导数的应用(-)单调性
知识讲解_导数在函数性质中的应用——单调性

导数在函数性质中的应用——单调性编稿:张林娟审稿:孙永钊【学习目标】1. 知识与技能能用导数判断函数的单调性、求不超过三次的多项式函数的单调区间;掌握求函数单调区间的方法和步骤.2. 过程与方法通过利用导数研究函数的单调区间的过程,掌握利用导数研究函数性质的方法.总结求函数单调区间和极值的一般步骤,体会其中的算法思想,认识到导数在研究函数性质中的应用.3. 情感、态度与价值观通过用导数方法研究函数性质,认识到不同数学知识之间的内在联系,以及导数的应用价值.【要点梳理】要点一:函数的单调性与导数的关系我们知道,如果函数()f x在这一区间具有单调性.f x在某个区间是增函数或减函数,那么就说()已知函数2=-+的图象如图所示,f x x x()43由函数的单调性易知,当2f x是增函数.现在我们看看各个单f x是减函数;当2x<时,()x>时,()调区间内任意一点的切线情况:考虑到曲线()f x在改点的导数值,从图象可以看到:y f x=的在某点处切线的斜率就是函数()在区间(-∞,2)内,任意一点的切线的斜率为负,即'()240f x x =<时,()f x 为减函数.在区间(2,+∞)内,任意一点的切线的斜率为正,即'()240f x x =>时,()f x 为增函数.导数的符号与函数的单调性:一般地,设函数()y f x =在某个区间内有导数,则在这个区间上,(1)若()0f x '>,则()f x 在这个区间上为增函数;(2)若()0f x '<,则()f x 在这个区间上为减函数;(3)若恒有()0f x '=,则()f x 在这一区间上为常函数.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).要点诠释:①导函数的正负决定了原函数的增减;②在区间(a ,b )内,'()0f x >(或()0f x '<)是()f x 在区间(a ,b )内单调递增(或减)的充分不必要条件.注意:只有当在某区间上有有限个点使'()0f x =时,()0f x '≥(或()0f x '≤)≡()f x 在该区间内是单调递增(或减).例如:32()'()30'(0)0,'()0(0)f x x f x x f f x x =⇒=≥=>≠,,而()f x 在R 上递增.③当在某区间内恒有()0f x '=,这个函数()y f x =在这个区间上才为常数函数.要点二:利用导数研究函数的单调性利用导数判断函数单调性的基本方法:设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数;(2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数;(3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数.利用导数求函数()f x 单调区间的基本步骤(1)确定函数()f x 的定义域;(2)求导数'()f x ;(3)在函数()f x 的定义域内解不等式'()0f x >或'()0f x <;(4)确定()f x 的单调区间.或者:令'()0f x =,求出它在定义域内的一切实数根。
导数的应用——利用单调性求参数的取值范围

导数的应用——利用单调性求参数的取值范围在解题中,我们首先要确定参数的取值范围是有限的,也就是参数不能无限制地取值。
然后我们利用导数的单调性来排除一些不符合要求的取值范围,从而找到参数的合理取值范围。
为了更好地理解这个方法,我们来看一个具体的例子:问题:已知函数f(x) = ax^2 + bx + c,其中a > 0。
如果函数f(x)在定义域内是递增函数,求参数b的取值范围。
解答:首先,我们要明确函数f(x)是递增函数的定义:对于任意的x1<x2,有f(x1)<f(x2)。
我们可以通过求函数f(x)的导函数f'(x)来判断函数f(x)的单调性。
在本例中,函数f(x)的导函数为f'(x) = 2ax + b。
由于函数f(x)为递增函数,所以f'(x)应该大于0。
即对于任意的x,有f'(x)>0。
我们可以把f'(x) > 0看作是一个一次函数y = 2ax + b > 0的解。
