导数的应用—单调性与极值的习题课

合集下载

导数的应用—单调性与极值的习题课(老师)

导数的应用—单调性与极值的习题课(老师)

导数的应用一单调性与极值的习题课【复习目标】1. 理解导数在研究函数的单调性和极值中的作用;2. 理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。

3. 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间;4. 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。

【重点难点】①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性; ⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题; 【基础过关】1.函数的单调性⑴ 函数y = f(x)在某个区间内可导,若f(X)> 0,则f (X)为 ______________ 为 .(逆命题不成立)⑵ 如果在某个区间内恒有 f(x)9,则f(x)_.注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.(3)求可导函数单调区间的一般步骤和方法:确定函数f(x)的 __________ ;求f (x),令 _________ ,解此方程,求出它在定义区间内的一切实根;③ 序排列起来,然后用这些点把函数 f(x)的定义区间分成若干个小区间;那么函数y = f(x)在这个根处取得 ___________ ;如果在根的左侧附近为负,右侧为正,那么函 数y = f(x)在这个根处取得 .【基础训练】例1•如果函数y = f(X)的图像如右图,那么导函数y =f ,(x)的图像可能是(;若 f ・(x) < 0 ,则 f(X) 把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各个实根按由小到大的顺 ④确定f (x)在各小开区间内的 间内的增减性. 2.可导函数的极值⑴极值的概念 设函数f(X)在点X 0附近有定义,且对 X 0附近的所有点都有 _f (x o )为函数的一个极大(小)值.称X 0为极大(小)值点.求可导函数极值的步骤: 求导数f (x);求方程f (x) = 0的__________ ; 检验f(x)在方程f (x) = 0的根左右的符号,如果在根的左侧附近为正,右侧附近为负, ,根据f(X)的符号判定函数f(X)在各个相应小开区(或 ),则称⑵ ① ② ③)20 X2例2.曲线y=x _21 nx 的单调减区间是()A. (0,1];B.[1,+^); C.(二,1]及(0,1] ; D.[—1,0)及(0,1];2例3.若函数f(x)= —a在x=1处取极值,则a =x +1例4.函数f (x)的定义域为开区间(a, b),导函数f '(X)在(a, b)内 的图象如图所示,则函数 f (X)在开区间(a,b)内有极小值点例5.若f(X)= X 3 +3ax 2+3(a+2)x 中1有极值,则a 的取值范围是【典型例题】1(2011浙江五校联考)已知函数f(x) = X 3+ ax 2 + bx + c(x € [ —1,2]),且函数f(x)在x = 1和x = 2—2处都取得极值. 3 (1)求a ,b 的值;(2)求函数f(x)的单调递增区间.解 (1) T f(x) = x '+ ax ? + bx + c ,.・.f' (x) = 3x 2+ 2ax + b.f ' L 2L 0 L = — 1 由题易知,V < 3丿,解得$ 2^ f (1 = 0, [b =- 2.2(2)由(1)知,f ' (x)= 3x — X — 2= (3x + 2)(x — 1), T 当 xC [— 1,— 2)寸,f' (X)>0;当 xC (— 3, 1)寸,f' (X) V 0; 当 x € (1,2]时,f '(X)> 0.2.设函数 f(X)=x 3 —3ax+b(a H0).(I)若曲线y = f(x)在点(2, f (x))处与直线y =8相切,求a,b 的值;(n)求函数f (x)的单调区间与极值点.••• f(x)的单调递增区间为 -1,— 2加(1,2].(川)若b = -1且f(x)在x = -1处取得极值,直线y=m与y = f(x)的图象有三个不同的交点,求m的取值范围。

