理论力学10质点运动微分方程分解

合集下载

理论力学-质点动力学的基本方程 PPT课件

理论力学-质点动力学的基本方程 PPT课件
i
质点的质量与质点加速度的乘积 等于作用在质点上力系的合力。
11
§9-2 质点运动微分方程
设有质点 M ,其质量为 m ,作 用其上的力有 F1,F2,…, Fn, 合力为 FR ,根据牛顿第二定律, 质点在惯性系中的运动微分方程 有以下几种形式:
12
§9-2 质点运动微分方程
) m r Fi (t , r, r
1、牛顿第一定律 2、牛顿第二定律
(惯性定律)
d mv F dt
3、牛顿第三定律 (作用与反作用定律)
10
§9-2 质点运动微分方程
牛顿第二定律 —— 质点的动量对时间的一阶导数 等于作用在质点上力系的合力。 d (m v ) Fi dt i 当质点的质量为常量时
m a Fi
2 0 n
其通解为
A sin( n t )
20
其中常数A 和 由初始条件决定。
质点运动微分方程
——应用举例
解:3. 在运动已知的情形下求杆对球 的约束力 : 现在是已知运动,要求力,属于第 一类动力学问题。 根据已经得到的单摆运动微分方程
v2 FN mgcos m l g sin 0 l
7
当研究飞行器轨道动 力学问题时,可将飞行器 视为质点。
当研究飞行器姿态动力
学时,可将其视为刚体系或 质点系。
动力学主要研究两类问题:
若已知运动求作用力,则称为动力学第一类问题;
若已知作用力求运动,则称为动力学第二类问题。 实际工程问题多以两类问题交叉形式出现。
9
§9-1 质点动力学的基本定律
g g t 2 (1 e kt ) k k

理论力学10—动量定理

理论力学10—动量定理
v A cost vc cos(90 2t )
p 2m1vC m1vC1 m2v A m2v B
B
m2 vB 2m1vC
C
C
C1 m1vC1 O t
m2 v A A
x
v A 2l sin t
vB cos(90 t ) vc cos(90 2t ) B c vB 2l cos t B
10.2
动量定理
F fN C f ( P sin 45 mg cos30 )
从而摩擦力为
0 0 tt 0 tt
动量定理积分形式应用时经常使用投影式:
tt
若作用于质点上的外力主矢恒等于零,则质点的动量守恒, 此即质点的动量守恒定律。 若作用于质点上的外力在某轴上投影的代数和恒等于零,则 质点的动量在该轴上的投影守恒,此即质点对轴的动量守恒 定律。
10.2
动量定理
y
例4 锤的质量m=3000 kg,从高度h=1.5 m 处自由下落到受锻压的工件上,工件发生变 形历时τ=0.01s ;求锤对工件的平均压力。 解:以锤为研究对象,和工件接触后受力如图。 工件反力是变力,在短暂时间迅速变化,用 平均反力N*表示。 锤自由下落时间
d ri vi dt
代入式10—1,注意到质量mi是不变的,则有
d ri d p mi vi mi mi ri dt dt i 1 i 1

M mi
n
n
为质点系的总质量
10.1
动量与冲量
m r m r i i i i rC mi M
1 p mvC ml 2
10.1
动量与冲量
vC C

