高等数学作业 .doc

合集下载

高等数学习题及解答(1)

高等数学习题及解答(1)

一般班高数作业(上)第一章 函数1、试判断以下每对函数是不是同样的函数,并说明原因: (2) y sin(arcsin x) 与(6) yarctan(tan x) 与 y x ;(4)y x ;(8)y x 与 y x2;y f ( x) 与 xf ( y) 。

解:判断两个函数的定义域和对应法例能否同样。

(2) y sin(arcsin x) 定义域不一样,所以两个函数不一样;(4) y x 2x ,两个函数同样;(6) y arctan(tan x) 定义域不一样,所以两个函数不一样;(8) yf (x) 与 xf ( y) 定义域和对应法例都同样,所以两个函数同样。

2、求以下函数的定义域,并用区间表示:x 211(2) yx;(7) y ex x;(3) y 2 xarcsinln 1x解:(2) x [ 2,0) ;(3) x [1 e 2 ,0) (0,1 e 2 ] ;(7) x(0, e)(e,) 。

1 。

1 ln xf (x)x 2 1, x 03、设 1x 2, x ,求 f ( x) f ( x) 。

解:按 x 0 , x 0 , x 0 时,分别计算得, f (x)0 x 0f ( x)x 。

2 04、议论以下函数的单一性(指出其单增区间和单减区间) :(2) y4xx2;(4) y x x 。

解:(2) y 4xx24 ( x 2) 2单增区间为 [0,2] ,单减区间为 [ 2,4] 。

(4) yx x2x x 0) 。

0 x ,定义域为实数集,单减区间为 ( ,5、议论以下函数的奇偶性:(2)f ( x) x x2 1 tanx ;(3)f (x) ln( x2 1 x);(6) f ( x) cosln x ;1 x, x 0 (7) f (x)x, x 0。