导数与函数的单调性、极值、最值问题专题

导数与函数的单调性、极值、最值问题专题

导数与函数的单调性、极值、最值问题高考定位 高考对本内容的考查主要有:(1)导数的运算是导数应用的基础,要求是B 级,熟练掌握导数的四则运算法则、常用导数公式,一般不单独设置试题,是解决导数应用的第一步;(2)利用导数研究函数的单调性与极值是导数的核心内容,要求是B 级,对应用导数研究函数的单调性与极值要达到相等的高度.真 题 感 悟1.(2017·江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 解析 f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0且f ′(x )不恒为0,所以f (x )为单调递增函数. 又f (-x )=-x 3+2x +e -x -e x =-(x 3-2x +e x-1ex )=-f (x ),故f (x )为奇函数,由f (a -1)+f (2a 2)≤0,得f (2a 2)≤f (1-a ), ∴2a 2≤1-a ,解之得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12.答案 ⎣⎢⎡⎦⎥⎤-1,122.(2017·江苏卷)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R)有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域;(2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.(1)解 由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝⎛⎭⎪⎫x +a 32+b -a 23.当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0,又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:故f (x )的极值点是x 1,x 2.从而a >3. 因此b =2a 29+3a,定义域为(3,+∞).(2)证明 由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2.当t ∈⎝ ⎛⎭⎪⎫362,+∞时,g ′(t )>0,从而g (t )在⎝ ⎛⎭⎪⎫362,+∞上单调递增.因为a >3,所以a a >33,故g (a a )>g (33)=3,即ba > 3.因此b 2>3a .(3)解 由(1)知,f (x )的极值点是x 1,x 2, 且x 1+x 2=-23a ,x 21+x 22=4a 2-6b 9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab 9+2=0. 记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减.因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a的取值范围为(3,6].考点整合1.导数与函数的单调性(1)函数单调性的判定方法:设函数y=f (x)在某个区间内可导,如果f ′(x)>0,则y=f (x)在该区间为增函数;如果f ′(x)<0,则y=f (x)在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法.2.极值的判别方法当函数f (x)在点x0处连续时,如果在x0附近的左侧f′(x)>0,右侧f ′(x)<0,那么f (x0)是极大值;如果在x0附近的左侧f ′(x)<0,右侧f ′(x)>0,那么f (x0)是极小值.也就是说x0是极值点的充分条件是点x0两侧导数异号,而不是f ′(x)=0.此外,函数不可导的点也可能是函数的极值点,而且极值是一个局部概念,极值的大小关系是不确定的,即有可能极大值比极小值小.3.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小者.热点一利用导数研究函数的单调性[命题角度1] 求解含参函数的单调区间【例1-1】(2017·全国Ⅰ卷改编)已知函数f (x)=e x(e x-a)-a2x,其中参数a≤0.(1)讨论f (x)的单调性;(2)若f (x)≥0,求a的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为 f⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2,故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0,即a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].探究提高 讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,常需依据以下标准分类讨论:(1)二次项系数为0、为正、为负,目的是讨论开口方向;(2)判别式的正负,目的是讨论对应二次方程是否有解;(3)讨论两根差的正负,目的是比较根的大小;(4)讨论两根与定义域的关系,目的是根是否在定义域内.另外,需优先判断能否利用因式分解法求出根. [命题角度2] 已知函数的单调区间求参数范围【例1-2】 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数?若能,求出a 的取值范围?若不能,请说明理由.解 (1)当a =2时,f (x )=(-x 2+2x )·e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的单调递增区间是(-2,2). (2)因为函数f (x )在(-1,1)上单调递增, 所以f ′(x )≥0对x ∈(-1,1)都成立. 因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x ,所以[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x>0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x 2+2xx +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令g (x )=(x +1)-1x +1,则g ′(x )=1+1(x +1)2>0. 所以g (x )=(x +1)-1x +1在(-1,1)上单调递增. 所以g (x )<g (1)=(1+1)-11+1=32.所以a 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.(3)若函数f (x )在R 上单调递减,则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≤0对x ∈R 都成立.因为e x >0,所以x 2-(a -2)x -a ≥0对x ∈R 都成立.所以Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的.故函数f (x )不可能在R 上单调递减.若函数f (x )在R 上单调递增,则f ′(x )≥0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≥0对x ∈R 都成立,因为e x >0,所以x 2-(a -2)x -a ≤0对x ∈R 都成立.而Δ=(a -2)2+4a =a 2+4>0,故函数f (x )不可能在R 上单调递增. 综上,可知函数f (x )不可能是R 上的单调函数.探究提高 (1)已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围. (2)可导函数f (x )在某个区间D 内单调递增(或递减),转化为恒成立问题时,常忽视等号这一条件,导致与正确的解法擦肩而过,注意,这里“=”一定不能省略.【训练1】 (2017·南京、盐城模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R).(1)当a =2时,解关于x 的方程g (e x )=0(其中e 为自然对数的底数); (2)求函数φ(x )=f (x )+g (x )的单调递增区间. 解 (1)当a =2时,方程g (e x )=0,即2e x +1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x =12.