这个一次函数的解为x < -b/2a。
也就是说,对于任意的x<-b/2a,有f'(x)>0。
这样一来,我们就可以得出结论,函数f(x)在x<-b/2a的区间上是递增函数。
但是我们并不能马上就得出参数b的取值范围是x<-b/2a。
因为函数f(x)的定义域可能不包含这个区间。
为了求出参数b的取值范围,我们需要进一步考虑函数f(x)的定义域。
对于函数f(x) = ax^2 + bx + c来说,它的定义域是所有实数集合R。
因此,对于任意实数x,函数f(x)都有定义。
由于我们已经确定了函数f(x)在x<-b/2a的区间上是递增函数,所以我们只需要确定使得这个区间包含在定义域内的参数b的取值范围即可。
如果我们假设b/2a为一个实数k,那么我们可以得出-x>k。
即对于任意的x>-k,函数f(x)是递增的。
然而,x的取值范围是所有实数,所以我们可以把任意实数k当作是b/2a。
导数的应用--函数的单调性

普宁市第一中学数学组
一、复习
1、怎样利用导数的符号判断函数的单调性。 怎样利用导数的符号判断函数的单调性。 设函数y=f(x)在某个区间内可导,如果f (x)>0, f(x)为 设函数y=f(x)在某个区间内可导,如果f´(x)>0,则f(x)为 y=f(x)在某个区间内可导 增函数;如果f (x)<0, f(x)为减函数。 增函数;如果f´(x)<0,则f(x)为减函数。 为减函数 如果在某个区间内恒有f (x)=0, f(x)为常数。 如果在某个区间内恒有f´(x)=0,则f(x)为常数。 为常数 ☆值得注意的是:在判断函数的单调性时,如果出现个别点 值得注意的是:在判断函数的单调性时, (x)=0不会影响包含该点在某个区间上的单调性 不会影响包含该点在某个区间上的单调性, 使f´(x)=0不会影响包含该点在某个区间上的单调性, 例如: f )内 例如: ( x ) = x 3 在 (- ∞ ,+ ∞ ) 内 是 增 函 数 , 但 f ′(0)=0
年浙江理) 4、例题:(04年浙江理)设 f ′( x ) 是函数 f ( x ) 例题:(04年浙江理
y o
y = f ′(x )
1 2
y 的导函数, 的图象如图(1)所示, (1)所示 的导函数, = f ′( x ) 的图象如图(1)所示,
x
的图象最有可能是( )。 则 y = f ( x ) 的图象最有可能是( C )。
y 2 1 -2 -1 0 1 -1 -2 2 x -2 -1
3 2 1 0 -1 -2 1 2 x
)。 )。
y y 4 3 2 1 2 x -2 -1 0 -1 -2 1 2 x
图(3)
y 4 3 2 -2 -1 1 0 -1 -2
导数的应用-单调性nbsp新课件[1].1
![导数的应用-单调性nbsp新课件[1].1](https://img.taocdn.com/s3/m/1c72ddc005087632311212d6.png)
课后作业
P78习题3.3第1、2题
思考题: 函数f(x)=2x3-6x2+7 能不能画
出该函数的草图?
小结:
1.学习函数导数与单调性的关系.首先要确定函 数的定义域,再通过讨论导数的符号来判断函数 的单调区间,或证明函数的单调性. 2.利用导数的符号来判断函数的单调区间,是导 数几何意义在研究曲线变化规律的一个应用,它 充分体现了数形结合的思想. 3.掌握研究数学问题的一般方法: 从特殊到一般;从简单到复杂。
导数在研究函数中的应用
—单调性
分析:从图形看 若函数在区间(a,b)内单调递增,我们 发现在(a,b)上切线的斜率为正,即 在(a,b)内的每一点处的导数值为正
若函数在区间(a,b)内单调递减,发 现在(a,b)上切线的斜率为负,即 在(a,b)内的每一点处的导数值为负,
一般地, 设函数y=f(x)在区间上可导,
例2、确定函数f(x)=sinx在x∈(0,2π) 上的单调减区间 解: f’(x)=cosx 令f’(x)<0由cosx <0, 又x∈(0 , 2π) ∴x∈( π/2, 3π/2) 所以函数f(x)单调减区间 是( π/2 , 3π/2)
例3、若函数f(x)=ax3-x2+x-5(a≠0) 在R上单调递增,求a取值范围.