理论力学 第11章 质点运动微分方程

理论力学  第11章  质点运动微分方程
必须指出,牛顿定律中涉及到物体的运动与作用在 物体上的力。显然,物体及其所受的力不因参考系的选 择而改变,但同一物体的运动在不同的参考系中的描述 可能是完全不同的,这就存在着根本性的矛盾。这决定 了牛顿定律不可能适用于一切参考系,而只能适用于某 些参考系。凡牛顿定律成立的参考系,称为惯性参考系。 凡牛顿定律成立的参考系,称为惯性参考系 凡牛顿定律成立的参考系
2 d 2ρ dϕ m 2 −ρ = Fρ dt dt 2 d ρ dϕ d ϕ m 2 + ρ 2 = Fϕ dt dt dt
(11.6)
这就是极坐标形式的质点运动微分方程。
11.3 质点动力学的两类基本问题
应用质点运动微分方程,可以求解质点动力学的两 类基本问题。 第一类基本问题 已知质点的运动规律,即已知质点 的运动方程或质点在任意瞬时的速度或加速度,求作用 在质点上的未知力。这一类问题可归结为数学中的微分 问题。 求解该问题比较简单。若已知质点的运动方程,则 只须将它对时间求两次导数即可得到质点的加速度,代 入适当形式的质点运动微分方程,得到一个代数方程组, 求解这个方程组即可得到所求的未知力。
11.1 动力学基本定律
质点动力学的基本定律是牛顿在总结前人特别是伽 利略的研究成果的基础上,1687年在其著作《自然哲学 的数学原理》中提出来的,通常称为牛顿三定律 牛顿三定律。这些 牛顿三定律 定律是动力学的基础。
11.1 动力学基本定律
第一定律 任何质点都保持其静止的或作匀速直线运 动的状态, 动的状态,直到它受到其他物体的作用而被迫改变这 种状态为止。 种状态为止 质点保持静止或匀速直线运动状态的属性称为惯性 惯性, 惯性 质点作匀速直线运动称为惯性运动,因此第一定律又称 惯性运动, 惯性运动 惯性定律。此定律表明:质点必须受到其他物体的作用 惯性定律 时,也就是受到外力的作用时,才会改变其运动状态, 即外力是改变质点运动状态的原因 外力是改变质点运动状态的原因。 外力是改变质点运动状态的原因

理论力学 第十章振动

理论力学 第十章振动

k2
k1
δ st
r F1
k eq = k1 + k 2
δ st r
r mg
keq k1 + k 2 = m m
m
r F2
mg = k eqδ st
keq称为等效弹簧刚性系数 并联系统的固有频率为
mg k2
ωn =
当两个弹簧并联时,其等效弹簧刚度等于两个弹簧刚度的和。 这一结论也可以推广到多个弹簧并联的情形。
O
δ st
x
r F r P
则解为:
x = A sin(ω nt + θ )
表明:无阻尼自由振动是简谐振动。 其运动图线为:
x
A
x
x0
θ ωn
O
t
t+T
x
2.无阻尼自由振动的特点 无阻尼自由振动的特点
(1)固有频率 )
无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时t, 无阻尼自由振动是简谐振动,是一种周期振动,任何瞬时 ,其 运动规律x(t)总可以写为: 运动规律 ( )总可以写为: x(t)= x(t+T) () ( ) T为常数,称为周期,单位符号为s。 为常数, 周期, 符号为 为常数 称为周期 单位符号 。 这种振动经过时间T后又重复原来的运动 后又重复原来的运动。 这种振动经过时间 后又重复原来的运动。 考虑无阻尼自由振动微分方程 考虑无阻尼自由振动微分方程
r F r P
x
两个根为: r1 = +iω n 方程解表示为:
r2 = −iω n
x = C1 cos ω nt + C2 sin ω nt
x = C1 cos ω nt + C2 sin ω nt

