸氧腐蚀的电化学原理。 教具:提供试剂:锌片铜片稀硫酸氯化钠溶液 提供仪器:水槽导管电流表 教学过程: 【事例引入(配合投影)】在我们的生活中经常可以看到这些现象(投影图片)。这些现实均显示:我们辛苦制备的材料,尤其是金属材料在使用

中往往会被腐蚀,造成损坏,浪费,甚至引起恶性事故。如:这是位于美国的俄亥俄桥,突然塌入河中,死亡46人。事后调查,是由于桥梁的钢梁被腐蚀产生裂缝所致。又如,这是日本大阪地下铁道的输气管道,因腐蚀而折断,造成瓦斯爆炸,乘客当场死亡75人。 这样的例子举不胜举,可见,金属腐蚀给人类造成的损失有多么巨大。据统计:(投影)。这些数据都说明金属腐蚀造成的损失已经远远超过了各种自然灾害造成的损失的总和。所以我们要有这样的使命感:用自己学过的知识,去研究金属腐蚀的原理,并尝试找出“防止腐蚀的方法”,甚至想想利用腐蚀原理为我们服务。今天这堂课我们就来走进“金属的腐蚀与防护”。 【板书】金属的电化学腐蚀与防护 [预设问题1] 钢铁生锈,铁锈的主要成分:Fe 2O 3 ·xH 2 O 铜器生锈,铜绿的主要成分:Cu 2(OH) 2 CO 3 思考:金属腐蚀的本质是什么? [板书] 第四节金属的电化学腐蚀与防护[板书] 一、金属的电化学腐蚀

论化工设备的腐蚀与防护示范文本

论化工设备的腐蚀与防护 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

论化工设备的腐蚀与防护示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 化工设备是人类生活当中必不可少的工业设备,其对 于人类生活水平的提高有着重要的推进作用。在日常使用 过程中,因为外部环境影响、内部化学药品侵蚀、使用方 法上选择以及使用年限过长等因素的促在,很容易造成化 工设备的腐蚀。这种化工设备腐蚀的情况出现,不仅会降 低化工设备的使用效果,还会带来极大的安全隐患,做好 对化工设备的防护工作,降低化工设备的腐蚀情况对于我 国化工事业的发展有着重要的作用。笔者结合实践工作经 验,在本文当中对化工设备的腐蚀因素进行分析,并探讨 了提高化工设备防护水平的策略。 在化工设备的实际工作当中,化工设备在工作时自身 所产生的化学腐蚀、外部环境的侵蚀、使用方法及维护方

法选择不当等因素都会为化工设备的腐蚀创造条件或实现对腐蚀的催化,一旦化工设备腐蚀到一定程度,那么化工设备的工作性能就必然会降低,腐蚀情况严重的还会导致化工设备的报废,想要保证化工设备的工作状态,实现化工产业的发展,做好化工设备的腐蚀防护工作势在必行。 1.化工设备腐蚀的因素分析 在化工产业当中,化工设备的腐蚀情况较为常见,其属于化工设备的合理损耗,根据对化工设备实际使用情况来看,导致化工设备腐蚀因素可以分为内部因素和外部因素两个层面。从内部原因来看,化工设备以金属材质为主,而金属自身的化学属性较为活跃,其在企业使用过程中,工作环境必须与化工生产介质发生接触,如酸、碱、高温、高压、不均匀应力等都极易发生金属腐蚀情况。从外部原因来看,化工设备的使用环境、使用方法及日常维护都会在不同程度上为化工设备的腐蚀创造条件。尽管化