1)如果在某区间上f′(x)>0,那么f(x) 为该区间上的增函数,
2)如果在某区间上f′(x)<0,那么f(x) 为该区间上的减函数。
y
y=f(x)
y
y=f(x)
o
a
b
x
o a
bபைடு நூலகம்
x
思考:上述结论的逆命题正确吗? 观察三次函数y=x3的图象; 一般地,设函数y=f(x)在某个区间内 可导,则函数在该区间 如果f(x)为增函数, 则 f′(x) ≥0. 如果f(x)为减函数, 则 f′(x) ≤0. 注意:如果在某个区间内恒有f′(x)=0,
导数的应用的单调性与极值

导数的应用的单调性与极值在微积分学中,导数是一个非常重要的概念,它有着广泛的应用。
本文将讨论导数的应用方面,着重探讨其与单调性和极值的关系。
一、导数与函数的单调性在研究函数的单调性时,导数是一个非常重要的工具。
通过求函数的导数,我们可以得到函数的增减性质。
1. 单调递增如果一个函数在某个区间内的导数恒大于零,那么这个函数在该区间内是单调递增的。
也就是说,函数的图像在这个区间上是向上的。
举个例子,考虑函数f(x) = x^2,我们可以求得它的导数f'(x) = 2x。
由于2x大于零,所以函数f(x)在整个实数轴上都是单调递增的。
2. 单调递减类似地,如果一个函数在某个区间内的导数恒小于零,那么这个函数在该区间内是单调递减的。
还是以前面的例子f(x) = x^2为例,我们可以看到,函数f(x)的导数2x在负数区间上小于零,因此函数f(x)在负数区间上是单调递减的。
通过上述例子可以看出,导数可以帮助我们分析函数的单调性,从而更好地理解函数的变化规律。
二、导数与函数的极值另一个与导数密切相关的概念是函数的极值。
极值分为极大值和极小值,而导数可以帮助我们判断函数的极值点。
1. 极值点一个函数在某个点上的导数等于零时,该点就是函数的极值点。
根据导数的定义,导数为零表示函数在该点附近的变化趋势趋向于水平。
2. 极大值如果一个函数在某个点的导数从正数变为负数,那么这个点就是函数的极大值点。
在极大值点上,函数的图像从上升转向下降。
3. 极小值与极大值相反,如果一个函数在某个点的导数从负数变为正数,那么这个点就是函数的极小值点。
在极小值点上,函数的图像从下降转向上升。
例如,考虑函数f(x) = x^3,我们可以求得它的导数f'(x) = 3x^2。
当x等于零时,导数为零,说明函数在x=0处有极值。
通过进一步的分析,我们可以得知这个点是极小值点。
三、综合应用导数的应用不仅仅局限于单调性和极值的讨论,还可以应用于其他问题的求解。
《导数在函数中的应用——单调性》教学反思(精选15篇)

《导数在函数中的应用——单调性》教学反思〔精选15篇〕篇1:《导数在函数中的应用——单调性》教学反思本节课是一节新授课,教材所提供的信息很简单,假如直接得出结论学生也能承受。
可学生只能进展简单的模拟应用,为了突出知识的发生过程,不把新授课上成习题课。
设计思路如下以便学生会考虑解决问题。
1、首先从同学们熟悉的过山车模型入手,将实际问题转化为数学模型,提出如何刻画函数的变化趋势,引出课题。
研究从学生熟悉的一次函数,二次函数入手,寻找导数和单调性的`关系,用几何画板演示特殊的三次函数的图像,研究单调性和导数。
在此根底上提出问题:单调性和导数到底有怎样的关系?学生通过考虑、讨论、交流形成结论。
也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。
2、在结论得出后,继续引导学生考虑,提出自己的困惑,因为确实有学生对结论有不一样的想法,所以,尽可能地暴露问题,让学生彻底理解、掌握。
3、铺垫:在引入部分,我涉及到了一个三次的函数,而例2就是此题的变式,这样既可以在开场引起学生兴趣,后来他们自己解决了看似复杂的问题,增加了信心,也做到了首尾照应。
