导数与函数的单调性、极值复习最新版
高考二轮复习数学课件(新高考新教材)第3讲利用导数研究函数的单调性极值与最值

1
A.- 2
3e
1
B.- 2
6e
1
C. 2
6e
1
D. 2
3e
)
答案 D
解析 设公共点为 P(x0,y0),依题意有 f(x0)=g(x0),f'(x0)=g'(x0),又
62 ln 0 = 02 -40 -,
62
f'(x)= ,g'(x)=2x-4a,于是 62
温馨提示求曲线的切线方程时,要注意是在点P处的切线还是过点P的切线,
前者点P为切点,后者点P不一定为切点.
2.利用导数研究函数的单调性
(1)导数与函数单调性的关系.
①f'(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在区间(-∞,+∞)内
单调递增,但f'(x)≥0.
②f'(x)≥0是f(x)为增函数的必要不充分条件,如函数f(x)在某个区间内恒有
值.
这个条件不可少
易错提醒若函数的导数存在,则在某点处的导数等于零是函数在该点取得
极值的必要不充分条件,因此已知极值点求参数值时,要对参数值进行检验.
关键能力•学案突破
突破点一 导数的几何意义
[例 1—1]若存在 a>0,使得函数 f(x)=6a2ln x 与 g(x)=x2-4ax-b 的图象在这两
1
为(0, )和(1,+∞).故选
2
D.
易错警示利用导数求函数的单调区间,其实质是解不等式问题,应注意以下
几点
(1)首先确定函数的定义域,忽视定义域的限制容易导致错误.
(2)当函数在区间的端点处有定义时,单调区间可以写成闭区间也可以写成
高三复习:导数与函数的单调性、极值最值(含解析答案)

3.2导数与函数的单调性、极值、最值知识梳理:1.函数的单调性在某个区间(a,b)内,如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递增;如果f′(x) _____0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法:一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤:3.函数的最值试一试:1.函数f(x)=x2-2ln x的单调减区间是________.2.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为________.考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.考点二 利用导数求函数的极值例2 设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点; (2)若f (x )为R 上的单调函数,求a 的取值范围.考点三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.变式1 已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.考点4 含有参数的分类讨论例4:已知函数f (x )=ln x -ax (a ∈R ).(1)求函数f (x )的单调区间; (2)当a >0时,求函数f (x )在[1,2]上的最小值.课堂练习:1.函数f (x )=e x -x 的单调递增区间是________.2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 4.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23.(1)求a 的值;(2)求函数f (x )的单调区间; (3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.导数与函数的单调性、极值、最值后作业1.函数y =(3-x 2)e x 的单调递增区间是________.2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________.5.函数y =12x 2-ln x 的单调递减区间为________.6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.9.已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.10.设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围.导数与函数的单调性、极值、最值教师版知识梳理 1.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 2.函数的极值(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤: ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值. 试一试1.函数f (x )=x 2-2ln x 的单调减区间是________. 答案 (0,1)解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x (x >0).∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.答案(-1,+∞)解析设m(x)=f(x)-(2x+4),∵m′(x)=f′(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).考点一利用导数研究函数的单调性例1已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.思维点拨函数的单调性和函数中的参数有关,要注意对参数的讨论.解f′(x)=e x-a,(1)若a≤0,则f′(x)=e x-a≥0,即f(x)在R上单调递增,若a>0,令e x-a≥0,则e x≥a,x≥ln a.因此当a≤0时,f(x)的单调增区间为R,当a>0时,f(x)的单调增区间为[ln a,+∞).(2)∵f′(x)=e x-a≤0在(-2,3)上恒成立.∴a≥e x在x∈(-2,3)上恒成立.∴e-2<e x<e3,只需a≥e3.当a=e3时,f′(x)=e x-e3<0在x∈(-2,3)上恒成立,即f(x)在(-2,3)上为减函数,∴a≥e3.故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数. 思维升华 (1)利用导数的符号来判断函数的单调性;(2)已知函数的单调性求参数范围可以转化为不等式恒成立问题;(3)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零.应注意此时式子中的等号不能省略,否则漏解. 考点二 利用导数求函数的极值 例2设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解 对f (x )求导得f ′(x )=e x ·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.(2014·福建三 利用导数求函数的最值例3已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.71828…为自然对数的底数. 设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值.解 由f (x )=e x -ax 2-bx -1, 有g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a .因此,当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减, 在区间[ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是 g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .思维升华 (1)求解函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算(2)可以利用列表法研究函数在一个区间上的变化情况.变式已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.