金属的腐蚀和防护教案

第二节金属腐蚀和防护 【教学目标】 1.能描述金属腐蚀的化学原理,知道金属防护的常用方法,认识防止金属腐蚀的重要意义。 2.进一步学会对比、比较认识事物的科学方法和假设验证探究的思维方式,辩证的认识外因条件对化学变化的影响; 3.参与试验探究观察铁生锈及析氢腐蚀吸氧腐蚀的过程,体会动手试验自己获得铁的性质的知识的成功愉悦,保持学习的兴趣; 【教学重点】金属的电化学腐蚀 【教学难点】电化学原理 【教学方法】实验探究、师生共议、归纳总结。 【教学过程】 【引入】【板书】第四节金属的腐蚀 【板书】一、金属腐蚀: 【讲述】以上两个案例都是金属腐蚀造成的,我们以前接触过金属腐蚀的,曾经探讨过铁钉在什么条件下最容易受到腐蚀,我们来设计实验来研究一下钢铁腐蚀的条件,提示大家我们可以利用对比、比较的方法设计实验,我这里提供的实验用品有:铁钉、煮沸过的水(除O2)、干燥剂(CaCl2)、植物油、试管、橡胶塞,还有食盐溶液和醋酸溶液。我们可以设计出至少五种实验方案来探究铁钉在什么条件下会锈蚀,什么条件下锈蚀的速度会加快。 注意在设计实验的时候将方案用到的物品填在学案相对应位置。 【实验设计】(学生自主设计)(由学生讲述设计的实验) 【现象】单独与水或空气接触的铁钉不易腐蚀,但是与水和空气同时接触的铁钉,出现明显的锈蚀。与食盐溶液接触的铁钉和与醋酸接触的铁钉锈蚀的更加明显。 【板书】三、铁钉生锈的条件:潮湿的空气;加速锈蚀的原因,有电解质溶液。

【提问】铁作为我们常见的金属,我们看到的这个现象就是腐蚀现象,那么什么是金属腐蚀?它的定义,本质,分类分别是什么呢? 【投影】金属腐蚀:指金属(或合金)跟周围接触到的气体(或液体)发生化学反应而引起损耗的过程。 本质:金属原子失去电子被氧化。 【讨论】我们刚才做的实验中给予铁钉了不同环境,也造成了不同程度的腐蚀,那么你们能感觉到这些腐蚀有什么明显的不同吗? 【讲述】如果我将铁钉在空气中灼烧,就是直接接触空气,例如有的地方的洒铁花,印度帕博尔的毒气泄漏事故中钢铁和氯原子的直接反应导致阀门腐蚀。这样的腐蚀叫做金属的化学腐蚀,铁在干燥的空气中是腐蚀速度很慢的,而我们做的铁钉锈蚀条件中接触水和空气,接触食盐溶液和醋酸溶液的腐蚀很快,为什么呢?这就是第二类腐蚀,金属的电化学腐蚀。展示电化学腐蚀的定义。【投影】实验探究2,探究初中锌粒和稀硫酸反应,如果加入铜片会有什么现象。 【学生讲述】本来在锌粒上面的气泡,因为接触了铜片,立刻铜片上会有大量的氢气泡冒出,也相当于加快了锌粒的腐蚀。 【动画模拟】探讨回忆原电池的原理,指出铁钉其实是铁碳合金,含2~4%的碳,这样就组成了铁碳原电池,动画模拟讨论铁碳在酸性条件下和中性及弱酸性条件下的反应。 实验探究3:钢铁的析氢腐蚀和吸氧腐蚀。 负极(Fe):Fe - 2e- = Fe2+ 正极(C):2H++2e-=H2↑(析氢腐蚀) 2H2O + O2 + 4e- = 4OH-(吸氧腐蚀) 铁锈的生成:Fe2+ + 2OH- = Fe(OH)2↓ 4Fe(OH)2 + 2H2O + O2 = 4Fe(OH)3 生成的Fe(OH)3,失水生成Fe2O3·xH2O就是铁锈。 【讲述】吸氢我们可以通过试验来验证一下铁钉是否发生吸氧腐蚀,我们来看这个试验装置:p85 【试验现象和结论】水柱上升,说明发生了吸氧腐蚀。 【讲述】另外,我们还注意到,电化学腐蚀现象在生活中更为普遍而且腐蚀速