1解:(2)奇函数;(3)奇函数;( 6)非奇非偶函数;( 7)偶函数。

6、求以下函数的反函数及反函数的定义域:2x), D f ( ,0) ;() f ( x) 2x 1, 0 x 1()。

高等数学作业册答案Word版

高等数学作业册答案Word版

高等数学作业册参考答案一、函数与极限1.1)1()1(2222---x x ; 22)1(11x -- 2. 10≤≤x 3. 31≤≤-x ; x y sin 21-= ))2,2((ππ-∈x4. 3-5. 22-x 6.)1ln(112++x 7. 3- 8.该数列极限不存在 9. 1 10. x x 632- 11.2π; π ;不存在 12. 略二、极限的运算1.(1)0 (2)a 2 (3)32(4)1 (5)202 (6)21 (7)∞ (8)02. 0,1==βα3. 3-4. 15. 证明略,26. (1)52(2) 21 (3) 1 (4) 1 (5) 1- (6) e (7) e (8)2 (9) 4e (10) 21-e(11) 1 (12) 1三、无穷小的比较及连续性 1.(1)32 (2) 2 (3) 25 (4) 0 (5) 9 (6) 161 2.3 3. R c b a ∈==,1,0 4. 125.(1) 2=x 为可去间断点,令1)2(-=f 则该点变为连续点; 3=x 为无穷间断点 (2)0=x 为可去间断点,令1)0(=f 则变为连续点; ...)2,1(±±==k k x π为无穷间断点;...)2,1,0(2=±=k k x ππ为可去间断点,令0)2(=±ππk f 则变为连续点;(3)0=x 为可去间断点,令1)0(=f 变为连续点 (4)1=x 为跳跃间断点;(5)0=x 为可去间断点,令1)0(=f 则变为连续点6.(1)2=k (2) (a)0;0 (b)1- (3) 1,0==b a (4)1=x 为跳跃间断点四、导数的概念及运算(1)A - (2)A 2 (2)2A2.(1)3 (2)23.64.(1)2)1(='+f ,∞='-)1(f ,所以分段点处不可导 (2)1>k 时分段点处可导且导数值为0,1≤k 时不可导 5.(1)4πα=(2))1,1(-M 6. 1+=x y ;π++-=1x y7.x y -=或25xy -= 8.-99! 9.2,2,1-==-=c b a 10.函数在分段点处连续且可导,⎪⎪⎩⎪⎪⎨⎧=≠+-='0 ,20 ,121arctan )(422x x x x x x f π五、导数的运算1.(1)ba cx +2 (2) 8187-x (3) )2ln()2(e e xππ(4) 2sin cos x x x x - (5) 2224)ln 3(32)49(ln x x x x x x x x +-++- (6) x x x x arctan 2122++ 2. (1)3ln 33+ (2) 42ln 2- 4. (1))sin()21(2x x x -- (2) 22x xe(3) 221xx --(4) 22sin 2x x (5)221x a + (6)22x a x --(7) )2sin 222cos (2x x e x +- (8) x sec (9) xxx -+-12)1(12 (10) ))1(1()1arctan()1arctan(ln 42222x x x x ++⋅++ (11) ))31ln(sin()3162(2222x e x x ex x+-+-- 5.(1) )()(xxxxee f ee --+'⋅- (2) 232222))(1()()(2-+⋅'-x f x f x xf6.x 87.x xln cos 1⋅六、导数的运算与微分 1(1))1212189(2453x x x x ex +++ (2)3222)(x a a --(3)212cot 2xx x arc +-(4))cos sin 2(ln 22ln 2cos x x x -⋅⋅ 2(1)2ln 23x (2)6 3 0 4 nn x n )1()!1()1(1+---523 6 (1)xye y y -sin cos (2)x y-(3) xy - (4) )ln ln (x x y y y x x y --⋅ (5) y x y x -+ (6) 324ya b - (7) )sin(sin )sin(cos y x x y x x y ++++-7 (1) )sin ln (cos sin xxx x x x+(2))41312111()4)(3()2)(1(414----+++⋅--++x x x x x x x x (3)222ln 2)2ln 2ln 2(2x x x x xx x x⋅++(4) 12)1(ln -++x x xx x8 (1) 2t (2)t (3)34- 9 证明略10 (1)dx x x x x )sec sin cos (2- (2)dx 32 (3)dx e 2-11 (1) 01.04+π(2) 2713七、中值定理1.(1)满足;(2)不满足;(3)不满足2.2π3.31 4.有2个实根5. 6.有1个实根 7.略 8.略 9.提示:)()(x f e x F x-=应用罗尔定理 10.略八、洛必达法则 1.25 2.53- 3.1 4.1 5.0 6.∞+ 7.1 8.1 9.21-10.011.31 12.1 13.1-e 14. 21-e15.29,3=-=b a九、泰勒公式1.32)1(3)1(7)1(42+++-++x x x 2.32453091x x x -+-3.)(31133x o x x +-+ 4.)()!1(1!2132n n x o x n x x x +-++++5.))1(()1()1(122+++-+--x o x x7.略 8.略十、函数的单调性1.]2,0(上单减;),2[+∞上单增2.单增区间]1,0[;单减区间]2,1[3.单增区间),1[],0,(+∞-∞;单减区间]1,0[4. 1个实根5.略6.略7.略8.单增十一、曲线的凹凸性 1.凹区间),21[],21,(+∞--∞;凸区间]21,21[-2.凹区间]1,1[-;凸区间),1[],1,(+∞--∞;拐点)2ln ,1(),2ln ,1(-3.拐点),21(21arctan e4.3,1-==b a5.ac b 32=6.略7.水平渐近线1=y ;无铅直渐近线8.水平渐近线0=y ;铅直渐近线1,3=-=x x十二、函数的极值与最大最小值1.极大值17)1(=-y ;极小值47)3(-=y2.极大值2)1(-=-y ;极小值2)1(=y3.2=a4.4,421==x x5.(1)1)1(++n n n ;(2)e1 6.x x x y 9323--=;32 7.1:2 8.5;11十三、函数图形的描绘 1.极小值517)2(-=-y ;拐点)2,1(),56,1(-- 2.单减区间),1[+∞ 3.略 4.1个交点 5.略十五、不定积分概念、性质1.21x -2.C x +3559 3.1313++x x 4.C x x x ++-arctan 3135.C e x x ++3ln 13 6.C x x +-tan 7.C x +2ln 218.C x +815158 9.C x +-cot 21 10.C x x +-sec tan 11.C x++2sin 1 12.C x x +-cot tan 13.1)(2+=x x f十六、 1.C b ax F a ++)(1 2.C x x +-2213.C x F +)(ln4.C x ++)38ln(9135.C x ++342)1(83 6.C x x ++881ln81 7.C x x +-3sin 31sin 8.C x ++23)2(ln 32 9.C xx +-ln 1 10.C x e x+-+)1ln( 11.C x +-10ln 210arccos 2 12.C x +++22))11(ln(21十七、不定积分的第二换元法1.C x x +++-+))11ln(1(22.C x+1arccos3.C x x ++-)21ln(24.C xx ++215.C x x x +--)1(arcsin 2126.C x x ++1ln 667.C x x +---)1arctan1(2 8.C x xx x ++-+-arcsin 1129.C x e x +--+)11ln(2 10.C x +2)(arctan十八、不定积分分部积分法 1.C x x e x++-)22(22.C x x x +-3391ln 31 3. C x f x f x +-')()( 4.C x x ++-)1ln(21ln 2 5.C x x e x +-)cos (sin 216.C x x x x x +-+sin 2cos 2sin 27.C x x x x x ++-2ln 2ln 28.C x x x +-+21arcsin 9.C x e x++--)1(10.C x x x +--cot 21sin 2211.C x x x x +----)1ln(2121)1ln(21 12.C x x x x +-++21arcsin 13.C x x x e x+-++-)12(214.C x e x+tan 15.C x x x +-+arctan )1(16.C e ex x x +----2222十九、有理函数的积分 1.C x x ++++-2)1(2111 2.C x x +---1ln 2ln 3 3.C x x +-++1ln 21112 4.C x x +-arctan 21ln 5.C x +3tan 2arctan321 5.C x++2tan1ln 7.C x xxx x x ++-+++-+--11arctan21111ln8.C x x +-+31123 9.C x x +-+-2)1(2111 10.C x x x x +-+++-2cos 2cos ln 1211cos 1cos ln 61二十、定积分的概念、性质1、331()3b a - 2、ln 2 3、12I I > 4、2I ππ≤≤5、12422eI e -≤≤ 6、137、略二十一、微积分基本公式 1、02、2sin x - 3、2 4、24π 5、1x 6、32ln 22+ 7、2(1)e - 8、2 9、14π- 10、-ln2 11、83 12 1e e+ 二十二、定积分换元法1、02、43π- 3 4、24π 5、166、2ln2-17、416a π82)π+ 9、14π- 10、1) 11、2ln 1e e + 12、1ln 284π- 13、121e-- 14、11ln(1)e -++二十三、定积分分部积分法1、112e -- 2、321()92e -+ 3、12π- 4、 142π- 5、21(1)2e π+ 6、364ππ- 7、2e - 8、12(1)e -- 9、1310、112e -- 二十四、反常积分1、 发散2、2π3、1ln 324、28π5、16、发散7、-1 8、1ln 22 9、1 10、2π11、2 π 二十五、平面图形的面积1、3ln 22- 2、12e e -+- 3、3234、2a5、23a π 6、 7、(1,1) 8、529、1,2,0-二十六、体积 1、12864,75ππ 2、1615π 3、310π 4、464,315π5、6436、32224()3R a π- 7、 8、2,9π二十七、平面曲线的弧长、平均值1、214e + 2、433、6a4、22a π 51)a e π- 6、35ln212+ 7、8a 8、212e -- 9、23π 二十八、物理应用1、0.294J2、800ln 2J π3、1211()mg R R - 4、216aH 5、443r g π 61(Gm a ρ- 7、57697.5KJ 三十、微分方程的概念1、(1)2y x '= ;(2)20yy x '+= 2、是3、20xy y '-=4、120;1C C ==5、221()[ln(1)1]2x f x x +=+- 6、2xy y y e '''--= 三十一可分离变量的微分方程 1、2y x C =+ 2、2xy e = 3、(1)yx ex e C --=++4、xy Cxe-=5、2225y x += 6、3C y x=+ 7、221x x y Ce+=-8、221(1)y C x +=- 9、sin ln y x x=三十二、 一阶线性方程,齐次方程1、32431x Cy x +=+2、(1)xy x e e =+-3、3213x y x-= 4、cos xy x=-5、xe y x=6、同57、47y x =+8 3232xx y ee =-三十一、可降阶的高阶方程1、12(2)xy x e C x C =-++2、12C xy C e=3、y4、21arcsin()xy C e C =+5、12ln y C x C =+6、ln 2x xe e y -+=注:原题改为求1)'(''2=+y y 满足(0)0,'(0)0y y ==的特解。