解(1)由题意知f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,f(x)在[0,k-1]上单调递减,在[k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1,即k≥2时,f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.综上,当k≤1时,f(x)在[0,1]上的最小值为f(0)=-k;当1<k<2时,f(x)在[0,1]上的最小值为f(k-1)=-e k-1;当k≥2时,f(x)在[0,1]上的最小值为f(1)=(1-k)e.例4:已知函数f(x)=ln x-ax (a∈R).(2)当a >0时,求函数f (x )在[1,2]上的最小值.思维点拨 (1)已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.(2)先研究f (x )在[1,2]上的单调性,再确定最值是端点值还是极值.(3)由于解析式中含有参数a ,要对参数a 进行分类讨论. 规范解答解 (1)f ′(x )=1x-a (x >0),[2分]①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).[4分]②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a , 单调递减区间为⎣⎡⎭⎫1a ,+∞.[6分] (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln2-2a .[8分]②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .[10分]③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.[12分] 又f (2)-f (1)=ln2-a ,所以当12<a <ln2时,最小值是f (1)=-a ;当ln2≤a <1时,最小值为f (2)=ln2-2a .[14分] 综上可知,当0<a <ln2时,函数f (x )的最小值是-a ;当a ≥ln2时,函数f (x )的最小值是ln2-2a .[16分]1.函数f (x )=e x -x 的单调递增区间是________. 解析:∵f (x )=e x -x ,∴f ′(x )=e x -1, 由f ′(x )>0,得e x -1>0,即x >0. 答案:(0,+∞)2.(2014·扬州期末)已知函数f (x )=ln x -mx (m ∈R )在区间[1,e]上取得最小值4,则m =________.解析:因为f (x )在区间[1,e]上取得最小值4,所以至少满足f (1)≥4,f (e)≥4,解得m ≤-3e.又f ′(x )=x +mx 2,且x ∈[1,e],所以f ′(x )<0, 即f (x )在[1,e]上单调递减,所以f (x )min =f (e)=1-me=4,即m =-3e. 答案:-3e3.若函数f (x )=x 3+x 2+mx +1是R 上的单调增函数,则m 的取值范围是________. 解析:∵f (x )=x 3+x 2+mx +1, ∴f ′(x )=3x 2+2x +m .又∵f (x )在R 上是单调增函数, ∴Δ=4-12 m ≤0,即m ≥13.答案:⎣⎡⎭⎫13,+∞ 4.(创新题)已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝⎛⎭⎫23. (1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围. 解:(1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝⎛⎭⎫23=3×⎝⎛⎭⎫232+2a ×⎝⎛⎭⎫23-1,解之,得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c . 则f ′(x )=3x 2-2x -1=3⎝⎛⎭⎫x +13(x -1), 列表如下:所以f (x )的单调递增区间是⎝⎛⎭⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝⎛⎭⎫-13,1. (3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立. 只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞). 作业1.函数y =(3-x 2)e x 的单调递增区间是________. 答案 (-3,1)解析 y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3), 由y ′>0⇒x 2+2x -3<0⇒-3<x <1,故函数y =(3-x 2)e x 的单调递增区间是(-3,1).2.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =________.答案 3解析 因为f ′(x )=2x (x +1)-(x 2+a )(x +1)2,因为函数f (x )在x =1处取得极大值,所以f ′(1)=3-a4=0,所以a =3.3.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________.答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x(x >0),当x -9x ≤0时,有0<x ≤3,即在(0,3]上原函数是减函数,∴a -1>0且a +1≤3,解得1<a ≤2.4.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m 、n ∈[-1,1],则f (m )+f ′(n )的最小值是________. 答案 -13解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在[-1,0)上单调递减,在(0,1]上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13.5.函数y =12x 2-ln x 的单调递减区间为________.答案 (0,1]解析 y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′≤0,得0<x ≤1.∴函数的单调递减区间为(0,1].6.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间.解 因为f ′(x )=-1x 2+1x =x -1x2,令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞), f ′(x ),f (x )随x 的变化情况如下表:所以x =1时,f (x )的极小值为1,无极大值. f (x )的单调递增区间为(1,+∞), 单调递减区间为(0,1).7.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是________. 答案 {x |x >0}解析 构造函数g (x )=e x ·f (x )-e x -1,求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1]. 由已知f (x )+f ′(x )>1,可得到g ′(x )>0, 所以g (x )为R 上的增函数; 又g (0)=e 0·f (0)-e 0-1=0, 所以e x ·f (x )>e x +1, 即g (x )>0的解集为{x |x >0}.8.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ). 若x <0,则1-e x >0,∴f ′(x )<0; 若x >0,则1-e x <0,∴f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立. 即实数m 的取值范围为(-∞,2-e 2).)9.(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为 y -1=-(x -1), 即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.10.(2014·山东)设函数f (x )=e x x 2-k (2x +ln x )(k 为常数,e =2.71828…是自然对数的底数).