故所求方程的根为x =0或x =-ln 2. (2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x -(a -1)x 2=[ax -(a -1)](x +1)x2(x >0), 当a <0时,由φ′(x )>0,解得0<x <a -1a;当a =0时,由φ′(x )>0,解得x >0; 当0<a <1时,由φ′(x )>0,解得x >0; 当a =1时,由φ′(x )>0,解得x >0; 当a >1时,由φ′(x )>0,解得x >a -1a. 综上所述,当a <0时,φ(x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的单调递增区间为(0,+∞); 当a >1时,φ(x )的单调递增区间为⎝ ⎛⎭⎪⎫a -1a ,+∞. 热点二 利用导数研究函数的极值【例2】 (2017·南通调研)设函数f (x )=x -2e x -k (x -2ln x )(k 为实常数,e =2.718 28…是自然对数的底数). (1)当k =1时,求函数f (x )的最小值;(2)若函数f (x )在(0,4)内存在三个极值点,求k 的取值范围. 解 (1)当k =1时,函数f (x )=e xx2-(x -2ln x )(x >0),则f ′(x )=(x -2)(e x -x 2)x3(x >0). 当x >0时,e x >x 2,理由如下:要使当x >0时,e x >x 2,只需使x >2ln x , 设φ(x )=x -2ln x ,则φ′(x )=1-2x =x -2x,所以当0<x <2时,φ′(x )<0;当x >2时,φ′(x )>0, 所以φ(x )=x -2ln x 在x =2处取得最小值φ(2)=2-2ln 2>0, 所以当x >0时,x >2ln x , 所以e x -x 2>0,所以当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,即函数f (x )在(0,2)上为减函数,在(2,+ ∞)上为增函数, 所以f (x )在x =2处取得最小值f (2)=e 24-2+2ln 2.(2)因为f ′(x )=(x -2)(e x -kx 2)x 3=(x -2)⎝ ⎛⎭⎪⎫e xx 2-k x,当k ≤0时,e xx2-k >0,所以f (x )在(0,2)上单调递减,在(2,4)上单调递增,不存在三个极值点,所以k >0. 令g (x )=e xx 2,得g ′(x )=e x ·(x -2)x 3,则g (x )在(0,2)上单调递减,在(2,+∞)上单调递增,在x =2处取得最小值为g (2)=e 24,且g (4)=e 416,于是可得y =k 与g (x )=e xx 2在(0,4)内有两个不同的交点的条件是k ∈⎝ ⎛⎭⎪⎫e 24,e 416.设y =k 与g (x )=e xx2在(0,4)内的两个不同交点的横坐标分别为x 1,x 2,且0<x 1<2<x 2<4,导函数f ′(x )及原函数f (x )的变化情况如下:所以 f (x )在(0,x 1)上单调递减,在(x 1,2)上单调递增,在(2,x 2)上单调递减,在(x 2,4)上单调递增,所以f (x )在(0,4)上存在三个极值点.即函数f (x )在(0,4)内存在三个极值点的k 的取值范围是⎝ ⎛⎭⎪⎫e 24,e 416.探究提高极值点的个数,一般是使f ′(x)=0方程根的个数,一般情况下导函数若可以化成二次函数,我们可以利用判别式研究,若不是,我们可以借助导函数的性质及图象研究.【训练2】(2017·苏、锡、常、镇调研节选)已知函数f (x)=ax2+cos x(a ∈R),记f (x)的导函数为g(x).(1)证明:当a=12时,g(x)在R上单调递增;(2)若f (x)在x=0处取得极小值,求a的取值范围.(1)证明当a=12时,f (x)=12x2+cos x,所以f ′(x)=x-sin x,令g(x)=x-sin x,所以g′(x)=1-cos x≥0,所以g(x)在R上单调递增.(2)解因为g(x)=f ′(x)=2ax-sin x,所以g′(x)=2a-cos x.①当a≥12时,g′(x)≥1-cos x≥0,所以函数f ′(x)在R上单调递增.当x>0时,则f ′(x)>f ′(0)=0;当x<0时,则f ′(x)<f ′(0)=0;所以f (x)的单调递增区间是(0,+∞),单调递减区间是(-∞,0),所以f (x)在x=0处取得极小值,符合题意.②当a≤-12时,g′(x)≤-1-cos x≤0,所以函数f ′(x)在R上单调递减.当x>0时,则f ′(x)<f ′(0)=0;当x<0时,则f ′(x)>f ′(0)=0,所以f (x)的单调递减区间是(0,+∞),单调递增区间是(-∞,0),所以f (x)在x=0处取得极大值,不符合题意.③当-12<a <12时,∃x 0∈(0,π),使得cos x 0=2a ,即g ′(x 0)=0,但当x ∈(0,x 0)时,cos x >2a ,即g ′(x )<0, 所以函数f ′(x )在(0,x 0)上单调递减, 所以f ′(x )<f ′(0)=0,即函数f (x )在(0,x 0)上单调递减,不符合题意. 综上所述,实数a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.热点三 利用导数研究函数的最值【例3】 (2017·浙江卷)已知函数f (x )=(x -2x -1)e -x ⎝ ⎛⎭⎪⎫x ≥12.(1)求f (x )的导函数;(2)求f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围.解 (1)f ′(x )=(x -2x -1)′e -x +(x -2x -1)(e -x )′ =⎝⎛⎭⎪⎫1-12x -1e -x -(x -2x -1)e -x =⎝ ⎛⎭⎪⎫1-12x -1-x +2x -1e -x =(1-x )⎝⎛⎭⎪⎫1-22x -1e -x ⎝ ⎛⎭⎪⎫x >12. (2)令f ′(x )=(1-x )⎝ ⎛⎭⎪⎫1-22x -1e -x =0, 解得x =1或52.当x 变化时,f (x ),f ′(x )的变化如下表:又f ⎝ ⎛⎭⎪⎫12=12e -12,f (1)=0,f ⎝ ⎛⎭⎪⎫52=12e -52,则f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的最大值为12e -12.又f (x )=(x -2x -1)e -x =12(2x -1-1)2e -x ≥0.综上,f (x )在区间⎣⎢⎡⎭⎪⎫12,+∞上的取值范围是⎣⎢⎡⎦⎥⎤0,12e -12. 探究提高 含参数的函数的极值(最值)问题常在以下情况下需要分类讨论: (1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论;(3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.【训练3】 已知函数f (x )=x ln x . (1)求函数f (x )的单调区间和最小值; (2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值. 解 (1)因为f ′(x )=ln x +1(x >0), 令f ′(x )≥0,即ln x ≥-1=ln e -1, 所以x ≥e -1=1e ,所以x ∈⎣⎢⎡⎭⎪⎫1e ,+∞. 同理令f ′(x )≤0,可得x ∈⎝ ⎛⎦⎥⎤0,1e .所以 f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫1e ,+∞,单调递减区间为⎝ ⎛⎦⎥⎤0,1e .由此可知 f(x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .(2)由F (x )=x ln x -a x ,得F ′(x )=x +ax 2,当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32, 所以a =-32∉[0,+∞),舍去.当a <0时,f (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增. ①当a ∈(-1,0),F (x )在[1,e]上单调递增, F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去.②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减, 在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,a =-e ∈[-e ,-1];③若a ∈(-∞,-e),F (x )在[1,e]上单调递减,F (x )min =F (e)=1-a e=32,所以a =-e2∉(-∞,-e),舍去.综上所述,a =- e.1.如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“∪”连接,而只能用逗号或“和”字隔开.2.