4、在知识应用中重点指导学生解题步骤,在学生自己总结解题步骤时,发现学生忽略了第一点求函数定义域,所以我就将错就错,给出了求函数的单调区间,很多学生栽了跟头,然后自己总结出应该先求函数定义域。
虽然这道题花了些时间,但我觉得很值得,我想学生印象也会更深化。
5、数形结合:数形结合不是光口头去说,而是利用一切时机去施行,在例1的教学中,我让学生先纯熟法那么,再从形上分析^p ,加深印象,这样在后面紧接的高考题中〔没有给解析式〕,学生会迎刃而解。
为了培养学生的自主学习、自主考虑的才能,激发学习兴趣,在教学中采取引导发现法,利用多媒体等手段引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探究新知。
让学生分组讨论,合作交流,共同讨论问题。
但是,真正做到以学生为中心,学生100%参与,表达三维目的,培养学习才能还是比拟困难。
导数在单调性中的应用

一、 导数在单调性中的应用:函数的单调性是函数最基本的性质之一,是我们研究函数所要掌握的最基本的知识.它在中学数学中的用处是非常广泛的,其思维方法有:一、利用增(减)函数的定义判断单调性;二、导数法。
利用在(,)a b 内可导的函数()f x 在(,)a b 上递增(或递减)的充要条件是()0f x '≥(或()0f x '≤),(,)x ab∈恒成立(但()f x '在(,)a b 的任意子区间内都不恒等于0)。
方法一化简较为繁琐,比较适合解决抽象函数的单调性问题,而用导数知识来判断函数的单调性既快捷又容易掌握.,特别是对于具体函数更加适用。
1. 利用导数求单调区间:例:函数y =x ln x 在区间(0,1)上是 A. 单调增函数 B. 单调减函数C.在(0,e 1)上是减函数,在(e 1,1)上是增函数 D.在(0,e 1)上是增函数,在(e1,1)上是减函数例2.函数y =sin 2x 的单调递减区间是__________.2. 利用导数和单调性的关系,选择导函数与原函数的图像问题:例:设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如下图所示,则y =f (x )的图象最有可能是(ACBD3、已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )3. 利用导数和单调性的关系判断方程解的个数:例:方程3269100x x x -+-=的实根的个数是 () A 、3 B 、2 C 、1 D 、04. 单调性的综合应用:例:已知()1xf x e ax =--。
(1)求()f x的单调增区间;(2)若()f x 在定义域R 内单调递增,求a 的取值范围;(3)是否存在a 使()f x 在(,0]-∞上单调递减,在[0,)+∞上单调递增?若存在,求出a 的值;若不存在,说明理由。
导数的应用----单调性、极值精华课件

典型例题 4
设 t0, 点 P(t, 0) 是函数 f(x)=x3+ax与 g(x)=bx2+c 的图象的一 个公共点, 两函数的图象在点 P 处有相同的切线. (1)用 t 表示 a, b, c; (2)若函数 y=f(x)-g(x) 在 (-1, 3) 上单调递减, 求 t 的取值范 围. 解: (1)∵函数 f(x) 的图象过点 P(t, 0), ∴ f(t)=0t3+at=0. ∵t0, ∴a=-t2. 又∵函数 g(x) 的图象也过点 P(t, 0), ∴ g(t)=0bt2+c=0. ∴c=ab. ∵两函数的图象在点 P 处有相同的切线, ∴ f(t)=g(t). 而 f(x)=3x2+a, g(x)=2bx, ∴3t2+a=2bt. 将 a=-t2 代入上式得 b=t. ∴c=ab=-t3. 综上所述, a=-t2, b=t, c=-t3. (2)方法一 y=f(x)-g(x)=x3-tx2-t2x+t3. y=3x2-2tx-t2=(3x+t)(x-t). 当 y=(3x+t)(x-t)<0 时, y=f(x)-g(x)为减函数.