《高等数学》作业 无答案

《高等数学》作业 无答案

第一章 函数、极限与连续1、写出下列复合函数的复合关系(1)(2)22xy e +=(3)5(21)y x =+(4)ln(sin )y x =2、函数1ln(1)y x =-的定义域是。

3、当0x →时,2(2)x x -是23()x x -的(高阶或低阶)无穷小。

4、当0x →时,sin 2x 与tan 2x 是______无穷小。

5、设{,0(),0x x a x f x e x +≥=< 且()f x 在(,)-∞+∞内连续,则_____a =。

6、0tan 2lim______x xx→=。

7、1lim(13)xx x →+=_____ 。

8、函数22321x x y x -+=-的可去间断点为_______ 。

9、 曲线221x y x =-的水平渐近线_______,铅直渐近线是_______。

10、求下列函数的极限(1)213lim()2x x x x +→∞+- (2) 30lim(12)x x x →+ (3)0ln(1)lim 2sin x x x→+(4)1.0x → (5)lim x →+∞ (6) 20tan 3lim sin x x x x →(7) 30tan sin lim sin x x x x →- (8) 201lim 1cos x x e x →-- (9)3302lim(1)x x x+→+ (10) 2123limn nn →∞++++11、设2,01()sin ,0x a x f x x x x ⎧+≤⎪=⎨>⎪⎩,且()f x 在(,)-∞+∞内连续,求a 。

12、设2 01() 2 11 13ax b x f x x bx x ⎧+<<⎪==⎨⎪+<≤⎩,,a b 为何值时,()f x 在1x =处连续。

第二章 导数与微分1、已知函数()f x 在点0x 可导,则(1)000()()lim____h f x h f x h →--=,(2)000()()lim____h f x h f x h h→--+=。

高等数学(1)(高起专)

高等数学(1)(高起专)

(A)[2019年春季] 姓名学号学习中心 专业 年级 考试时间 高等数学(1)(高起专)阶段性作业1 总分: 100 分 得分: 6 分一、单选题 1. 若函数 ,则 。

(6分) (A) 0 (B) (C) 1 (D) 不存在参考答案:D 您的回答:D 正确 2. 下列变量中,是无穷小量的为 。

(6分) (A) (B) (C) (D) 参考答案:D 3. 当 时,2x+x 2sin 是x 的 。

(6分) (A) 等价无穷小 (B) 同阶但不等价的无穷小 (C) 高阶无穷小 (D) 低阶无穷小参考答案:B 4. f(x)在x 0处左:右极限存在并相等是f(x)在x 0处连续的 。

(5分) (A) 充分条件 (B) 必要条件 (C) 充分必要条件 (D) 前三者均不对参考答案:B 5. 设函数 在 处可导, ,则当 时,必有 。

(6分) (A) 是 的等价无穷小; (B) 是 的高阶无穷小; (C) 是比 高阶的无穷小; (D) 是 的同阶无穷小; 参考答案:C 6. 函数y= (a>0,a≠1)是 。

(6分)(A) 奇 函数 (B) 非奇非偶函数 (C) 偶 函数 (D) 奇偶性取决于a 的取值参考答案:C 7. 下列函数中,奇函数是 。

(5分) (A) (B) (C) (D)参考答案:B 8. = 。

(5分) (B) (C) 3 (D) 1参考答案:B 9. 下列极限正确的是 。

(5分) (A) (B) (C) (D)参考答案:A 10. 当 时,下列哪个是 的高阶无穷小? 。

(5分) (A) (B) (C) (D)参考答案:B 11. 设f(x)= 则x=1为f(x)的 参考答案:C 跳跃间断点 。

(5分).设(A) 是的高阶无穷小是的等价无穷小12. 设f(x)= , 则= 。

(5分)(A) 1 (B) 2 (C) -1(D) 不存在参考答案:A13参考答案:D ,则当时。

(5分)(A) 是的低阶无穷小(D) 与是同阶但非等价无穷小14. )=。

高等数学作业题及参考答案

高等数学作业题及参考答案

高等数学作业题(一)第一章 函数1、填空题(1)函数1142-+-=x x y 的定义域是 2、选择题(1)下列函数是初等函数的是( )。

A.3sin -=x y B.1sin -=x y C.⎪⎩⎪⎨⎧=≠--=1,01,112x x x x yD. ⎩⎨⎧≥<+=0,0,1x x x x y (2)xy 1sin =在定义域内是( )。

A. 单调函数 B. 周期函数 C. 无界函数 D. 有界函数3、求函数2)1ln(++-=x x y 的定义域4、设,1)(2+-=x x x f 计算xf x f ∆-∆+)2()2(5、要做一个容积为250立方米的无盖圆柱体蓄水池,已知池底单位造价为池壁单位造价的两倍,设池底单位造价为a 元,试将总造价表示为底半径的函数。