理论力学第10章 质点动力学

理论力学第10章 质点动力学
4 4
y
ω O φ
A β
B
如滑块的质量为m,忽略摩擦及连 杆AB的质量,试求当 t 0 和 时,连杆AB所受的力。
π 2
§10.3 质点动力学的两类基本问题 例 题 10-1
运 动 演 示
§10.3 质点动力学的两类基本问题 例 题 10-1
y
解:
ω O φ
A
β B
以滑块B为研究对象,当φ=ωt 时,受力 如图。连杆应受平衡力系作用,由于不计连 杆质量,AB 为二力杆,它对滑块B的拉力F沿 AB方向。 写出滑块沿x轴的运动微分方程
§10.3 质点动力学的两类基本问题 例 题 10-3
解: 以弹簧未变形处为坐标原点O,物块
在任意坐标x处弹簧变形量为│x│ ,弹簧 力大小为 F k x ,并指向点O,如图所 示。 则此物块沿x轴的运动微分方程为
F O x
m
x
d2 x m 2 Fx kx dt
或 令
d2 x m 2 kx 0 dt
mg
绳的张力与拉力F的大小相等。
§10.3 质点动力学的两类基本问题 例 题 10-3
物块在光滑水平面上与弹簧相连,如图所示。物块
质量为 m ,弹簧刚度系数为 k 。在弹簧拉长变形量为 a 时, 释放物块。求物块的运动规律。
F
O x
m
x
§10.3 质点动力学的两类基本问题 例 题 10-3
运 动 演 示
应用质点运动微分方程,可以求解质点动力学的两类问题。
§10.3 质点动力学的两类基本问题
第一类基本问题:已知质点的运动,求作用于质点上的力。 也就是已知质点的运动方程,通过其对时间微分两次得到质 点的加速度,代入质点运动微分方程,就可得到作用在质点 上的力。

《理论力学》第10章 质心运动定理

《理论力学》第10章 质心运动定理

第10章 质心运动定理
26
3、求质心加速度
aC
aB
aCt B
aCnB
4、质心运动定理求约束力,受力分析
ma Cx FixE FA sin450 maCy FiyE FB mg FA cos 450
O
450
1m
A
C
vB
aB
450
B
FA
A
mg
x
FB
C
450
B
★理论力学电子教案
0
px const
★理论力学电子教案
第10章 质心运动定理
18
例题 图示机构,均质杆OA长l,质量为m1,滑块A的质量为m2, 滑道CD的质量为m3。OA杆在一力偶(图中未画出)作用下作 匀角度ω转动。试求O处的水平约束反力(机构位于铅直平面
内,各处摩擦不计)。 C
A
O
E
D
★理论力学电子教案
第10章 质心运动定理
第10章 质心运动定理
27
ma A
第10章 质心运动定理
14
M
C aC mg
FN
F
★理论力学电子教案
第10章 质心运动定理
§2 质点系动量、冲量
质点动量: 质点系动量:
p mv
P mivi mvC
问:刚体系动量?
元冲量:
dI F dt
冲量:
t2 t2
I dI F dt
t1
t1
15
p mv
★理论力学电子教案
第10章 质心运动定理
1
第十章 质心运动定理&动量定理
★理论力学电子教案
第10章 质心运动定理

理论力学 10 质点运动微分方程

理论力学 10 质点运动微分方程

矢径为r,加速度为a ,如图10-2所示。
由运动学知:
a
d2 r dt2
代入式(10-3)得
z
M(x,y,z)
v
r
F
y
d2 r
m dt2
F
(10-4)
o x
图10-2
式(10-4)即为质点运动微分方程的矢量形式。
10.2.2 直角坐标形式
把式(10-4)投影到直角坐标系oxyz的三个坐标 轴上(见图10-2),并注意到
的惯性。因此,质量是质点惯性的度量。
在第二定律中,力与加速度是瞬时关系,即只要某
瞬时作用在质点上的合力不为零,则在该瞬时必有确定 的加速度;没有力作用或作用的合力为零,则加速度为 零。
在地球表面,物体受重力G作用而产生的自由落体
加速度 g称为重力加速度。设物体的质量为m ,根据第
二定律则有:
G mg
第二类问题——己知作用在质点上的力,求质点 的运动。
这类问题的求解归结为质点运动微分方程的积分。
如作用于质点上的力是常力,或力为时间、位置坐标、 速度的简单函数,积分一般不会有困难;如果该函数关 系比般复杂,会使积分计算遇到困难,甚至有时只能求 得近似解。此外,要确定积分常数,还需给出质点运动 的初始条件,即质点t = 0时的初始位置,初始速度等。
可表示为
ma F
(10-1) v
式(10-1)称为质点动力学基本方程。当
质点同时受多个力作用时,式(10-1)右
M
a F
端的F应理解为是这些力的合力,即
F F
图 10-1
由该定律可知,以同样的力作用在不同质量的质
点上,质量愈大的质点获得的加速度愈小,也就不易