(1)当k ≤0时,求函数f (x )的单调区间;(2)若函数f (x )在(0,2)内存在两个极值点,求k 的取值范围. 解 (1)函数y =f (x )的定义域为(0,+∞). f ′(x )=x 2e x -2x e x x 4-k (-2x 2+1x ) =x e x -2e x x 3-k (x -2)x 2=(x -2)(e x -kx )x 3.由k ≤0可得e x -kx >0,所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增. 所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)由(1)知,k ≤0时,函数f (x )在(0,2)内单调递减, 故f (x )在(0,2)内不存在极值点;当k >0时,设函数g (x )=e x -kx ,x ∈(0,+∞). 所以g ′(x )=e x -k =e x -e ln k ,当0<k ≤1时,当x ∈(0,2)时,g ′(x )=e x -k >0,y =g (x )单调递增. 故f (x )在(0,2)内不存在两个极值点. 当k >1时,得x ∈(0,ln k )时,g ′(x )<0,函数y =g (x )单调递减; x ∈(ln k ,+∞)时,g ′(x )>0,函数y =g (x )单调递增. 所以函数y =g (x )的最小值为g (ln k )=k (1-ln k ). 函数f (x )在(0,2)内存在两个极值点,当且仅当⎩⎪⎨⎪⎧g (0)>0,g (ln k )<0,g (2)>0,0<ln k <2.解得e<k <e 22.。
高三一轮复习丛书(11函数单调性、函数极值最值与导数

函数单调性、函数极值最值与导数【知识要点】1.函数的单调性: (都是可导函数)⑴若在),(b a x ∈,)(x f '>0,则)(x f 在),(b a ;若在),(b a x ∈,)(x f '<0,则)(x f 在),(b a .(2)若函数y =)(x f 在),(b a 上单调递增,则在),(b a x ∈,)(x f '≥0;若函数y =)(x f 在),(b a 上单调递减,则在),(b a x ∈,)(x f '≤0。
(3)求可导函数单调区间的一般步骤和方法:① 确定函数)(x f 的 ;② 求)(x f ',令 ,解此方程,求出实根;③把函数)(x f 的定义区间分成若干个小区间;④ 确定)(x f '在各小开区间内的增减性.2.可导函数的极值⑴ 极值的概念设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称)(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点.⑵ 求可导函数极值的步骤:① 求导数)(x f ';② 求方程)(x f '=0的 ;③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y =)(x f 在这个根处取得 .3.函数的最值可分两步进行:① 求y =)(x f 在(a ,b )内的 值;② 将y =)(x f 的各 值与)(a f 、)(b f 比较.【典例解析】例1.已知函数)ln(2)1()(2x x a x f -+-=(a 为实数)(1)若f x ()在0=x 处有极值,求a 的值;(2)若f x ()在[]1,2--上是增函数,求a 的取值范围。
【巩固练习】一.选择题1.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.非充分非必要条件2.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -163.对于R 上可导的任意函数f (x ),若满足(1)()0x f x '-≥,则必有 ( )A.f (0)+f (2)< 2f (1) B . f (0)+f (2)≤ 2f (1)C. f (0)+f (2)≥ 2f (1) D . f (0)+f (2)> 2f (1)4.若xx x f ln )(=,b a e <<,则 ( )A. )()(b f a f >B. )()(b f a f =C. )()(b f a f <D. 1)()(>b f a f5.设)(),(x g x f 在],[b a 上可导,且)()(x g x f '>',则当b x a <<时,有 ( )A.)()(x g x f >B. )()(x g x f <C. )()()()(a f x g a g x f +>+D. )()()()(b f x g b g x f +>+6.设函数x x x y cos sin +=的图象上的点),(00y x 的切线的斜率为k ,若)(0x g k =,则函数)(0x g k =的图象大致为 ( )7.函数b bx x x f 33)(3+-=在(0,1)内有极小值,则 ( )A. 10<<bB. 1<bC. 0>bD. 21<b 8.已知(),()f x g x 都是定义在R 上的函数,并满足以下条件:(1)()2(),(0,1)x f x a g x a a =>≠;(2)()0g x ≠;(3)''()()()()f x g x f x g x <且(1)(1)5(1)(1)f fg g -+=-,则a =( ) A .12 B .2 C .54 D .2或12二.填空题9.y=x 2e x的单调递增区间是10.已知m x x x f +-=2362)((m 为常数)在]2,2[-上有最大值3,那么此函数在]2,2[-上的最小值为三.解答题 11.若函数y =31x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围.12. 求函数x a x x a x f )1(21ln )(2+-+=的单调区间。
2.11导数与函数的单调性、极值、最值

解:(1)当 a= 时,f(x)= − f'(x)=
1 2 2 2e
x 2 x [(e ) 3e +2]= ������
3
e ������
1 e ������
− x,
2
3
1 2e
x x (e 1)(e -2), ������
令f'(x)=0,得ex=1或ex=2, 即x=0或x=ln 2; 令f'(x)>0,则x<0或x>ln 2; 令f'(x)<0,则0<x<ln 2. ∴f(x)的递增区间是(-∞,0),(ln 2,+∞);递减区间是(0,ln 2).
所以 a≤√2; 若函数 f(x)在[-1,1]上单调递减, 则 a≥ + 对 t∈ ,e 恒成立,所以 a≥e+ ,
2 ������ e ������ 1 1 1
综上可得 a 的取值范围是(-∞,√2]∪ e +
2e 1
2e
,+∞ .
双击自测
核心考点 核心考点
学科素养
-18-
考点1
考点2
考点3
知识方法
������ 2������
双击自测
核心考点 核心考点
学科素养
-19-
考点1
考点2
考点3
知识方法
易错易混
f(x)的单调递增区间为 0, 有极大值为 f
1 ������
1 ������
,单调递减区间为
1 1
1 ������
, + ∞ ,所以 f(x)
=-ln a,无极小值 .
1
③当 a<0 时 ,令 f'(x)=0,得 x=������ (舍去 )或 x=-2������ ,
【新高考】高三数学一轮复习知识点专题3-2 导数与函数的单调性、极值与最值

专题3.2 导数与函数的单调性、极值与最值(精讲)【考情分析】1.了解函数的单调性与导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间。
3.了解函数在某点取得极值的必要条件和充分条件;4.会用导数求函数的极大值、极小值;5.会求闭区间上函数的最大值、最小值。
【重点知识梳理】知识点一函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.知识点二函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.知识点三函数的极值与导数形如山峰形如山谷知识点四函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.【特别提醒】1.函数f (x )在区间(a ,b )上递增,则f ′(x )≥0,“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的充分不必要条件.2.对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系. 【典型题分析】高频考点一求函数的单调区间例1.【2019·天津卷】设函数()e cos ,()xf x xg x =为()f x 的导函数,求()f x 的单调区间。