6、把一个圆形铁片,自中心处剪去中心角为α的一扇形后,围成一个无底圆锥,试将此圆锥体积表达成α的函数。

第二章 极限与连续1、填空题(1)32+=x y 的间断点是 (2)0=x 是函数x x y +=1的第 类间断点。

(3)若极限a x f x =∞→)(lim 存在,则称直线a y =为曲线=y ()x f 的 渐近线。

(4)有界函数与无穷小的乘积是(5)当0→x ,函数x 3sin 与x 是 无穷小。

(6)xx x 1)21(lim 0+→= (7)若一个数列{}n x ,当n 时,无限接近于某一个常数a ,则称a 为数列{}n x 的极限。

(8)若存在实数0>M ,使得对于任何的R x ∈,都有()M x f <,且()0lim 0=→x g x , 则()()=→x g x f x 0lim (9)设x y 3sin =,则=''y(10) x x x)211(lim -∞→=2、选择题(1)xx x sin lim 0→的值为( )。

A.1 B.∞ C.不存在 D.0 (2)当x →0时,与3100x x +等价的无穷小量是( )。

吉大20秋《高等数学(理专)》作业1--4

吉大20秋《高等数学(理专)》作业1--4

1.曲线y=x^2+x-2在点(1.5,1.75)处的切线方程为()A.16x-4y-17=0B.16x+4y-31=0C.2x-8y+11=0D.2x+8y-17=0参考答案:A2.设X0是函数f(x)的可去间断点,则()A.f(x)在x0的某个去心领域有界B.f(x)在x0的任意去心领域有界C.f(x)在x0的某个去心领域无界D.f(x)在x0的任意去心领域无界参考答案:A3.直线y=2x,y=x/2,x+y=2所围成图形的面积为()A.2/3B.3/2C.3/4D.4/3参考答案:A4.计算y=3x^2在[0,1]上与x轴所围成平面图形的面积=()A.0B.1C.2D.3参考答案:B5.f(x)={0(当x=0)} {1(当x≠0)}则()A.x-0,limf(x)不存在B.x-0,lim[1/f(x)]不存在C.x-0,limf(x)=1D.x-0,limf(x)=0参考答案:C6.x=0是函数f(x)=xarctan(1/x)的()A.连续点B.可去间断点C.跳跃间断点D.无穷间断点参考答案:B7.设f(x)是可导函数,则()A.∫f(x)dx=f'(x)+CB.∫[f'(x)+C]dx=f(x)C.[∫f(x)dx]'=f(x)D.[∫f(x)dx]'=f(x)+C参考答案:C8.已知y=4x^3-5x^2+3x-2,则x=0时的二阶导数y”=()A.0B.10C.-10D.1参考答案:C9.集合A={±2,±3,±4,±5,±6}表示()A.A是由绝对值小于等于6的全体整数组成的集合B.A是由绝对值大于等于2,小于等于6的全体整数组成的集合C.A是由全体整数组成的集合D.A是由绝对值大于2,小于6的整数组成的集合参考答案:B10.集合A={±2,±3,±4,±5,±6}表示()A.A是由绝对值小于等于6的全体整数组成的集合B.A是由绝对值大于等于2,小于等于6的全体整数组成的集合C.A是由全体整数组成的集合D.A是由绝对值大于2,小于6的整数组成的集合参考答案:B11.设函数f(x)=x(x-1)(x-3),则f'(0)=()A.0B.1C.3D.2参考答案:C12.已知z=3sin(sin(xy)),则x=0,y=0时的全微分dz()A.dxB.dyC.dx+dyD.0参考答案:D13.下列结论正确的是()A.若|f(x)|在x=a点处连续,则f(x)在x=a点也必处连续B.若[f(x)]^2在x=a点处连续,则f(x)在x=a点也必处连续C.若[f(x)]^3在x=a点处连续,则f(x)在x=a点也必处连续D.若f(x)在x=a点处连续,则1/f(x)在x=a点也必处连续参考答案:C14.设函数f(x-2)=x^2+1,则f(x+1)=()A.x^2+2x+2B.x^2-2x+2C.x^2+6x+10D.x^2-6x+10参考答案:C15.设函数f(x),g(x)在[a,b]上连续,且在[a,b]区间积分∫f(x)dx=∫g(x)dx,则()A.f(x)在[a,b]上恒等于g(x)B.在[a,b]上至少有一个使f(x)≡g(x)的子区间C.在[a,b]上至少有一点x,使f(x)=g(x)D.在[a,b]上不一定存在x,使f(x)=g(x)参考答案:C16.无穷小量是一种很小的量。