可导函数在闭区间[a,b]上的最值,就是函数在该区间上的极值及端点值中的最大值与最小值.3.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;(2)对于可导函数f (x),“f (x)在x=x0处的导数f ′(x0)=0”是“f (x)在x=x处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.4.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根的个数、大小、根是否在定义域内可能都与参数有关,则需对参数进行分类讨论.5.求函数的极值、最值问题,一般需要求导,借助函数的单调性,转化为方程或不等式问题来解决,有正向思维——直接求函数的极值或最值;也有逆向思维——已知函数的极值或最值,求参数的值或范围,常常用到分类讨论、数形结合的思想.一、填空题1.已知函数f (x)=4ln x+ax2-6x+b(a,b为常数),且x=2为f (x)的一个极值点,则a的值为________.解析由题意知,函数f (x)的定义域为(0,+∞),∵f ′(x)=4x+2ax-6,∴f ′(2)=2+4a-6=0,即a=1,经验证符合题意. 答案 12.(2017·苏州调研)函数f (x)=12x2-ln x的单调递减区间为________.解析 由题意知,函数的定义域为(0,+∞),又由f ′(x )=x -1x<0,解得0<x <1,所以函数f (x )的单调递减区间为(0,1). 答案 (0,1)3.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10, 即⎩⎨⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎨⎧a =-2,b =1或 ⎩⎨⎧a =-6,b =9,经检验⎩⎨⎧a =-6,b =9满足题意,故a b =-23.答案 -234.(2017·南京模拟)若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为________.解析 由f (x )在区间[a ,a +1]上单调递增,得f ′(x )=e x (-x 2+a +2)≥0,x ∈[a ,a +1]恒成立,即(-x 2+a +2)min ≥0,x ∈[a ,a +1].当a ≤-12时,-a 2+a +2≥0,则-1≤a ≤-12;当a >-12时,-(a +1)2+a +2≥0,则-12<a ≤-1+52,所以实数a 的取值范围是-1≤a ≤-1+52,a 的最大值是-1+52. 答案-1+525.(2017·浙江卷改编)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是________(填序号).解析 利用导数与函数的单调性进行验证.f ′(x )>0的解集对应y =f (x )的增区间,f ′(x )<0的解集对应y =f (x )的减区间,验证只有④符合. 答案 ④6.(2017·泰州期末)函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是________.解析 f ′(x )=3x 2-3a =3(x 2-a ).当a ≤0时,f ′(x )>0, ∴f (x )在(0,1)内单调递增,无最小值. 当a >0时,f ′(x )=3(x -a )(x +a ).当x ∈(-∞,-a )和(a ,+∞)时,f (x )单调递增; 当x ∈(-a ,a )时,f (x )单调递减,所以当a <1,即0<a <1时,f (x )在(0,1)内有最小值. 答案 (0,1)7.已知函数f (x )=13x 3+ax 2+3x +1有两个极值点,则实数a 的取值范围是________.解析 f ′(x )=x 2+2ax +3.由题意知方程f ′(x )=0有两个不相等的实数根, 所以Δ=4a 2-12>0, 解得a >3或a <- 3.答案 (-∞,-3)∪(3,+∞)8.(2016·北京卷)设函数f (x )=⎩⎨⎧x 3-3x ,x ≤a ,-2x ,x >a .(1)若a =0,则f (x )的最大值为________;(2)若f (x )无最大值,则实数a 的取值范围是________. 解析 (1)当a =0时,f (x )=⎩⎨⎧x 3-3x ,x ≤0,-2x ,x >0.若x ≤0,f ′(x )=3x 2-3=3(x 2-1). 由f ′(x )>0得x <-1, 由f ′(x )<0得-1<x ≤0.∴f (x )在(-∞,-1)上单调递增,在(-1,0]上单调递减, ∴f (x )最大值为f (-1)=2.若x >0,f (x )=-2x 单调递减,所以f (x )<f (0)=0. 综上,f (x )最大值为2.(2)函数y =x 3-3x 与y =-2x 的图象如图.由(1)知,当a ≥-1时,f (x )取得最大值2.当a <-1时,y =-2x 在x >a 时无最大值.且-2a >2. 所以a <-1.答案 (1)2 (2)(-∞,-1) 二、解答题9.(2017·北京卷)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1,f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0),即y =1. (2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2sin x ·e x≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.10.(2016·全国Ⅱ卷)(1)讨论函数f (x )=x -2x +2e x的单调性,并证明当x >0时,(x -2)e x +x +2>0;(2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -ax 2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.(1)解 f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=(x -1)(x +2)e x -(x -2)e x (x +2)2=x 2e x(x +2)2≥0,且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0. (2)证明 g ′(x )=(x -2)e x +a (x +2)x3=x +2x 3(f (x )+a ). 由(1)知f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2], 使得f (x a )+a =0,即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为g (x a )= e x a -a (x a +1)x 2a=e x a +f (x a )(x a +1)x 2a=e x ax a +2.于是h (a )=e xax a +2,由⎝ ⎛⎭⎪⎫e xx +2′=(x +1)e x (x +2)2>0,e x x +2单调递增.所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为e x x +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.11.设函数f (x )=e xx 2-k ⎝ ⎛⎭⎪⎫2x +ln x (k 为常数,e =2.718 28…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2x e x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减,故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈[0,+∞). 因为g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时, 当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点;当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减.x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ).函数f (x )在(0,2)内存在两个极值点当且仅当⎩⎨⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2,解得e <k <e 22, 综上所述,函数f (x )在(0,2)内存在两个极值点时,k 的取值范围为⎝⎛⎭⎪⎫e ,e 22.。