6.设函数 f(x) 在 [a, b] 上连续, 在 (a, b) 内可导, 求 f(x) 在 [a, b] 上的最大值与最小值的步骤如下: (1)求 f(x) 在 (a, b) 内的极值; (2)将 f(x) 的各极值与 f(a), f(b) 比较, 其中最大的一个是最大 值, 最小的一个是最小值.
如果应用导数解决实际问题, 最关键的是要建立恰当的数学 模型(函数关系), 然后再运用上述方法研究单调性及极(最)值.
三、知识要点
1.函数的单调性 (1)(函数单调性的充分条件)设函数 y=f(x) 在某个区间内可 导, 如果 f(x)>0, 则 y=f(x) 为增函数, 如果 f(x)<0, 则 y=f(x) 为 减函数, (2)(函数单调性的必要条件)设函数 y=f(x) 在某个区间内可 导, 如果 f(x) 在该区间单调递增(或减), 则在该区间内 f(x)≥0 (或 f(x)≤0). 注 当 f (x) 在某个区间内个别点处为零, 在其余点处均为正 (或负)时, f(x) 在这个区间上仍旧是单调递增(或递减)的. 例 f(x)=x3 在 (-1, 1) 内, f(0)=0, f(x)>0(x0). 显然 f(x)=x3 在 (-1, 1) 上仍旧是增函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性
沈阳第十一中学 赵拥权 1.已知函数1)(3--=ax x x f 在实数集R 上单调递增,求a 的取值范围
2.设函数ax x x f -=ln )(在),1(+∞上是单调减函数求a 的取值范围
3.函数ax e x g x -=)(在),1(+∞-上是单调增函数求a 的取值范围
4.设ax x x x f 22131)(23++-
=.若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围;
5.的取值范围;则在定义域内是增函数,函数m x x mx x f 2ln )(2-+=
6.[]的取值范围;上不单调,则在函数t t t x x x x f 1,ln 3421)(2+-+-
= 7.3)2(3
1)(23++++=x b bx x x f 函数在R 上不单调,则b 的取值范围; 9.(]的取值范围;时增函数,则函数a x x
ax x f 1,0,12)(2∈-= 10.已知函数若f(x)在区间
上是减函数,求实数a 的取值范围; 11. 已知函数
若f(x)在定义域上是增函数,求实数a 的取值范围;
10.已知函数ln ()x x k f x e
+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.
(Ⅰ)求k 的值;
(Ⅱ)求()f x 的单调区间;
11.已知a 、b 为常数,且a ≠0,函数f (x )=-ax +b +ax ln x ,f (e )=2,(e =2.71828…是自然对数的底数)。
(Ⅰ)求实数b 的值;
(Ⅱ)求函数f (x )的单调区间;
12. 已知函数x a ax x x f )2(ln )(2-+-=.讨论)(x f 的单调性;
13. 的单调性;讨论已知函数)(,1ln )1()(2x f ax x a x f +++=
14. 的单调性;讨论函数)(,,ln 1)(x f R a x a x x x f ∈--
=
15.若定义在R 上的函数()f x 满足222(1)()2(0)2
x f f x e x f x -'=⋅+-, 21()()(1)24
x g x f x a x a =-+-+,∈a R. (Ⅰ)求函数()f x 解析式;(Ⅱ)求函数()g x 单调区间
16.已知函数x x a ax x f ln 1)(--+
=当21≤a 时,试讨论函数)(x f 的单调性;。