18秋西南大学[9102]《高等数学》作业

单项选择题1、设则在处( )A.不连续B.连续,但不可导C.连续,且有一阶导数D.有任意阶导数1 C2A3D4B2、已知在上连续,在内可导,且当时,有,又已知,则( )A.在上单调增加,且B.在上单调减少,且C.在上单调增加,且D.在上单调增加,但正负号无法确定5 D. D6C7B8A3、已知,在处可导,则( )A.,都必须可导B.必须可导C.必须可导D.和都不一定可导9B10 A11D12C4、函数在上有( )A.四个极值点;B.三个极值点C.二个极值点D.一个极值点13 C14A15B16D5、函数在某点处有增量,对应的函数增量的主部等于,则( )A.4 B.C.4 D.17 C18D19A20B6、若为内的可导奇函数,则( )A.必有内的奇函数B.必为内的偶函数C.必为内的非奇非偶函数D.可能为奇函数,也可能为偶函数21 B22A23C24D7、按给定的的变化趋势,下列函数为无穷小量的是( )A.() B.()C.() D.()25D26B27 C28A8、设,若在上是连续函数,则( )A.0 B.1 C.D.329D30B31 C32A9、设函数,则( )A.当时,是无穷大B.当时,是无穷小C.当时,是无穷大D.当时,是无穷小33A34D35 B36C10、若,则方程( )A.无实根B.有唯一的实根C.有三个实根D.有重实根37A38 B39D40C11、下列各式中的极限存在的是( )A.B.C.D.41D42A43B44 C12、函数的极大值是( )A.17 B.11 C.10 D.945D46B47 A48C13、下列函数与相等的是( A )A.,B.,C.,D.,49D50C51B52 A14、数列,,,,,…是( )A.以0为极限B.以1为极限C.以为极限D.不存在在极限53 B54D55A56C15、指出曲线的渐近线( )A.没有水平渐近线,也没有斜渐近线B.为其垂直渐近线,但无水平渐近线C.即有垂直渐近线,又有水平渐近线D.只有水平渐近线57D58A59B60 C16、的值为( )A.1 B.C.不存在D.061C62B63 D64A17、如果与存在,则( )A.存在且B.存在,但不一定有C.不一定存在D.一定不存在65D66A67 C68B18、,其中,则必有( ) A.B.C.D.69 E. C70B71A72 D19、设在上有定义,函数在点左、右极限都存在且相等是函数在点连续的( )A.充分条件B.充分且必要条件C.必要条件D.非充分也非必要条件73 C74A75B76D20、两个无穷小量与之积仍是无穷小量,且与或相比( )A.是高阶无穷小B.是同阶无穷小C.可能是高阶,也可能是同阶无穷小D.与阶数较高的那阶同阶77 A78D79C80B21、设()且,则在处( )A.令当时才可微B.在任何条件下都可.当且仅当时才可微D.因为在处无定义,所以不可微81A82D83B84 C22、设函数,则点0是函数的( )A.第一类不连续点B.第二类不连续点C.可去不连续点D.连续点85B86 D87C88A23、在下列四个函数中,在上满足罗尔定理条件的函数是( )A.B.C.D.89A90D91 B92C24、函数它在内( )A.不满足拉格朗日中值定理的条件B.满足拉格朗日中值定理的条件,且C.满足中值定理条件,但无法求出的表达式D.不满足中值定理条件,但有满足中值定理结论93A94 B95D96C25、与函数的图象完全相同的函数是( )A.B.C.D.97B98C99D100 A26、要使函数在处的导函数连续,则应取何值( )A.B.C.D.101C102B103A104 D27、若在区间内,函数的一阶导数,二阶导数,则函数在此区间内是( )A.单调减少,曲线上凹B.单调增加,曲线上凹C.单调减少,曲线下凹D.单调增加,曲线下凹105C106A107B108 D28、在点处的导数是( )A.1 B.0 C.-1 D.不存在109C110 D111A112B29、若为可导函数,为开区间内一定点,而且有,,则在闭区间上必有( )A.B.C.D.113A114 D115B116C30、设其中是有界函数,则在处( )A.极限不存在B.极限存在,但不连续C.连续,但不可导D.可导117C118A119B120 D31、函数满足拉格朗日中值定理条件的区间是( )A.B.C.D.121 C122D123B124A32、设可导,,若使在处可导,则必有( )A.B.C.D.125 F. A126D127B128C33、设函数,则( )A.0 B.24 C.36 D.48129C130A131 B132D34、设函数,在( )A.单调增加, B.单调减少,C.单调增加,其余区间单调减少,D.单调减少,其余区间单调增加.133 C134A135B136D35、若,则( )A.-3 B.6 C.-9 D.-12137D138A139C140 B36、设函数,,则为( )A.30 B.15 C.3 D.1141D142A143C144 B37、设函数在处有,在处不存在,则( )A.及一定都是极值点B.只有是极值点C.与都可能不是极值点D.与至少有一个点是极值点145 C146B147A148D38、区间表示不等式( )A.B.C.D.149 B150D151A152C主观题39、求下列函数的自然定义域参考答案:40、参考答案:41、求下列函数的自然定义域参考答案:42、参考答案:43、求下列函数的自然定义参考答案:44、求下列函数的自然定义域参考答案:45、参考答案:46、参考答案:47、参考答案:48、参考答案:49、参考答案:50、求由和所围成的图形的面积.参考答案:51、参考答案:52、求下列函数的自然定义域参考答案:53、参考答案:54、参考答案:55、求下列函数的自然定义域参考答案:56、参考答案:57、参考答案:58、试证下列函数在指定区间内的单调性参考答案:59、参考答案:60、参考答案:。

网上人大高等数学作业答案

B.在内单调减少,在区间内单调增加
C.在内单调增加
D.在内单调减少
答案:C
答案
19、单项选择题【163325】的定义域为().
A.
B.
C.
D.
答案:A
答案
20、单项选择题【163334】是().
A.偶函数
B.奇函数
C.周期函数
D.非奇非偶函数
答案:A
答案
21、填空题【163385】函数的定义域为.
答案:
答案:
答案
3、单项选择题【163342】是().
A.单调函数
B.无界函数
C.周期函数
D.奇函数
答案:C
答案
4、填空题【163383】函数的定义域为.
答案:
答案
5、单项选择题【163359】函数的图形如图示,则曲线().
A.在内单调增加,在区间内单调减少
B.在内单调增加
C.在内单调减少,在区间内单调增加
答案:
答案
17、单项选择题【163344】是内的().
A.单调函数
B.有界函数
C.无界函数
D.偶函数
答案:B
答案
18、填空题【163377】函数的定义域为.
答案:
答案
19、单项选择题【163349】设曲线如图示,则函数().
A.在内单调增加,在区间内单调减少
B.在内单调减少,在区间内单调增加
C.在内单调增加
A.在内单调增加,在区间内单调减少
B.在内单调增加
C.在内单调减少,在区间内单调增加
D.在内单调减少
答案:C
答案
17、单项选择题【102071】设,若曲线与关于直线对称,则表达式为().