高中数学《导数与单调性》习题课 课件

高中数学《导数与单调性》习题课 课件

★状元笔记 单调区间的求法
(1)求函数的单调区间注意先求定义域. (2)使 f′(x)>0 的区间为 f(x)的单调递增区间, 使 f′(x)<0 的区间为 f(x)的单调递减区间.
思考题 1 求下列函数的单调区间: (1)f(x)=xl1nx; (2)f(x)=xx2-+11; (3)f(x)=x+2 1-x.
所以当 f(x)在[1,2]上为单调函数时 a 的取值范围是(-∞, 0)∪(0,52]∪[1,+∞).
【答案】 a≤0 时,增区间为(0,+∞); a>0 时,增区间为(0,1a),减区间为(1a,+∞).
题型三 求参数的取值范围
已知函数 f(x)=x3+ax2+1,a∈R. (1)讨论函数 f(x)的单调区间; (2)若函数 f(x)在区间(-23,0)内是减函数,求 a 的取值范围; (3)若函数 f(x)的单调减区间是(-23,0),求 a 的值.
(4)f′(x)=(2+cosx()2c+ocsxo-ssxi)nx2(-sinx)=(22c+ocsoxs+x1)2. 当 2kπ-23π<x<2kπ+23π(k∈Z)时,cosx>-12,即 f′(x)>0; 当 2kπ+23π<x<2kπ+43π(k∈Z)时,cosx<-12,即 f′(x)<0. 因此 f(x)在区间(2kπ-23π,2kπ+23π)(k∈Z)上是增函数, f(x)在区间(2kπ+23π,2kπ+43π)(k∈Z)上是减函数.
f(x)在(2,3)上不单调,则有223a<≠23a0<,3,可得

导数与函数单调性(习题课)

导数与函数单调性(习题课)
导数与函数单调性(习题课)
城郊中学:代俊俊
知识回顾:
导数与函数单调性 :
如果在某个区间 a,b 内,函数 y f x 的导数 f x 0
则在这个区间上,函数 y f x 是增加的,a,b 为y f x 的递增区间;
如果在某个区间 a,b 内,函数 y f x 的导数 f x 0
则在这个区间上,函数 y f x 是减少的,a,b 为y f x 的递减区间;
的不等式3ax2 6x 0或3ax2 6x 0 的问题,分类讨论即可。
例2、求函数
f
x
ax3
3x2
1
3 a
的单调区间。
解:由题设知 a 0 f x 3ax2 6x (x 2).
令f
x
0, 得x1
0,
x2
2 a
.
a
(1)当a 0时,
若 x (,0),则f x 0,所以f x在区间(,0)上是增函数 ;
若x (0, 2),则f x 0,所以f x在区间(0, 2)上是减函数;
a
a
若x ( 2 ,),则f x 0,所以f x在区间( 2 ,)上是增函数;
a
a
(2)当a 0时,
若x (, 2),则f x 0,所以f x在区间(, 2)上是减函数;
a
a
若x ( 2 ,0),则f x 0,所以f x在区间( 2 ,0)上是增函数;
a
a
若x (0,),则f x 0,所以f x在区间(0,)上是减函数。
变试训练:
设 a 为实数,函数 f x x3 ax2 a2 在 1, 上为增函数,
求 a 的取值范围。
典例解析:
例1、求函数 f x 3x2 2 ln x的单调区间。

2020年高考数学一轮复习专题2.13利用导数求函数的单调性、极值、最值练习(含解析)

2020年高考数学一轮复习专题2.13利用导数求函数的单调性、极值、最值练习(含解析)