高考复习-利用导数研究函数的单调性及极值和最值

利用导数研究函数的单调性及极值和最值知识集结知识元利用导数研究函数的单调性问题知识讲解1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0的根;(4)用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0得x>﹣1,即f(x)>2x+4的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:.解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【解题方法点拨】若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)>0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件.例题精讲利用导数研究函数的单调性问题例1.函数f(x)=e x-3x+2的单调减区间为__________.例2.若函数y=-x3+ax在[1,+∞)上是单调函数,则a的最大值是___.例3.函数f(x)=sin x-x,x∈(0,)的单调递增区间是_______.利用导数研究函数的极值与最值问题知识讲解1.利用导数研究函数的极值【知识点的知识】1、极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f (x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f (x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点.2、极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3、判别f(x0)是极大、极小值的方法:若x0满足f′(x0)=0,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,f(x0)是极值,并且如果f′(x)在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果f′(x)在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值.4、求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x)在这个根处无极值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.2.利用导数研究函数的最值【利用导数求函数的最大值与最小值】1、函数的最大值和最小值观察图中一个定义在闭区间[a,b]上的函数f(x)的图象.图中f(x1)与f(x3)是极小值,f (x2)是极大值.函数f(x)在[a,b]上的最大值是f(b),最小值是f(x1).一般地,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.说明:(1)在开区间(a,b)内连续的函数f(x)不一定有最大值与最小值.如函数f(x)=在(0,+∞)内连续,但没有最大值与最小值;(2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.(3)函数f(x)在闭区间[a,b]上连续,是f(x)在闭区间[a,b]上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个2、用导数求函数的最值步骤:由上面函数f(x)的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数f(x)在[a,b]上连续,在(a,b)内可导,则求f(x)在[a,b]上的最大值与最小值的步骤如下:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值.【解题方法点拨】在理解极值概念时要注意以下几点:(1)按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).(2)极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.(4)若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,(5)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点.例题精讲利用导数研究函数的极值与最值问题例1.函数y=lnx-e x在[1,e]最大值为()A.1-e e B.C.-eD.例2.己知定义域为(1,+∞)的函数f(x)=e x+a-ax,若f(x)>0恒成立,则正实数a的取值范围为()A.(0,e2]B.(0,e2)C.[1,e2]D.(1,e2)例3.函数f(x)=x2-lnx的最小值为()A.1+ln2B.1-ln2C.D.当堂练习单选题练习1.定义在R上的函数f(x)的导函数为f'(x),且,若存在实数x使不等式f(x)≤m2-am-3对于a∈[0,2]恒成立,则实数m的取值范围为()A.(-∞,-2]∪[2,+∞)B.C.D.练习2.若函数f(x)与g(x)满足:存在实数t,使得f(t)=g'(t),则称函数g(x)为f(x)的“友导”函数.已知函数为函数f(x)=x2lnx+x的“友导”函数,则k的取值范围是()A.(-∞,1)B.(-∞,2]C.(1,+∞)D.[2,+∞)练习3.函数f(x)是定义在(0,+∞)上的可导函数,f'(x)为其导函数,若xf'(x)+f(x)=e x(x-2)且f(3)=0,则不等式f(x)<0的解集为()A.(0,2)B.(0,3)C.(2,3)D.(3,+∞)练习4.已知定义在(0,+∞)上的函数f(x)的导函数为f′(x),f(x)>0且f(e)=1,若xf′(x)lnx+f(x)>0对任意x∈(0,+∞)恒成立,则不等式<lnx的解集为()A.{x|0<x<1}B.{x|x>1}C.{x|x>e}D.{x|0<x<e}练习5.已知函数f(x)=x3-x2+ax-a存在极值点x0,且f(x1)=f(x0),其中x1≠x0,x1+2x0=()A.3B.2C.1D.0练习6.若函数f(x)=e x+axlnx(e为自然对数的底数)有两个极值点,则实数a的取值范围是()A.(-∞,-e)B.(-∞,-2e)C.(e,+∞)D.(2e,+∞)填空题练习1.已知函数f(x)=,若∃,使得f(f(x0))=x0,则m的取值范围是_________练习2.设函数f(x)=e x(2x-1)-2ax+2a,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是_______.练习3.已知函数,若当x1,x2∈[1,3]时,都有f(x1)<2f(x2),则a的取值范围为______________.练习4.若函数f(x)=e-x(x2+ax-a)在R上单调递减,则实数a的值为____.练习5.已知函数,g(x)=|x-t|,t∈(0,+∞).若h(x)=min{f(x),g (x)}在[-1,3]上的最大值为2,则t的值为___.练习6.已知函数f(x)=x3-ax2在(-1,1)上没有最小值,则a的取值范围是_________.解答题练习1.'已知函数f(x)=e x-a(x+1),其中a∈R.(1)讨论f(x)的单调性;(2)若a>0时,函数f(x)恰有一个零点,求实数a的值.(3)已知数列{a n}满足a n=,其前n项和为S n,求证S n>ln(n+1)(其中n∈N).'练习2.'已知函数f(x)=(a∈R).(1)当a=1时,求f(x)的单调区间;(2)设点P(x1,y1),Q(x2,y2)是函数f(x)图象的不同两点,其中0<x1<1,x2>1,是否存在实数a,使得OP⊥OQ,且函数f(x)在点Q切线的斜率为f′(x1-),若存在,请求出a的范围;若不存在,请说明理由.'练习3.'已知函数f(x)=x2+ax-alnx(1)若函数f(x)在上递减,在上递增,求实数a的值.(2)若函数f(x)在定义域上不单调,求实数a的取值范围.(3)若方程x-lnx-m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.'练习4.'已知函数f(x)=xlnx-x2-ax+1,a>0,函数g(x)=f′(x).(1)若a=ln2,求g(x)的最大值;(2)证明:f(x)有且仅有一个零点.'练习5.'已知函数f(x)=e x-ax-b.(其中e为自然对数的底数)(Ⅰ)若f(x)≥0恒成立,求ab的最大值;(Ⅱ)设g(x)=lnx+1,若F(x)=g(x)-f(x)存在唯一的零点,且对满足条件的a,b不等式m(a-e+1)≥b恒成立,求实数m的取值集合.'。