设备防腐蚀办法

设备防腐蚀办法引言 防腐蚀的方法总的来说可以分为两大类:一是正确地选择防腐蚀材料和其他防腐蚀措施;二是选择合理的工艺操作及设备结构。严格遵守化工生产的工艺规程,可以消除不应当发生的腐蚀现象,而即使采用良好的耐腐蚀材料,在操作工艺上不腐蚀规程,也会引起严重的腐蚀。目前,化工生产中常用的防腐蚀方法有以下几种。 1 正确选材和设计 了解不同材料的耐蚀性能,正确地、合理地选择防腐蚀材料是最行之有效的方法。众所周知,材料的品种很多,不同材料在不同环境中的腐蚀速度也不同,选材人员应当针对某一特定环境选择腐蚀率低、价格较便宜、物理力学性能等满足设计要求的材料,以便设备获得经济、合理的使用寿命。 2 调整环境 如果能消除环境中引起腐蚀的各种因素,腐蚀就会终止或减缓,但是多数环境是无法控制的,如大气和土壤中的水分,海水中的氧等都不可能除去,且化工生产流程也不可能随意更改。但是有些局部环境是可以被调整的,如锅炉进水先去除氧(加入脱氧剂亚硫酸钠和肼等),可保护锅炉免遭腐蚀;又如空气进入密闭的仓库前先出去水分,也可避免贮存的金属部件生锈;为了防止冷却水对换热器和其他设备造成结垢和穿孔,可在水中加入碱或酸以调节PH值至最佳范围(接近中性);炼油工艺中常加碱或 氨使生产流体保持中性或碱性。温度过高时,可在器壁冷却降温,或在设备内壁砌衬耐火砖隔热,等。这些都是改变环境且不影响产品和工艺的前提下采用的方法,在允许的前提下,建议工艺中选用缓和的介质代替强腐蚀介质。 3

加入缓蚀剂 通常,在腐蚀环境中加入少量缓蚀剂就可以大大减缓金属的腐蚀,我们一般将它分为无机、有机和气相缓蚀剂三类,其缓蚀机理也各不相同。 1无机缓蚀剂 有些缓蚀剂会使阳极过程变慢,称之为阳极型缓蚀剂,它包括促进阳极钝化的氧化剂(铬酸盐、亚硝酸盐、铁离子等)或阳极成膜剂(碱、磷酸盐、硅酸盐、苯甲酸盐等),它们主要在阳极区域反应,促进阳极极化。一般阳极缓蚀剂会在阳极表面生成保护膜,这种情况下的缓蚀效果较好,但也存在一定风险,因为如果剂量不充足,会造成保护膜不完整,膜缺陷处暴露的裸金属面积小,阳极电流密度大,更容易发生穿孔。另一类缓蚀剂是在阴极反应,如钙离子、锌离子、镁离子、铜离子、锰离子等与阴极产生氢氧根离子,形成不溶性的氢氧化物,以厚膜形态覆盖在阴极表面,因而阻滞氧扩散到阴极,增大浓差极化。除此之外,也有同时阻滞阳极和阴极的混合型缓蚀剂,但加入量一般都需要先通过试验才可确定。 2有机缓蚀剂 有机缓蚀剂是吸附型的,吸附在金属表面,形成几个分子厚的不可视膜,可同时阻滞阳极和阴极反应,但对二者的影响力稍有不同。常用无机缓蚀剂有含氮、含硫、含氧及含磷的有机化合物,其吸附类型随有机物分子构型的不同可分为静电吸附、化学吸附及π键(不定位电子)吸附。有机缓蚀剂的发展很快,用途十分广泛,但是使用它同时也会产生一些缺点,如污染产品,特别是食品类,缓蚀剂可能对生产流程的这一部分有利,但进入另一部分则变为有害物质,也有可能会阻抑需要的反应,如酸洗时使去膜速度过缓,等。 3气相缓蚀剂 这类缓蚀剂是挥发性很高的物质,含有缓蚀基团,一般用来保护贮藏和运输中的金属零部件,以固体形态应用居多。它的蒸汽被大气中的水分解出有效的缓蚀基团,吸附在金属表面,达到减缓腐蚀的目的。另外,它也是一种吸附性缓蚀剂,被保护的金属表面不需要除锈处理。