第十三讲 利用导数求函数的单调性、极值、最值一.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值(1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.考向一单调区间【例1】求下列函数的单调区间:(1)3()23f x x x =-;(2)2()ln f x x x =-. (3))f (x )=2x -x 2.【答案】见解析【解析】(1)由题意得2()63f x x '=-. 令2()630f x x '=->,解得2x <-或2x >. 当(,2x ∈-∞-时,函数为增函数;当,)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得22x -<<当()22x ∈-时,函数为减函数. 故函数3()23f x x x =-的单调递增区间为(,2-∞-和()2+∞,单调递减区间为(,22-. (2)函数2()ln f x x x =-的定义域为(0,)+∞.11)()2f x x x x-+'=-=. 令()0f x '>,解得x >;令()0f x '<,解得0x <<. 故函数2()ln f x x x =-的单调递增区间为)+∞,单调递减区间为. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2].f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x2x -x2.令f ′(x )>0,则1-x 2x -x2>0.即⎩⎪⎨⎪⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1). 令f ′(x )<0,则1-x2x -x 2<0,即⎩⎪⎨⎪⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2).【举一反三】【套路总结】用导数研究函数的单调性 (1)用导数证明函数的单调性证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0(2)用导数求函数的单调区间 ①求函数的定义域D ②求导'()f x③解不等式'()f x >()<0得解集P④求DP ,得函数的单调递增(减)区间。

导数的应用----单调性、极值精华课件

导数的应用----单调性、极值精华课件

典型例题 4
设 t0, 点 P(t, 0) 是函数 f(x)=x3+ax与 g(x)=bx2+c 的图象的一 个公共点, 两函数的图象在点 P 处有相同的切线. (1)用 t 表示 a, b, c; (2)若函数 y=f(x)-g(x) 在 (-1, 3) 上单调递减, 求 t 的取值范 围. 解: (1)∵函数 f(x) 的图象过点 P(t, 0), ∴ f(t)=0t3+at=0. ∵t0, ∴a=-t2. 又∵函数 g(x) 的图象也过点 P(t, 0), ∴ g(t)=0bt2+c=0. ∴c=ab. ∵两函数的图象在点 P 处有相同的切线, ∴ f(t)=g(t). 而 f(x)=3x2+a, g(x)=2bx, ∴3t2+a=2bt. 将 a=-t2 代入上式得 b=t. ∴c=ab=-t3. 综上所述, a=-t2, b=t, c=-t3. (2)方法一 y=f(x)-g(x)=x3-tx2-t2x+t3. y=3x2-2tx-t2=(3x+t)(x-t). 当 y=(3x+t)(x-t)<0 时, y=f(x)-g(x)为减函数.
6.设函数 f(x) 在 [a, b] 上连续, 在 (a, b) 内可导, 求 f(x) 在 [a, b] 上的最大值与最小值的步骤如下: (1)求 f(x) 在 (a, b) 内的极值; (2)将 f(x) 的各极值与 f(a), f(b) 比较, 其中最大的一个是最大 值, 最小的一个是最小值.
如果应用导数解决实际问题, 最关键的是要建立恰当的数学 模型(函数关系), 然后再运用上述方法研究单调性及极(最)值.
三、知识要点
1.函数的单调性 (1)(函数单调性的充分条件)设函数 y=f(x) 在某个区间内可 导, 如果 f(x)>0, 则 y=f(x) 为增函数, 如果 f(x)<0, 则 y=f(x) 为 减函数, (2)(函数单调性的必要条件)设函数 y=f(x) 在某个区间内可 导, 如果 f(x) 在该区间单调递增(或减), 则在该区间内 f(x)≥0 (或 f(x)≤0). 注 当 f (x) 在某个区间内个别点处为零, 在其余点处均为正 (或负)时, f(x) 在这个区间上仍旧是单调递增(或递减)的. 例 f(x)=x3 在 (-1, 1) 内, f(0)=0, f(x)>0(x0). 显然 f(x)=x3 在 (-1, 1) 上仍旧是增函数.