导数与函数的单调性、极值与最值-讲义(学生版)

导数与函数的单调性、极值与最值一、课堂目标1.掌握利用导数求解函数单调区间的方法步骤 .2.掌握极值与极值点的概念,能够结合函数与导数图象找出极值点与极值 .3.掌握利用导数求解函数极值的方法步骤.4.掌握利用导数求解给定区间上可导函数最值的方法步骤.二、知识讲解1. 导数与函数单调性知识精讲(1)导数与函数单调性①如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都大于,曲线呈上升状态,因此在上是增函数,如下图所示;,()(),(),②如果在区间内,,则曲线在区间对应的那一段上每一点处切线的斜率都小于,曲线呈下降状态,因此在上是减函数,如下图所示.,()(),(),(2)导数绝对值的大小与函数图象的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得较快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数在这个范围内变化得较慢,函数的图象就比较“平缓.知识点睛函数在区间可导.(1)若,则函数在此区间内单调递增;(2)若,则函数在此区间内单调递减;(3)若,则函数在此区间内为常数函数.经典例题A.① B.② C.③ D.④1.已知函数的导函数的图象如图所示,那么函数的图象最有可能的是().巩固练习2.是函数的导函数,的图像如图所示,则的图像最有可能是下列选项中的( ).A.B.C. D.经典例题A. B.C.D.3.函数的图象如图所示,则的图像可能是( ).A.4.已知函数的图像如图所示,则等式的解集为( ).B.C.D.巩固练习A.B.C.D.5.如果函数的图像如右图,那么导函数的图像可能是().2. 利用导数求函数的单调区间的步骤知识精讲(1)确定的定义域;(2)求导数;(3)由(或)解出相应的的取值范围.当时,在相应区间上是增函数;当时,在相应区间上是减函数.知识点睛需要注意的是:1.在利用导数求函数的单调区间时,首先要确定函数的定义域,解决问题是必须在定义域内进行;2.在对函数划分单调区间时,除了必须确定使导数等于零的点(即导函数的零点)外,还要注意定义域内的不连续点和不可导点.经典例题A. B.C.D.6.函数的单调递增区间是().巩固练习A. B.C. D.7.函数的单调递增区间为().A.B.C.D.8.函数,的单调递减区间是( ).和和和和经典例题A. B.C.D.9.函数在上是减函数,则的取值范围是().巩固练习A. B.C. D.10.若为函数的递增区间,则的取值范围为().A. B.C.D.11.若函数为增函数,则实数的取值范围为( ).经典例题12.已知在区间上不单调,实数的取值范围是( ).A. B.C.D.巩固练习A. B.C. D.13.已知函数在上不单调,则的取值范围是().经典例题14.函数在上存在单调增区间,则实数的范围是.巩固练习A. B.C.D.15.若函数存在单调递增区间,则的取值范围是().3. 导数与函数的极值知识精讲函数极值与极值点的定义一般地,设函数的定义域为,设,如果对于附近的任意不同于的,都有:①,则称为函数的一个极大值点,且在处取极大值;②,则称为函数的一个极小值点,且在处取极小值.极大值点与极小值点都称为极值点,极大值与极小值都称为极值.显然,极大值点在其附近函数值最大,极小值点在其附近函数值最小.()()()()()()()()()知识点睛极值点的判断一般地,设函数在处可导,且.①如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极大值点;②如果对于左侧附近的任意,都有,对于右侧附近的任意,都有,那么此时是的极小值点;()()()()()()()()③如果在的左侧附近与右侧附近均为正号(或均为负号),则一定不是的极值点.()()经典例题A.B.C. D.16.函数在上的极小值点为().A.B.C.D.17.已知,在处有极值,则,的值为( ).,或,,或,,以上都不正确巩固练习A.B.C.D.18.函数的极大值为,那么等于().4. 求函数的极值的方法知识精讲求极值的步骤:(1)求导数;(2)求方程的所有实数根;(3)检验在方程的根的左右两侧的值的符号:①如果是左正右负,则在这个根处去的极大值;②如果是左负右正,则在这个根处去的极小值;③如果是左右同号,则在这个根处无极值.知识点睛导数与极值的关系:如果函数在区间上是单调递增的,在区间上是单调递减的,则是极大值点,是极大值.如果函数在区间上是单调递减的,在区间上是单调递增的,则是极小值点,是极小值.经典例题(1)(2)19.求下列函数的极值...巩固练习(1)(2)20.求下列函数的极值...A. B. C.D.21.设函数,则函数的极小值为().经典例题22.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..巩固练习23.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由..经典例题24.设函数在和处有极值,且,求,,的值及函数的极值.25.若有极大值和极小值,则的取值范围是 .巩固练习26.已知函数在处取得极值,求的值.5. 求函数在上的最值的步骤知识精讲(1)函数的最大(小)值一般地,如果在上函数的图象是一条连续不断的曲线,那么它必有最大值和最小值,且函数的最值必在极值点或区间端点处取得.(2)求函数在上的最值的步骤①求函数在区间上的极值;②将函数的各极值点与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.知识点睛最值与极值的区别与联系(1)函数的最值是一个整体性的概念,反映的是函数在整个定义域上的情况,是对整个区间上的函数值的比较;函数的极值是在局部上对函数值的比较,具有相对性;(2)函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有唯一性;而极大值和极小值可能多于一个,也可能没有;(3)极值只能在区间内取得,最值则可以在区间端点处取得;函数有极值时不一定有最值,有最值时也未必有极值;极值有可能成为最值,最值只要不在区间端点处取得必定是极值.经典例题27.已知函数,求函数在上的最大值和最小值.巩固练习28.函数的最大值为.A., B.,C.,D.,29.函数在区间上的最大值,最小值分别为().30.函数,的最小值等于.经典例题A. B.C.D.31.函数在上最大值为,最小值为,则实数取值范围为().巩固练习A. B.C. D.32.若函数在内有最小值,则的取值范围是().经典例题(1)(2)33.已知函数.求曲线在点处的切线方程.求函数在区间上的最大值和最小值.巩固练习(1)(2)34.已知函数,曲线在处的切线经过点.求实数的值.设,求在区间上的最大值和最小值.三、思维导图你学会了吗?画出思维导图总结本节课所学吧!四、出门测(1)(2)35.已知函数.写出函数的单调递减区间.求函数的极值.11(1)(2)36.已知函数.求曲线在点处的切线方程;求在区间上的最小值和最大值.。