质点动力学的基本方程

质点动力学的基本方程

y aC x ar
FS
maa Fi m(ae ar aC ) Fi
φ
F
a
n e
φ FN
mg
沿x方 向 投 影: m (a r aen ) F mg sin Fs 2 ( 0.2) F 2 9.8 sin57.3o Fs (1) 沿y方 向 投 影: maC FN mg cos
t m m y D2 e g ( 6) m m m C1 v 0 C 2 v0 0 可得 m2 m2 0 D1 2 g D2 2 g
t m 代入( 3) , (5) 式整理可得: x v0 (1 e m )

t m2 m m y 2 g(e 1) gt
k cos v x 1 0
例三
质量为m 的小球以水平速度vo 射入静水中. 水对小球的阻力F与 小球的速度方向相反, 而大小为F = μv , μ 为阻尼系数. 忽略水对 小球的浮力. 求小球在重力和阻力作用下的运动方程.
解:
O vo F M v mg x
y
取质点分析其受力及运动: 0 m x 0 C x Ct D x x eA cos kt m y
m x
0
vo
F
v
e A cos kt y m e y A sin kt E km e y 2 A cos kt Et F k m
0 (1) x m g ( 2) m y mg y y y m 先求二阶常系数齐次的 通解 x m x x (特征根法) 0 m 1 0 2 m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的惯性。因此,质量是质点惯性的度量。
在第二定律中,力与加速度是瞬时关系,即只要某
瞬时作用在质点上的合力不为零,则在该瞬时必有确定 的加速度;没有力作用或作用的合力为零,则加速度为 零。
在地球表面,物体受重力G作用而产生的自由落体
加速度 g称为重力加速度。设物体的质量为m ,根据第
二定律则有:
G mg
这个定律不仅适用平衡的物体,而且也适用于任 何运动的物体。在动力学问题中,这一定律仍然是分 析两个物体相互作用关系的依据。
动力学基本定律中所说的静止,速度,加速度等 都只是相对于某种参考系而言的。使动力学基本定律 正确成立的参考系称为惯性参考系。在一般的工程技 术问题中,如果忽略地球的自转和公转而不致带来大 的误差时,可以近似地把固结于地球上的参考系看作 惯性参考系。在以后如无特别说明,我们均取固定在 地球上的参考系作为惯性参考系。
ax
d2 x dt2
x
ay
d2 y dt2
y
az
d2 z dt2
z
Fx
F x
Fy
F y
Fz Fz
得质点运动微分方程的直角坐标形式:
mx Fx my Fy
mz Fz
(10-5)
10.2.3 自然坐标形式
(+)
设已知质点M的轨迹曲线如图10-3 所示。以轨迹曲线上质点所在处为坐标
矢径为r,加速度为a ,如图10-2所示。
由运动学知:
a
d2 r dt2
代入式(10-3)得
z
M(x,y,z)
v
r
F
y
d2 r
m dt2
F
(10-4)
o x
图10-2
式(10-4)即为质点运动微分方程的矢量形式。
10.2.2 直角坐标形式
把式(10-4)投影到直角坐标系oxyz的三个坐标 轴上(见图10-2),并注意到
b n
τ
原点,取自然轴系,并把式(10-3)向
M
各轴投影,由运动学知:
(-) 图 10-3
d2 s
v2
a d t2 ; an ; ab 0 ; F
F
;
Fn
F n
;
Fb
F b
分别表示加速度a和力F在自然轴轴上的投影,则
d 2s
ma m dt 2
F
man
m
v2
Fn
(10-6)
其次,定律还指出,若质点的运动状态发生改 变,必定是受到其他物体的作用,这种机械作用就 是力。
第二定律(力与加速度关系定律)
质点的质量与加速度的乘积,等于作用于质点的 力的大小,加速度的方向与力的方向相同。