高等数学(一)作业,1,2,3章10.26

《高等数学》考题,内容包括第一、二、三章一、选择题: 1.函数)1ln(1)(++=x xx f 的定义域是( c ) A.)0,1(- B.),0(+∞C.),0()0,1(+∞- D.),0()0,(+∞-∞2.=+→x x x 1)21(lim ( c ) A.e B.e C.2e D.13.)32cos()431sin(ππ+++=x x y 的周期是(d ) A.π2 B.π6 C.π4 D.π124.设)(x f 是奇函数,当0>x 时,)1()(x x x f -=,则0<x 时,)(x f 的解析式是( b )A.)1(x x -- B.)1(x x + C.)1(x x +- D.)1(--x x5.函数21x y -=,)01(≤≤-x 的反函数是( c )A .21x y --= )01(≤≤-xB .21x y --= )10(≤≤xC .21x y -= )10(≤≤xD .21x y -= )11(≤≤-x6.在下列各函数中,表示同一函数的是( b )A .2x y =与2)(x y =B .x y sin =与x y 2cos 1-=C .x x y -+=12与xx y ++=112 D .)12ln(2+-=x x y 与)1ln(2-=x y 7.x x 2sin sin 2-=α, x cos 1-=β, 则当0→x 时,α与β的关系是(d )A .βα~B .β是比α高阶的无穷小C .βα,是同阶无穷小D . α是比β高阶的无穷小 8.在区间)0,∞-(内与xx x y 32-=是相同函数的是( b )A .x -1B .x --1C .1--xD .1-x9.设)999()2)(1()(---=x x x x x f ,则=')0(f ( c )A .999B .999⨯999C .999!D .-999!10.若)(0x f '存在,则=∆∆--∆+→∆x x x f x x f x )()2(lim000( c ) A .)(0x f 'B .)(20x f 'C .)(30x f 'D .)(40x f ' 11.函数24121arcsinx x y -+-=的定义域是( d ) A .[-2, +2] B .[-1, 2] C .[-1, 2] D .(-1, 2)12.函数x x y --=22的图形( a )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .不是对称图形13.当0→x 时,下列式子是无穷小量的是( c )A .xx sin B .x x 1)1(+ C .x x 1sin 31 D .x 1sin 14.曲线x x y 33-=在点(2,2)处的法线方程为( b )A .)2(912-=-x y B .92091+-=x y C .9291+-=x y D .)2(92-=-x y15.x nx ex λ∞→lim (n 为自然数,0>λ)的极限是( b ) A .1 B .不存在 C .0 D .nλ1 16.x x f sin )(=在0=x 处的导数是( a )A .0B .2C .不存在D .117.当∞→n 时比21n 低价无穷小的应是以下中的( d ) A .21sin n B .35-n C .321n n + D .n18.下列函数中不是初等函数的有(d )A .x x y sin =B .x x y ++=)1log(2C .2cos 2arcsin x x y ⋅=D .x x sin 19.=⎪⎭⎫ ⎝⎛+→x x x x x 3sin 2sinlim 0( b ) A .0 B .3 C .5 D .220.函数x x x f -=3)(在[0, 3]上满足罗尔定理的=ζ( d )A .0B .3C .23D .2二、填空题(每小题4分,共20分)1.曲线2t x =, t y 2=在1=t 对应点处的切线方程是 y=x+1 。

(完整版)高等数学(同济版)多元函数微分学练习题册.doc

(完整版)高等数学(同济版)多元函数微分学练习题册.doc第八章多元函数微分法及其应用第一作一、填空:1. 函数 z ln(1 2 )y x23x y 的定义域为x12. 函数 f (x, y, z) arccosz的定义域为y 2x 23. 设 f ( x, y) x 2 y 2 , (x) cos x, ( x) sin x, 则f [ (x), (x)].sin xy .4. lim xx 0二、(): 1. 函数1的所有断点是 :sin x sin y(A) x=y=2n π( n=1,2,3,?);(B) x=y=n π (n=1,2,3, ?) ; (C) x=y=m π (m=0, ±1,± 2,? );(D) x=n π ,y=m π (n=0, ± 1,± 2,?,m=0,± 1,± 2,? )。

答:()sin 2( x 2 y 2 , x 2y 22. 函数 f (x, y)x 2 y 2在点( 0, 0):2 ,x 2 y 2( A )无定;(B )无极限;( C )有极限但不;( D )。

答:()三、求 lim2xy 4 .x 0 xyya四、明极限 limx 2 y 22 不存在。

2 2xx y ( x y)y 0第二节作业一、填空题:1 sin( x2 y), xy 01. 设 f ( x, y)xy ,则 f x (0,1) .x 2 ,xy2. 设 f (x, y)x ( y 1) arcsinx, 则 f x ( x,1).y二、选择题(单选):设 z 2x y 2 , 则 z y 等于 :( A) y 2 x y 2 ln 4; (B) (x y 2 ) 2 y ln 4; (C ) 2 y( x y 2 ) e x y 2 ;(D ) 2 y 4 x y 2 .答:()三、试解下列各题:1. 设 z ln tan x , 求 z, z .2. 设 z arctan y, 求2z .y x yxx y四、验证 rx 2 y 2 z 2 满足2r2r2r 2 .x 2 y 2 z 2r第三节作业一、填空题:1. 函数 zy 当x 2, y时的全增量z全微分值x 1, x 0.1, y0.2dz.y2. 设z e x , 则dz.二、选择题(单选):1. 函数 z=f(x,y) 在点 P 0( x 0,y 0)两偏导数存在是函数在该点全微分存在的:( A )充分条件;( B )充要条件;( C )必要条件;( D )无关条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学作业AⅢ吉林大学公共数学教学与研究中心2013年9月第一次作业学院 班级 姓名 学号一、单项选择题1.设L 是圆周222x y a +=,则22()d nL x y s +=⎰Ñ( ) .(A )2n a π; (B )12n a π+; (C )22n a π; (D )212n a π+.2.设L 是由(0, 0), (2, 0), (1, 1)三点连成的三角形边界曲线,则d L y s =⎰Ñ( ).(A(B )2+(C )(D )2+.3.设∑是锥面222x y z +=在01z ≤≤的部分,则22()d x y S ∑+=⎰⎰( ). (A )1300d d r r πθ⎰⎰; (B )21300d d r r πθ⎰⎰;(C 1300d d r r πθ⎰;(D 21300d d r r πθ⎰.4.设∑为2222(0)x y z a z ++=≥,1∑是∑在第一卦限中的部分,则有( ). (A )1d 4d x S x S ∑∑=⎰⎰⎰⎰;(B )1d 4d y S x S ∑∑=⎰⎰⎰⎰;(C )1d 4d z S x S ∑∑=⎰⎰⎰⎰;(D )1d 4d xyz S xyz S ∑∑=⎰⎰⎰⎰.二、填空题1.设曲线L 为下半圆y =22()d L x y s +=⎰ . 2.设L 为曲线||y x =-上从1x =-到1x =的一段,则d L y s =⎰ .3.设Γ表示曲线弧,,,(02)2tx t y t z t π==≤≤,则222()d xy z s Γ++=⎰ .4.设∑是柱面222(0)x y a a +=>在0z h ≤≤之间的部分,则2d x S ∑=⎰⎰ . 5.设∑是上半椭球面2221(0)94x y z z ++=≥,已知∑的面积为A ,则222(4936)d x y z xyz S ∑+++=⎰⎰ .三、计算题1.计算L s ⎰Ñ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的扇形的整个边界.2.2d z s Γ⎰Ñ,其中2222,:0.x y z a x y z ⎧++=Γ⎨++=⎩.3.计算曲面积分()d xy yz zx S ∑++⎰⎰,其中曲面:z ∑=被柱面222x y x +=所截得部分。