铝合金的时效强化是如何进行和完成的

铝合金的时效强化是如何进行和完成的 经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称铝合金的时效硬化。这是铝合金强化的重要方法之一。 由定义可知,铝合金时效强化的前提,首先是进行淬火,获得饱和单相组织。在快冷淬火获得的固溶体,不仅溶质原子是过饱和的,而且空位(晶体点缺陷)也是过饱和的,即处于双重过饱和状态。以Al -4%Cu 合金为例,固溶处理后,过饱和α固溶体的化学成分就是合金的化学成分,即固溶体中钢含量为4%。由Al-Cu 相图可知,在室温平衡态下,α固溶体的含铜量仅为0.5%,故3.5%Cu过饱和固溶于α相中。当温度接近纯铝熔点时,空位浓度接近10-3数量级,而在常温下,空位浓度为10-11数量级,二者相差10-8级。经研究可知;铝合金固溶处理温度越高,处理后过饱和程度也越大,经时效后产生的时效强化效果也越大。因此固溶处理温度选择原则是:在保证合金不过烧的前提下,固溶处理温度尽可能提高。 固溶处理后的铝铜合金,在室温或某一温度下放置时,发生时效过程。此过程实质上是第二相Al2Cu 从过饱和固溶体中沉淀的过程。这种过程是通过成型和长大进行的,是一种扩散型的固态相变。它依下列顺序进行:a过→G.P区→θ’’相→θ’相→θ相 G.P区就是指富溶质原子区,对Al-Cu合金而言,就是富铜区。铝钢合金的G.P区是铜原子在(100)晶面上偏聚或从聚而成的,呈圆片状。它没有完整的晶体结构,与母相共格。200℃不再生成G.P 区。室温时效的G.P区很小,直径约50A,密度为1014-1015/mm3,G.P区之间的距离为20-40 ?。130℃时效15h后,G.P 区直径长大到90 ?,厚为4-6 ?。温度再高,G.P区数目开始减少。它可以在晶面处引起弹性应变。θ’’相是随时效温度升高或时效时间延长,G.P区直径急剧长大,且铜、铝原子逐渐形成规则排列,即正方有序结构。在θ’’过渡相附近造成的弹性共格应力场或点阵畸变区都大于G.P区产生的应力场,所以θ’’相产生的时效强化效果大于G.P区的强化作用。θ’相是指当继续增加时效时间或提高时效温度,θ’’相转变成为θ’相。θ’相属正方结构,θ’在(001)面上与基体铝共格,在z轴方向由于错配度过大,在(001)和(100)面上共格关系遭到部分破坏。θ相是平衡相,θ相的成分是Al2Cu,为正方有序结构。由于θ相完全脱离了母相,完全丧失了与基体的共格关系,引起应力场显著减弱。这也就意味着合金的硬度和强度显著下降。 影响时效强化效果的因素有哪些? 时效是按一定顺序进行的,强化效果受以下因素影响: (1) 时效温度。固定时效时间,对同一成分的合金而言,时效温度与时效强化效果(硬度)之间关系。在某一时效温度时,能获得最大硬化效果,这个温度称为最佳时效温度。不同成分的合金获得最大时效强化效果的时效温度是不同的。统计表明,最佳时效温度与合金熔点之间存在如下关系: T0 = (0.5 – 0.6)T (2) 时效时间。硬度与强度峰值出现在θ’’相的末期和θ’过渡相的初期,θ’后期已过时效,开始软化。当大量出现θ相时,软化已非常严重。故在一定的时效温度内,为获得最大时效强化效果,应有一最佳时效时间,即在θ’’产生并向θ’转变时所需的时间。 (3) 淬火温度、淬火冷却速度和淬火转移时间。实践证明,淬火温度越高,淬火冷郄速度越快,淬火中间转移时间越短,所获得的固溶体过饱和程度越大,时效进行后强化效果越大。 (4) 时效工艺。时效可选单级或分级时效。单级时效指在室温或低于100℃温度下进行的时效过程。它工

相关文档
最新文档