考点17导数与函数的单调性(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点17导数与函数的单调性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).3.会利用函数的单调性判断大小,求参数的取值范围等简单应用【知识点】1.函数的单调性与导数的关系条件恒有结论f ′(x )>0f (x )在区间(a ,b )上________f ′(x )<0f (x )在区间(a ,b )上________函数y =f (x )在区间(a ,b )上可导f ′(x )=0f (x )在区间(a ,b )上是________2.利用导数判断函数单调性的步骤第1步,确定函数的 ;第2步,求出导数f ′(x )的;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.常用结论1.若函数f (x )在(a ,b )上单调递增,则当x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则当x ∈(a ,b )时,f ′(x )≤0恒成立.2.若函数f (x )在(a ,b )上存在单调递增区间,则当x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则当x ∈(a ,b )时,f ′(x )<0有解【核心题型】题型一 不含参函数的单调性确定不含参数的函数的单调性,按照判断函数单调性的步骤即可,但应注意两点,一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.【例题1】(2023·全国·模拟预测)已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为( )A .()2,3B .()3,4C .(),3-¥D .()3,+¥【变式1】(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为( )A .(),e -¥-B .()e,0-C .(),0¥-D .()1,0-【变式2】(2024·四川巴中·一模)已知奇函数()f x 的导函数为()f x ¢,若当0x <时()2af x x x=-,且()10f ¢-=.则()f x 的单调增区间为 .【变式3】(2024·河南开封·三模)已知函数()33ln f x x x =-,()f x ¢为()f x 的导函数.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)求函数()()()9g x f x f x x¢=--的单调区间和极值.题型二 含参数的函数的单调性(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点【例题2】(多选)(23-24高三上·海南省直辖县级单位·阶段练习)函数()322f x x ax x=++(R a Î)的大致图象可能为( )A .B .C .D .【变式1】(2024·天津·二模)已知()()ln R f x x ax x a =+×Î,(1)当2a =时,求()f x 在点()()e e f ,处的切线方程;(2)讨论()f x 的单调性;(3)若函数()f x 存在极大值,且极大值为1,求证:()2e xf x x -£+.【变式2】(2024·陕西商洛·三模)已知函数()()2212ln 2f x a x x ax a =--ÎR .(1)求函数()f x 的单调区间;(2)当0a >时,若函数()2e e 2x x g x a =+和()22h x a x =的图象在()0,1上有交点,求实数a 的取值范围.【变式3】(2024·全国·模拟预测)已知函数()(2)ln f x a x a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()9ln f x a >.(参考数据:ln 20.693»)题型三 函数单调性的应用由函数的单调性求参数的取值范围的方法(1)函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立.(2)函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0 (或f ′(x )<0)在该区间上存在解集命题点1 比较大小或解不等式【例题3】(2024·四川成都·模拟预测)若函数()f x 对任意的x ÎR 都有()()f x f x ¢<恒成立,则2(2)f 与2e (ln 2)f 的大小关系正确的是( )A .2(2)f >2e (ln 2)fB .2(2)f =2e (ln 2)fC .2(2)f <2e (ln 2)f D .无法比较大小【变式1】(2023·全国·模拟预测)比较11101011a =-,ln1.2b =,0.115ec =的大小关系为( )A .a c b >>B .b c a >>C .b a c>>D .a b c>>【变式2】(23-24高三上·湖南衡阳·期末)已知函数()()21e ln 12xf x x a x =--+.(1)证明:当1a £时,()1f x ≥对[)0,x Î+¥恒成立.(2)若存在()1212,x x x x ¹,使得()()12f x f x =,比较()()1211x x ++与2e e a的大小,并说明理由.【变式3】(23-24高三上·河北保定·阶段练习)已知函数()()2ln 12x f x x =++.(1)当[)0,x Î+¥时,比较()f x 与x 的大小;(2)若函数()2cos 2x g x x =+,且()()2e 10,0a f g b a b æö=->>ç÷èø,证明:()()211f b g a +>+.命题点2 根据函数的单调性求参数【例题4】(2023·全国·模拟预测)若对任意的1x ,2(,)x m Î+¥,且12x x <,122121ln ln 2x x x x x x -<-,则实数m 的取值范围是( )A .1,e e æöç÷èøB .1,e e éùêúëûC .1,e ¥éö+÷êëøD .1,e æö+¥ç÷èø【变式1】(23-24高三上·广东汕头·期中)设()0,1a Î,若函数()(1)x xf x a a =++在()0,¥+递增,则a 的取值范围是( )A.B.ö÷÷øC.ö÷÷øD.æççè【变式2】(多选)(23-24高三上·河南·阶段练习)已知函数()2ln f x x ax x =--,下列命题正确的是( )A .若1x =是函数()f x 的极值点,则1a =B .若()10f =,则()f x 在[]0,2x Î上的最小值为0C .若()f x 在()1,2上单调递减,则1a ≥D .若()()l ln x x f x -≥在[]1,2x Î上恒成立,则2a ≥【变式3】(23-24高三上·山东青岛·期末)若函数2()e 1x f x a x =+-在(0,)+¥上单调递增,则a 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·全国·高考真题)已知函数()e ln x f x a x =-在区间()1,2上单调递增,则a 的最小值为( ).A .2e B .eC .1e -D .2e -2.(23-24高三上·山西大同·阶段练习)设()af x x a x=-+在()1,+¥上为增函数,则实数a 取值范围是( )A .[)0,¥+B .[)1,+¥C .[)2,-+¥D .[)1,-+¥3.(2024·云南楚雄·一模)若a b >,则函数()2()y a x a x b =--的图象可能是( )A .B .C .D .4.(2024高三下·全国·专题练习)已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0>f x ,且2()0f x >,则实数a 的取值范围为( )A .[ln 3,2)B .(0,2ln 3]-C .(0,2ln 3)-D .[2ln 3,2)-5.(2024·全国·模拟预测)已知8sin 15a =,3ln 2b =,25c =,则,,a b c 的大小关系为( )A .a b c >>B .a c b>>C .b a c>>D .c b a>>二、多选题6.(2023·全国·模拟预测)已知函数()33f x x x =-,则( )A .函数()()()'g x f x f x =× 是偶函数B .y x =-是曲线()y f x =的切线C .存在正数(),a f x 在(),a a -不单调D .对任意实数a ,()(f a f a £+7.(23-24高三上·江西宜春·期中)下列函数中,是奇函数且在区间()0,1上是减函数的是( )A .()exf x =B .()sin f x x =-C .()1f x x=D .3()2f x x x=-三、填空题8.(2024·云南大理·模拟预测)函数()12ln f x x x =--的最大值为.9.(2024·全国·模拟预测)已知函数()2e e e x x x g x x x =--,若方程()g x k =有三个不同的实根,则实数k 的取值范围是 .四、解答题10.(2024·江西南昌·一模)已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.11.(2024·江苏盐城·模拟预测)已知函数()2ln f x ax x x =--.(1)讨论()f x 的单调性;(2)若不等式()0f x ≥恒成立,求a 的取值范围.综合提升练一、单选题1.