4.求222d Sx y z∑++⎰⎰,其中∑是介于0z =与4z =之间的柱面224x y +=.四、应用题1.求底圆半径相等的两个直交圆柱面222x y R +=及222x z R +=所围立体的表面积.2.求面密度1ρ=的均匀半球壳2222(0)x y z a z ++=≥关于z 轴的转动惯量.第二次作业学院 班级 姓名 学号一、单项选择题1.设L 是圆周222(0)x y a a +=>负向一周,则曲线积分3223()d ()d L xx y x xy y y -+-=⎰Ñ ( ) .(A )0;(B )42a π-; (C )4a π-; (D )4a π.2.设L 是椭圆2248x y x +=沿逆时针方向,则曲线积分2e d d yL x x y +=⎰Ñ ( ).(A )2π; (B )π;(C )1; (D )0.3. 设曲线积分2d ()d L xyx y x y ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0ϕ=,则(1,1)2(0,0)d ()d xy x y x y ϕ+⎰等于( )(A )38(B )12 (C )34 (D )14.已知2()d d ()x ay y y xx y +-+为某函数的全微分,则a = ( )正确. (A )1-; (B )0; (C )2 (D )1.二、填空题1.设L 为22(1)4x y +-=正向一周,则22d d (1)Lx y y xx y -=+-⎰Ñ .2.设L 为封闭折线||||1x x y ++=正向一周,则22d cos()d L x y x x y y -+=⎰Ñ .3.设L 为0tan d xy t t =⎰从x=0到4x π=一段弧,将(,)d (,)d L P x y x Q x y y +⎰化为第一型曲线积分为 .4.设L 为封闭折线||||1x y +=沿顺时针方向,则22d d L xy x x y x y +=+⎰Ñ .三、计算题1.计算2d d L y x x y -⎰,其中L 是抛物线2y x =上从点(1,1)A 到(1,1)B -,再沿直线到(0,2)C 的曲线.2.计算2()d (sin )d L x y x x y y --+⎰,其中L 是圆周y =(2,0)A 到(0,0)O 的一段弧.3.设()f x 在(,)-∞+∞内具有一阶连续导数,L 是半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d .证明2221[1()]d [()1]d L xI y f xy x y f xy y y y=++-⎰(1)证明曲线积分I 与路径L 无关(2)当ab cd =时,求I 的值4.设力2y x y -+=i jF ,证明力F 在上半平面内所作的功与路径无关,并求从点(1,2)A 到点(2,1)B 力F 所作的功.5.计算[]¼[]()cos d ()sin d AMBI y x y x y x y ϕπϕπ'=-+-⎰,其中¼AMB 在连结点(,2)A π与(3,4)B π的线段之下方的任意路线,且该路线与AB 所围成的面积为2,()y ϕ具有连续的导数。

四.证明题证明d d d P x Q y R z s Γ++≤⎰⎰,并由此估计d d d z x x y y z Γ++⎰Ñ的上界。

其中Γ为球面2222x y z a ++=与平面0x y z ++=的交线并已取定方向第三次作业学院 班级 姓名 学号一、单项选择题1.设Γ是球面2222(0)x y z a a ++=>外侧,则曲面积分222()d d xy z x y ∑++=⎰⎰Ò ( ) .(A )0; (B )24a π; (C )2a π;(D )343a π.2.设空间闭区域Ω由曲面222z a x y =--与平面0z =围成(0)a >,记Ω的表面外侧为∑,Ω的体积为V ,则2222d d d d (1)d d I x yz y z xy z z x z xyz x y ∑=-++=⎰⎰Ò( )(A )0; (B )V ; (C )2V ; (D )3V . 3.设∑是球面2222x y z a ++=的外侧,则曲面积分32222d d d d d d ()x y z y z x z x y x y z ∑++=++⎰⎰Ò ( ).(A )0;(B )1;(C )2π;(D )4π.4设222d d d d d d I x y z y z x z x y ∑=++⎰⎰,其中∑为锥面222x y z +=介于平面0z =及z h =之间部分的下侧,则I =( )(A )412h π-; (B )4h π-; (C) 412h π; (D )4h π二、填空题1.设∑为球面2229x y z ++=,法向量向外,则d d z x y ∑=⎰⎰Ò . 2.向量场22e ln(1)z A xy i y j x z k =+++r r r 在点(1,1,0)M 处的散度divA= .3.设向量场(sin )(cos )A z y i z x y j =+--r r,则rot A = .4.设∑是平面326x y ++=在第一卦限部分的下侧,则I =d d d d d d P y z Q z x R x y ∑++⎰⎰化为对面积的曲面积分为I = .5.设∑为球面2222x y z a ++=,法向量向外,则3d d x y z ∑=⎰⎰Ò .6.设22u x y yz =++,则div(grad )u = .三、计算题1.计算2cos d x y s γ∑⎰⎰,其中∑是球面2222x y z a ++=的下半球面,法线朝上,γ是法线正向与z 轴正向的夹角。