高考数学 导数与函数的单调性、极值与最值 教案 含解析题

高考数学  导数与函数的单调性、极值与最值 教案  含解析题

第二节 导数在研究函数中的应用第1课时 系统知识牢基础——导数与函数的单调性、极值与最值知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上单调递增. (2)若f ′(x )<0,则f (x )在这个区间上单调递减. (3)若f ′(x )=0,则f (x )在这个区间上是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接. (3)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[重温经典]1.(多选·教材改编题)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( ) A .在区间(-2,1)上f (x )是增函数 B .在区间(2,3)上f (x )是减函数 C .在区间(4,5)上f (x )是增函数 D .当x =2时,f (x )取到极大值 答案:BCD2.(教材改编题)函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1] D .(-∞,-1]和[1,+∞)答案:A3.(易错题)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞ B .⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞ D .⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.5.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0. 答案:(0,+∞)6.设函数f (x )在(a ,b )上的导函数为f ′(x ),f ′(x )在(a ,b )上的导函数为f ″(x ),若在(a ,b )上,f ″(x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=x 44-t 3x 3+32x 2在(1,4)上为“凸函数”,则实数t 的取值范围是________.解析:由f (x )=x 44-t 3x 3+32x 2可得f ′(x )=x 3-tx 2+3x ,f ″(x )=3x 2-2tx +3,∵f (x )在(1,4)上为“凸函数”,∴x ∈(1,4)时,3x 2-2tx +3<0恒成立,∴t >32⎝⎛⎭⎫x +1x 恒成立. 令g (x )=32⎝⎛⎭⎫x +1x ,∵g (x )在(1,4)上单调递增, ∴t ≥g (4)=518.∴实数t 的取值范围是⎣⎡⎭⎫518,+∞. 答案:⎣⎡⎭⎫518,+∞知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒] (1)极值点不是点,若函数f (x )在x 1处取得极大值,则x 1为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.[重温经典]1.(多选)(2021·福州模拟)下列函数中,存在极值点的是( ) A .y =x -1xB .y =2|x |C .y =-2x 3-xD .y =x ln x解析:选BD 由题意函数y =x -1x ,则y ′=1+1x2>0,所以函数y =x -1x 在(-∞,0),(0,+∞)内单调递增,没有极值点;函数y =2|x |=⎩⎪⎨⎪⎧2x ,x ≥0,2-x ,x <0,根据指数函数的图象与性质可得,当x <0时,函数y =2|x |单调递减,当x >0时,函数y =2|x |单调递增,所以函数y =2|x |在x =0处取得极小值;函数y =-2x 3-x ,则y ′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =x ln x ,则y ′=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,函数单调递减,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,函数单调递增,当x =1e 时,函数取得极小值,故选B 、D.2.(教材改编题)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( ) A .1 B .2 C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.3.(教材改编题)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.4.(多选)材料:函数是描述客观世界变化规律的重要数学模型,在现行的高等数学与数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的,如函数f(x)=x x(x>0),我们可以作变形:f(x)=x x=eln x x=e x ln x=e t(t=x ln x),所以f(x)可看作是由函数f(t)=e t和g(x)=x ln x复合而成的,即f(x)=x x(x>0)为初等函数.根据以上材料,对于初等函数h(x)=x 1x(x>0)的说法正确的是()A.无极小值B.有极小值1C.无极大值D.有极大值e 1 e解析:选AD根据材料知:h(x)=x 1x=e1ln xx=e1ln xx,所以h′(x)=e 1ln xx·⎝⎛⎭⎫1x ln x′=e1ln xx·⎝⎛⎭⎫-1x2ln x+1x2=1x2e1ln xx(1-ln x),令h′(x)=0得x=e,当0<x<e时,h′(x)>0,此时函数h(x)单调递增;当x>e时,h′(x)<0,此时函数h(x)单调递减.所以h(x)有极大值且为h(e)=e 1e,无极小值.5.若x=-2是函数f(x)=(x2+ax-1)e x的极值点,则f′(-2)=________,f(x)的极小值为________.解析:由函数f(x)=(x2+ax-1)e x可得f′(x)=(2x+a)e x+(x2+ax-1)e x,因为x=-2是函数f(x)的极值点,所以f′(-2)=(-4+a)e-2+(4-2a-1)e-2=0,即-4+a+3-2a=0,解得a=-1.所以f′(x)=(x2+x-2)e x.令f′(x)=0可得x=-2或x=1.当x<-2或x>1时,f′(x)>0,此时函数f(x)为增函数,当-2<x<1时,f′(x)<0,此时函数f(x)为减函数,所以当x=1时函数f(x)取得极小值,极小值为f(1)=(12-1-1)×e1=-e.答案:0-e6.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)知识点三 函数的最值1.在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.2.若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[提醒] 求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.(教材改编题)函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-eD .0解析:选B 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值f (1)=ln 1-1=-1.2.(教材改编题)函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 3.(教材改编题)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 答案:3+π64.(易错题)已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________. 答案:(-4,-2)5.函数f (x )=x e -x ,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x -x e -x =e -x (1-x ). 令f ′(x )=0,得x =1(e -x >0), 又f (1)=1e >0,f (0)=0,f (4)=4e 4>0,所以f (x )的最小值为0. 答案:06.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332。

导数在函数单调性与极值求解中的应用(教师).docx

导数在函数单调性与极值求解中的应用(教师).docx

导数在函数单调性与极值求解中的应用一、导数在单调性中的应用:函数的单调性是函数最基木的性质之一,是我们研究函数所要掌握的最基木的知识.它在屮学数学中的用处是非常广泛的,其思维方法有:一、利用壇(减)函数的定义判断单调性;二、导数法。