(2023·贵州毕节·一模)给出下列命题:①函数2()2x f x x =-恰有两个零点;②若函数()4a af x x x =-+在(1,)+¥上单调递增,则实数a 的取值范围是[1,)-+¥;③若函数()f x 满足()(1)4f x f x +-=,则12918101010f f f æöæöæö+++=ç÷ç÷ç÷èøèøèøL ;④若关于x 的方程20x m -=有解,则实数m 的取值范围是(0,1].其中正确的是( )A .①③B .②④C .③④D .②③2.(2023·江西·模拟预测)已知函数()32f x ax bx cx d =+++的大致图象如图所示,则( )A .0,0,0a b c >><B .0,0,0a b c ><<C .0,0,0a b c ><>D .a 0,b 0,c 0<>>3.(2024·云南昆明·模拟预测)已知函数()()()1e x f x x a =-+在区间()1,1-上单调递增,则a 的最小值为( )A .1e -B .2e -C .eD .2e 4.(2024·全国·模拟预测)已知函数2()4e e 2e x x xf x x =--,()f x ¢为()f x 的导函数,()()e xf xg x ¢=,则( )A .()g x 的极大值为24e 2-,无极小值B .()g x 的极小值为24e 2-,无极大值C .()g x 的极大值为4ln22-,无极小值D .()g x 的极小值为4ln22-,无极大值5.(2024·全国·模拟预测)已知13,,ln2e 14a b c ===-,则它们之间的大小关系是( )A .a b c <<B .a c b <<C .c a b<<D .c b a<<6.(2023·贵州遵义·模拟预测)若函数()2e x axf x -=在区间()1,3上单调递增,则a 的可能取值为( )A .2B .3C .4D .57.(2024·全国·模拟预测)若22ln 2e a -=,12e b =,ln 24c =,则a ,b ,c 的大小顺序为( )A .a c b<<B .c a b <<C .a b c <<D .b a c<<8.(2023·吉林通化·模拟预测)已知函数()e ln xf x a x =-有两个大于1的零点,则a 的取值范围可以是( )A .(]0,1B .1e 1,e æùçúèûC .1ee ,e æùçúèûD .)e 12e e ,e +éë二、多选题9.(22-23高三上·云南昆明·阶段练习)已知函数21e 1xx y x -=×-,则( )A .函数的极大值点为=0x B .函数的极小值点为=0x C .函数在(1,)+¥上单调递增D .函数在31,2æöç÷èø上单调递减10.(2023·云南昆明·模拟预测)已知函数3()f x x mx n =--,其中,m n ÎR ,下列选项中,能使函数()y f x =有且仅有一个零点的是( )A .1m =-,1n =B .0m =,1n =C .3m =,2n =D .3m =,3n =-11.(2023·山东泰安·一模)已知函数()()()ln f x x x ax a =-ÎR 有两个极值点1x ,2x ()12x x <,则( )A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-三、填空题12.(2024·四川成都·三模)已知函数()f x 是定义在R 上的奇函数,且当0x >时,()()1ln f x x x =-,则当0x <时,()f x 的单调递增区间为 .13.(2023·湖南·模拟预测)已知函数()sin esin a xf x a x =-,对于任意12,x x ÎR ,都有()()12e 2f x f x -£-,则实数a 的取值范围为 .14.(2023·广东广州·模拟预测)已知函数()()()222e 22e 0x xf x a x a x a =--->恰有两个零点,则=a .四、解答题15.(2024·全国·模拟预测)已知函数2()ln f x x ax bx =+-.(1)当1a =,3b =时,求()f x 的单调区间;(2)若函数()f x 在2x =处取得极值ln 2,求曲线()y f x =在点(1,(1))f 处的切线方程.16.(2024·全国·模拟预测)已知函数()2()e x f x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()4ln 2f x a ≥+.17.(2024·全国·模拟预测)已知函数()()21ln 12f x x x a x =+++,a ÎR .(1)讨论()f x 的单调性;(2)证明:当1a <-时,()21a f x +>.18.(2024·青海·模拟预测)已知函数()()3211132f x x mx m x =+-+.(1)讨论()f x 的单调性;(2)若()f x 有3个不同的零点,求m 的取值范围.19.(2023·全国·模拟预测)已知函数()e xf x ax b =+-,其中e 为自然对数的底数.(1)若()f x 在区间(]1,2上不是单调函数,求a 的取值范围.(2)当0x ≥时,()2112f x x b ≥+-恒成立,求a 的取值范围.拓展冲刺练一、单选题1.(2024·全国·模拟预测)下列函数是奇函数且在()0,¥+上单调递减的是( )A .()32xxf x -=+B .()2222x xxxf x ---=+C .()3f x x x=-D .()(12log f x x =2.(2024·全国·模拟预测)已知函数()32()log 2(0a f x x ax x a a =-+->且1)a ¹在区间(1,)+¥上单调递减,则a 的取值范围是( )A .20,3æùçúèûB .2,13éö÷êëøC .(1,2]D .[2,)+¥3.(2024·甘肃兰州·三模)函数()21ln f x x ax x =-++-,若()f x 在0,12æöç÷èø是减函数,则实数a 的取值范围为( )A .(,2]-¥B .(,2)-¥C .(,3]-¥D .(3),-¥4.(2024·全国·模拟预测)已知 2.012.0111110312,ln ,1001011021001015a b c æöæö=++==+ç÷ç÷èøèø,则( )A .a b c <<B .c b a <<C .<<b c aD .<<c a b二、多选题5.(2024·云南昆明·模拟预测)已知函数()321f x x ax ax =+-+,则下列说法正确的是( )A .若()f x 为R 上的单调函数,则3a <-B .若2a =时,()f x 在()1,1-上有最小值,无最大值C .若()1f x -为奇函数,则0a =D .当0a =时,()f x 在1x =处的切线方程为310x y --=6.(2024·云南曲靖·一模)下列不等式正确的是( )A .πe e π>B .1ln 0.99-<C .15sin 15<D .11sin 3π<三、填空题7.(2024·全国·模拟预测)已知1a >,0b >,1c >,且e e ln a b a b --==a ,b ,c 的大小关系为 .(用“<”连接)8.(2023·安徽·二模)若不等式2ln 23x ax a -£-对(0,)"Î+¥x 恒成立,则实数a 的取值范围为 .四、解答题9.(2024·湖南衡阳·二模)已知函数()()321f x ax bx a =++ÎR ,当2x =时,()f x 取得极值3-.(1)求()f x 的解析式;(2)求()f x 在区间[]1,3-上的最值.10.(2024·陕西西安·三模)已知函数1()ln ()m f x mx x m x-=--ÎR ,函数1π()ln ,[0,cos 2g x x x q q =+Î在区间[1,)+¥上为增函数.(1)确定q 的值,求3m =时曲线()y f x =在点(1,(1))f 处的切线方程;(2)设函数()()()h x f x g x =-在,()0x Î+¥上是单调函数,求实数m 的取值范围.11.(2024·辽宁丹东·一模)已知函数()ln 1f x x mx =++.(1)讨论函数()f x 的单调性;(2)当1m =时,数列{}n a 满足11a =,1()n n a f a +=①求证:12n n a -£;②求证:22223111(1)(1(1e na a a +++<L .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
区间为( )
(A)(-1,1]
(B)(0,1]
(C)[1,+∞)
(D)(0,+∞)
(2)(2012·北京高考改编)已知函数f(x)=ax2+1(a>0), g(x)=x3+bx. ①若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公切 线,求a,b的值; ②当a2=4b时,求函数f(x)+g(x)的单调区间.