设质点M的质量为m,所受的力为F,由于力F的
作用所产生的加速度为a,如图10-1所示。则此定律
;
mG
g
(10-2)
在国际单位制中质量,长度和时间的单位被作为基
本单位。质量的单位为千克(kg) ,长度的单位为米(m) ,
时间的单位为秒(s)。力的单位是导出单位,即使质量为
1 kg的物体的物体获得1 m / s2的加速度的力,称为1牛
顿(N)。即
1 N=1 kg × 1m / s2
第三定律(作用与反作用定律) 两质点相互作用时,两质点间相互作用力,总是 大小相等,方向相反,沿着同一直线,分别作用在这 两质点上。
10.2 质点运动微分方程
牛顿第二定律,建立了质点的加速度与作用力的
关系。当质点受到n个力 F1,… , Fn 。作用时,式
(10-1)写成
ma F
(10-3)
将式(10-3)中的加速度表示为位置参数的导数形式, 就得到各种形式质点运动微分方程。
10.2.1 矢量形式
设质点M的质量为m,作用于其上的合力为:F F
动力学研究的两类力学模型是:质点(Particle) 和质点系(System of particles)。所谓质点,是指具 有一定质量而几何形状和尺寸大小可以忽略不计的物 体。例如,在研究地球环绕太阳的运行规律时,就可 以不考虑地球的形状和大小尺寸,而把它抽象为一个 质量集中于质心(Center of mass)的质点;所谓质点 系,是指由有限个或无限个有一定联系的质点所组成 的系统。这样,任何物体(包括固体、液体、气体) 都可以看作是某个质点系。刚体则是各质点之间距离 保持不变的特殊质点系。
第二类问题——己知作用在质点上的力,求质点 的运动。
这类问题的求解归结为质点运动微分方程的积分。
如作用于质点上的力是常力,或力为时间、位置坐标、 速度的简单函数,积分一般不会有困难;如果该函数关 系比般复杂,会使积分计算遇到困难,甚至有时只能求 得近似解。此外,要确定积分常数,还需给出质点运动 的初始条件,即质点t = 0时的初始位置,初始速度等。
动力学可分为质点动力学和质点系动力学。前者 是后者的基础。
10.1 动力学基本定律 第一定律(惯性定律) 不受任何力作用的质点,将保持静止或作匀速
直线运动。 首先,定律指出不受力作用的质点(包括受平
衡力系作用的质点),不是处于静止状态,就是保 持匀速直线运动。这种性质称为惯性(Inertia)。 第一定律阐述了物体作惯性运动的条件,故又称为 惯性定律。
10 质点运动微分方程
在静力学中,我们研究了力系的简化和平衡问题, 但没有研究物体在不平衡力系作用下将如何运动。在 运动学中,我们仅从几何学的角度描述了物体的运动 规律及其特征,并未涉及物体的质量(Mass)及其所受 的力。因此,静力学和运动学都是从不同的侧面研究 了物体的机械运动。
动力学(Dynamics)则将对物体的机械运动进行全 面分析,不仅分析物体的受力和物体的运动,而且 通过动力学定理将二者联系起来。因此,动力学是 研究物体的机械运动与作用力之间关式(10-6)称为质点运动微分方程的自然坐标形式。在
运动轨迹己知的情况下,宜采用自然形式的方程。
10.3 质点动力学的两类基本问 题
第一类问题——己知质点的运动,求作用于质点 上的。
若己知质点的运动轨迹,选择相应坐标系,列出
质点的运动方程,运用微分运算,便可求得加速度在 坐标轴上的投影,由质点运动微分方程求出要求的力。 因此,求解第一类问题归结为微分问题。
可表示为
ma F
(10-1) v
式(10-1)称为质点动力学基本方程。当
质点同时受多个力作用时,式(10-1)右
M
a F
端的F应理解为是这些力的合力,即
F F
图 10-1
由该定律可知,以同样的力作用在不同质量的质
点上,质量愈大的质点获得的加速度愈小,也就不易
改变它的运动状态。这就说明了较大的质量具有较大
相关文档
最新文档