2.计算[][][](,,)d d 2(,,)d d (,,)d d f x y z x y z f x y x y z x f x y z z x y∑+++++⎰⎰,其中(,,)f x y z 为连续函数,∑为平面1x y z -+=在第四卦限部分的上侧。

3.计算曲面积分333d d d d d d x y zI y z z x x y r r r∑=++⎰⎰Ò其中,222:149x y r z =∑++= 方向外侧4.计算3322d d 2d d 3(1)d d I x y z y z x z x y ∑=++-⎰⎰,其中∑是曲面221(0)z x y z =--≥的上侧.5.计算22d d d I y x x y z z Γ=-++⎰Ñ,其中Γ是平面2y z +=与柱面221x y +=的交线,从z 轴正向看去,Γ取逆时针方向.6. 计算曲面积分[]22()2d ,I x y z yz S ∑=+++⎰⎰Ò其中∑是球面22222.x y z x z ++=+第四次作业学院 班级 姓名 学号一、单项选择题1.设10(1,2,3,)n a n n <<=L ,则下列级数中肯定收敛的是 ( ).(A )1n n a ∞=∑;(B )1(1)nn n a ∞=-∑; (C )n ∞=(D )1nn a n∞=∑. 2.若级数11,n n n n u v ∞∞==∑∑都发散,则 ).(A )1()n n n u v ∞=+∑发散;(B )1n n n u v ∞=∑发散;(C )1(||||)n n n u v ∞=+∑发散;(D )221()n n n u v ∞=+∑发散.3.设级数1n n u ∞=∑收敛,则必收敛的级数为 ).(A )1(1)nnn u n∞=-∑;(B )21n n u ∞=∑;(C )2121()n n n u u ∞-=-∑;(D )11()n n n u u ∞+=+∑.4.设a 为常数,则级数∑∞=⎪⎪⎭⎫ ⎝⎛-121sin n n n α( ). (A )绝对收敛; (B )条件收敛; (C )发散;(D )收敛性取决于a 的值.5.设1(1)ln(1)n n a n=-+,下列结论中正确的是( )(A )级数1n n a ∞=∑和21n n a ∞=∑都收敛 (B )级数1n n a ∞=∑和21n n a ∞=∑都发散(c )级数1n n a ∞=∑收敛,而21n n a ∞=∑都发散 (D )级数1n n a ∞=∑发散,而21n n a ∞=∑收敛6.0(1,2,3,),n u n ≠=L 设lim1,nn u n →∞=且则级数()11111(1)().nn n u u n +∞+=-+∑(A ) 发散 ; (B ) 绝对收敛;(C )条件收敛 ; (D ) 收敛性根据条件不能确定.二、填空题1.若级数12111(1)2,5n n n n n u u ∞∞--==-==∑∑,则级数1n n u ∞=∑= .2.设级数11ln pn n n∞=∑收敛,则p 满足什么条件 3.当 a ∈ 时,级数1n n a ∞=∑的收敛 三、计算题 1.判别级数11(0)nn a n a∞=>+∑的敛散性2.求级数1ln 312(1)n n n n n ∞=⎛⎫+ ⎪+⎝⎭∑的和.3.设正项数列{}n a 单调减少,且1(1)n n n a ∞=-∑发散,试问级数111nn n a ∞=⎛⎫⎪+⎝⎭∑是否收敛?并说明理由.4.判别级数nn ∞=的敛散性5.判别级数2!n n n a n n∞=∑的敛散性(0a >)6.讨论级数21(1)(0)nn n n a a ∞=->∑的敛散性四.证明题1.若正项数列{}n a 单调增加且有上界,证明11ln 2n n n a a ∞=+⎛⎫- ⎪⎝⎭∑收敛2.若级数1n n a ∞=∑绝对收敛,证明11n n n aa ∞=+∑绝对收敛第五次作业学院 班级 姓名 学号一、单项选择题1.设1lim 2n n na a +→∞=,则幂级数211n n n a x ∞+=∑的收敛半径( ).(A )2R =;(B )12R =; (C)R =; (D )R =+∞. 2.已知函数∑∞=-0)1(n n n x a 在2-=x 处收敛,则在0=x 处,该级数为( ).(A )发散; (B )条件收敛; (C )绝对收敛; (D )收敛性不定.3.幂级数113nnn x n ∞=∑的收敛域是 ( ). (A )11[-,]33; (B )11[-,)33;(C )[-3, 3]; (D )[3,3)-.4.2x 展开为x 的幂级数是 ( ).(A )0!nn x n ∞=∑;(B )0(1)!n n n x n ∞=-∑; (C )0(ln 2)!n n x n ∞=∑; (D )0(ln 2)nn x n ∞=∑. 5. 设2()(01)f x x x =<<,而1()sin ,(,)n n s x b n x x π∞==∈-∞+∞∑,其中102()sin d ,1,2,.n b f x n x x n π==⎰L 则12s ⎛⎫= ⎪⎝⎭( )(A )14- (B )14 (C )12- (D )12二、填空题1.若幂级数1n n n a x ∞=∑在2x =处条件收敛,则幂级数收敛半径为 .2.设幂级数1nn n a x ∞=∑的收敛半径为2,则幂级数11(1)n n n na x ∞+=+∑的收敛区间为 .3.幂级数212(3)n n nn nx ∞=+-∑的收敛半径为 . 4.设函数2(),[0,1]f x x x =∈,而01()cos ,2n n a s x a n x π∞==+∑ (,)x ∈-∞+∞,其中102()cos d ,0,1,2,n a f x n x x n π==⎰L ,则(1)s -的值为 .三、计算题 1.设幂级数11!n n n x n ∞+=∑,求 (1)收敛域及其和函数; (2)112!nn n n ∞=-∑的和。

相关文档
最新文档