(A)( 0 , 1 )
a
(B)( 1 , )
a
(C)( , 1 )
a
(D)(-∞,a)
【解析】选A.由 fx=1-a0,得 0 x 1 , ∴f(x)的递增
x
a
区间为 ( 0 , 1 ) .
a
2.设f(x)=x(ax2+bx+c)(a≠0)在x=1和x=-1处均有极值,
【思路点拨】(1)保证函数有意义的前提下,利用y′≤0求
解.
(2)①利用交点既在f(x)上,也在g(x)上,在公切点处导数相等,
构造方程组求解;②构造函数F(x)=f(x)+g(x),再利用导数求
单调区间.
【规范解答】(1)选B.由 y(1x2lnx) x10 ⇒
(2)极小值 在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函 数值都_大__于__或__等__于__x0点的函数值,称_点__x_0 为函数y=f(x)的极 小值点,其函数值_f_(_x_0)_为函数的极小值. _极__大__值__与_极__小__值__统称为极值,_极__大__值__点__与_极__小__值__点__统称为 极值点.
(2)求函数在闭区间[a,b]上的最值可分两步进行: ①求y=f(x)在(a,b)内的_极__值__; ②将函数y=f(x)的各极值与区间[a,b]端点处的函数值f(a), f(b)比较,其中_______最__大__的为一最个大值,_______最__小__的为一最个小值.
判断下面结论是否正确(请在括号中打“√”或“×”). (1) f′(x)>0是f(x)为增函数的充要条件.( ) (2)函数在某区间上或定义域内极大值是唯一的.( ) (3)函数的极大值不一定比极小值大.( ) (4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条 件.( ) (5)函数的最大值不一定是极大值,函数的最小值也不一定是 极小值.( )
4.已知f(x)=x3-ax在[1,+∞)上是增加的,则a的最大值
是( )
(A)0 (B)1
(C)2
(D)3
【解析】选D. f′(x)=3x2-a≥0在[1,+∞)上恒成立,即
a≤3x2在[1,+∞)上恒成立,而(3x2)min=3×12=3. ∴a≤3,故amax=3.
5.已知y=f(x)是定义在R上的函数,且f(1)=1,f′(x)>1,
第十一节 导数与函数的单调性、 极值、最值
1.函数的单调性与导数的关系 (1)函数y=f(x)在(a,b)内可导
常数函数
(2)单调性的应用 若函数y=f(x)在区间(a,b)上单调,则y=f′(x)在该区间上 _不__变__号__.
2.函数的极值
(1)极大值
在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数 值都_小__于__或__等__于__x0点的函数值,称_点__x_0 为函数y=f(x)的极大 值点,其函数值_f_(_x_0)_为函数的极大值.
(4)错误.对可导函数f(x),f′(x0)=0只是x0点为极值点的必 要条件,如y=x3在x=0时f′(0)=0,而函数在R上为增函数,所 以0不是极值点. (5)正确.当函数在区间端点处取得最值时,这时的最值不是极 值. 答案:(1)× (2)× (3)√ (4)× (5)√
1.函数f(x)=ln x-ax(a>0)的递增区间为( )
则f(x)>x的解集是( )
(A)(0,1)
(B)(-1,0)∪(0,1)
(C)(1)
【解析】选C.令F(x)=f(x)-x,则F′(x)=f′(x)-1>0,所
以F(x)是增函数,故易得F(x)>F(1)的解集,即f(x)>x的解集
是(1,+∞).
考向 1 利用导数研究函数的单调性
【解析】(1)错误.f′(x)>0能推出f(x)为增函数,反之 不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但 f′(x)≥0.所以f′(x)>0是f(x)为增函数的充分条件, 但不是必要条件. (2)错误.一个函数在某区间上或定义域内极大值可以不止一 个. (3)正确.一个函数的极大值与极小值没有确定的大小关系,极 大值可能比极小值大,也可能比极小值小.
(3)导数与极值
x f′(x) y=f(x) f′(x) y=f(x)
(a,x0) +
增加 -
减少
x0 0 极大值 0 极小值
(x0,b) -
减少 +
增加
3.函数极值与最值的求法 (1)求可导函数y=f(x)极值的步骤: ①求出导数f′(x); ②解方程f′(x)=0; ③对于方程f′(x)=0的每一个解x0,分析f′(x0)在x0左、右两 侧的符号(即f(x)的单调性),确定极值点:若f′(x)在 x0两侧的符号“_左__正__右__负__”,则x0为极大值点;若f′(x) 在x0两侧的符号“左_负__右__正____”,则x0为极小值点;若f′(x) 在x0两侧的符号相_同____,则x0不是极值点.
则下列点中一定在x轴上的是( )
(A)(a,b)
(B)(a,c)
(C)(b,c)
(D)(a+b,c)
【解析】选A.f′(x)=3ax2+2bx+c,由题意知1,-1是方程 3ax2+2bx+c=0的两根,∴ 1-1=- 2b, b=0.
3a
3.函数f(x)=x3-3x,x∈(-1,1)( ) (A)有最大值,但无最小值 (B)有最大值,也有最小值 (C)无最大值,也无最小值 (D)无最大值,但有最小值 【解析】选C.f′(x) =3x2-3,∵x∈(-1,1),∴f′(x)<0, ∴f(x)在(-1,1)上是减少的,故f(x)无最大值,也无最小值.