利用在(恥)内可导的函数/(兀)在@劝上递增(或递减)的充要条件是广(x)>0 (或广(x)<0),恒成立(但广(X)在⑺“)的任意子区间内都不恒等于0)。

1,利用导数求单调区间:例1.函数y=x\nx在区间(0, 1)上是()A单调增函数B单调减函数C.在(0,丄)上是减函数,在(丄,1)上是增函数e eD.在(0,丄)上是增函数,在(丄,1)上是减函数e e分析:本题主要考查利用求导方法判定函数在给定区间上的单调性.解:『=lnx+l,当>0时,解得兀>丄・e又兀G(0,l),・••丄<xvl时,函数y=xinx为单调增函数.同理,由)『<0且xe(0,l)得()<rv 丄,此时函数y=x\nx e e为单调减函数•故应选C.答案:C例2.函数)=si『兀的单调递减区间是 ________ .分析:本题考查导数在三角问题上的应用.解:=2sirLvcosx=sin2x.令vO,即sin2x<0,2k —兀<2x<2k 兀、kWTL.:・k 兀—彳<x<k "衣WZ.・・・函数y=sin2x的单调递减区间是(kJr-^k刀),RGZ.2,利用导数和单调性的关系,选择导函数与原函数的图像问题:例3.设f⑴是函数/⑴的导函数,尸f (x)的图彖如下图所示,则力的图彖最有可能是()分析:本题主要考查函数的导数与图彖结合处理问题.要求对导数的含义有深刻理解、应用的能力. 解:函数的增减性由导数的符号反映出来.由导函数的图彖可大略知道函数的图象.由导函数图象知:函数在(一8,0)上递增,在(0,2)上递减,在(2,+8)上递增;函数.心)在x=Q处取得极大值,在x=2处取得极小值.答案:c例4.已知函数y = xf'M 的图象如右图所示(其中广(X )是函数/(X )的导函数),下面四个图象中 y = /(%)的图象大致是( )解析:由y = xfXx )图象可知:y = f\x )在[-1,1]上小于等于零,故原函数在[-1,1] ±为减函数,故选评注:函数y = xf\x )图象捉供了很多信息,但要抓住关键特点,如导数为零的点、导数为正值或 负值的区间等.3, 利用导数和单调性的关系判断方程解的个数:例5、方程?-6X 2+9X -10 = 0的实根的个数是 ( )A 、3B 、2C 、1 D. 0分析:此题是一个三次方程,不易猜根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的应用—单调性与极值的习题课
【复习目标】
1.理解导数在研究函数的单调性和极值中的作用;
2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。

3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的
单调性,会求不超过三次的多项式函数的单调区间;
4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三
次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。

【重点难点】
①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性;
⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题;
【基础过关】1. 函数的单调性
⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则)
(x f 为 .(逆命题不成立)
(2) 如果在某个区间内恒有0)(='x f ,则)(x f .
注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.
(3) 求可导函数单调区间的一般步骤和方法:
① 确定函数)(x f 的 ;
② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根;
③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺
序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间;
④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区
间内的增减性.
2.可导函数的极值
⑴ 极值的概念
设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称
)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.
⑵ 求可导函数极值的步骤:
① 求导数)(x f ';
② 求方程)(x f '=0的 ;
③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,
那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函
数y =)(x f 在这个根处取得 .
【基础训练】
例1.如果函数()y f x =的图像如右图,那么导函数,
()y f x =的图像可能是( )
例2. 曲线x x y ln 22-= 的单调减区间是( )
A.]1,0(;
B.),1[+∞;
C.]1,(-∞及]1,0( ;
D. )0,1[-及]1,0(;
例3.若函数2()1
x a f x x +=+在1x =处取极值,则a =
例4. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内
的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 _个
例5.若1)2(33)(23++++=x a ax x x f 有极值,则a 的取值范围是 .
【典型例题】 1(2011·浙江五校联考)已知函数f (x )=x 3+ax 2+bx +c (x ∈[-1,2]),且函数f (x )在x
=1和x =-23处都取得极值.
(1)求a ,b 的值;
(2)求函数f (x )的单调递增区间.
2.设函数3
()3(0)f x x ax b a =-+≠.
(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;
(Ⅱ)求函数()f x 的单调区间与极值点.
(Ⅲ)若1b =-且()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同
的交点,
求m 的取值范围。

思考:若是有1个不同的交点呢? 2个不同的交点呢?
3已知函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线方程为y=-12x.
(1)求函数f(x)的解析式;
(2)求y=f(x)的单调递增区间.
4(2011·安徽)设f(x)=
e x
1+ax2
,其中a为正实数.
(1)当a=4
3时,求f(x)的极值点;
(2)若f(x)为R上的单调函数,求a的取值范围.
5.已知函数f(x)=x3-ax-1.
(1)若f(x)在实数集R上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,说明理由;
6已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=
3
2时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
7 设函数f(x)=-x(x-a)2
(x∈R ),其中a∈R .
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当a≠0时,求函数f(x)的极大值和极小值.
【课后作业】
1.函数y =x 2(x -3)的减区间是
2.函数f (x )=ax 2-b 在(-∞,0)内是减函数,则a 、b 应满足
3.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]的增区间是
4.在(a ,b )内f '(x )>0是f (x )在(a ,b )内单调递增的____ ____条件.
5.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的取值范围是 6已知x R ∈,奇函数32()f x x ax bx c =--+在[1,)+∞上单调,则字母,,a b c 应满足的条
件是 。

7.设f (x )=x 3-2
2
x -2x +5. (1)求f (x )的单调区间;
(2)当x ∈[1,2]时,f (x )<m 恒成立,求实数m 的取值范围.
8.设f (x )=x 3-3ax 2+2bx 在x =1处有极小值-1,试求a 、b 的值,
并求出f (x )的单调区间.
9已知函数f (x )=ax 3+3x 2-x +1在R 上是减函数,求实数a 的取值范围.
10.若函数y =3
1x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.。

相关文档
最新文档