集合中含参的问题

合集下载

集合、函数基本性质中的参数问题(含详解)

集合、函数基本性质中的参数问题(含详解)

集合、函数基本性质中的参数问题1、已知集合},1{},,3,1{m B m A ==,A B A = ,则=m ( )A 、0或3B 、0或3C 、1或3D 、1或32、已知集合}{},1{2a M x x P =≤=,若P M P = ,则a 的取值范围是( )A 、]1,(--∞B 、),1[+∞C 、]1,1[-D 、),1[]1,(+∞--∞3、设集合},1{R x a x x A ∈<-=,},51{R x x x B ∈<<=,若∅=B A ,则实数a 的取值范围是( )A 、}60{≤≤a aB 、}42{≥≤a a a 或C 、}62{≥≤a a a 或D 、}42{≤≤a a4、已知函数32)(2--=ax x x f 在区间]2,1[上单调,则实数a 的取值范围是5、已知函数)(x f y =在定义域)1,1(-上是减函数,且)12()1(-<-a f a f ,则a 的取值范围是6、已知函数⎩⎨⎧<≥+=0,10,1)(2x x x x f ,则满足不等式)2()1(x f x f >-的x 的取值范围是7、若R a ∈,且对于一切实数x 都有032>+++a ax ax ,那么a 的取值范围是( )A 、),0(+∞B 、),0[+∞C 、)4,(--∞D 、),0()4,(+∞--∞8、关于x 的方程02)12(22=-+--a x a x 至少有一个非负实根,则a 的取值范围是9、已知集合}32{},12{≤≤-=+≤≤=x x B a x a x A ,若A B A = ,求实数a 的取值范围10、已知集合}2312{+<<-=m x m x A ,}52{≥≤=x x x B 或,是否存在实数m ,使∅≠B A ?若存在,求实数m 的取值范围;若不存在,请说明理由。

11、已知函数xx x x f 32)(2++=(),2[+∞∈x ) (1)求)(x f 的最小值(2)若a x f >)(恒成立,求a 的取值范围【参考答案】1、【答案】B【解析】由A B A = 得,A B ⊆,因此A m ∈m m =∴或3=m ,解得0=m 或1=m 或3=m由集合元素的互异性得,1≠m 因此0=m 或3=m2、【答案】C【解析】由P M P = 得,P M ⊆,即12≤a ,解得11≤≤-a3、【答案】C 【解析】由1<-a x 得,11+<<-a x a依题意可知,5111≥-≤+a a 或,解得60≥≤a a 或4、【答案】),2[]1,(+∞-∞【解析】函数32)(2--=ax x x f 图象开口向上,对称轴为a x =依题意可知,当1≤a 时,函数)(x f 在区间]2,1[上单调递增;当2≥a 时,函数)(x f 在区间]2,1[上单调递减。

集合含参问题的归纳及解法

集合含参问题的归纳及解法

集合含参问题的归纳及解法1. 什么是集合含参问题?好嘞,咱们今天聊聊集合含参问题,别担心,听起来复杂,其实就是个“调皮的小问题”。

首先,集合含参问题,顾名思义,就是在某个集合里,咱们要处理带参数的元素。

这就像是你在买衣服时,不仅要考虑款式,还得看看尺寸,颜色,这些都是参数,对吧?在数学里也是如此,咱们得考虑元素的各种属性。

就拿学校的班级来说,班级里的每一个小朋友都是集合里的元素,而他们的年龄、性别、爱好等等,就是那些让他们各具特色的参数。

想象一下,你去参加一个聚会,聚会里有各种各样的人。

有的爱唱歌,有的爱跳舞,还有的喜欢讲笑话。

这些“爱好”就是他们的参数,决定了他们在聚会中的角色。

集合含参问题就是要找到这些角色,了解它们是怎么工作的。

简而言之,就是把“人”放到“集合”里,然后分析他们的参数,看看能碰撞出怎样的火花。

2. 集合含参问题的特点2.1 多样性说到集合含参问题,首先映入脑海的就是多样性。

就像春天的花园,五颜六色的花朵争奇斗艳。

不同的集合有不同的特点,参数也是各式各样,真是让人眼花缭乱!比如说,你有一个水果集合:苹果、香蕉、橙子。

它们的颜色、味道、营养价值都不一样,这些都是参数。

处理这些问题时,咱们得考虑到各种因素,才能找到最合适的解决方案。

2.2 复杂性其次,复杂性也是个重要的特点。

说实话,集合含参问题就像做大菜一样,越复杂的菜,步骤越多,调料越杂。

想要把所有参数都考虑进去,简直是难上加难!有时候,咱们可能需要借助一些数学工具,比如集合论、概率论,甚至是图论,来帮助我们理清头绪。

可别怕,慢慢来,总能找到头绪的。

3. 如何解决集合含参问题3.1 确定目标那么,解决这些问题的第一步是什么呢?那就是确定目标!就像你去旅行前,得先决定去哪里,不然到时候就成了“东跑西颠”,毫无头绪。

明确你要解决的问题,或者说,想要找出哪些参数之间的关系,这样才能有的放矢,事半功倍。

3.2 选择工具接下来,咱们得选择合适的工具。

求解含参数的两个集合的关系常用五法

求解含参数的两个集合的关系常用五法

求解含参数的两个集合的关系常用五法判断两个集合之间的关系是集合中的重要题型,且是高考热点内容之一。

其中,含参数的两个集合的关系更是许多同学解题的难点。

怎样求解含参数的两个集合的关系题呢?本文将结合例题介绍五种破解术,供大家参考:法一:借助数轴或韦恩图寻找关系例1:已知全集+=N U ,集合},3{+∈==N n n x x P ,},6{+∈==N n n x x Q , 则=U ( )A Q P ⋃B Q PC U ⋃ C Q C P U ⋃D Q C P C U U ⋃ 解:依题意得,P Q ⊂,则其韦恩图如下:由韦恩图可知,=U Q C P U ⋃,即选C法二:列举对比法例2:数集},)12{(Z m m M ∈+=π与数集},)14{(Z n n N ∈±=π之间的关系是( ) A N M ⊂ B N M = C M N ⊂ D N M ≠ 解:取 ,2,1,0,1,-=m ,则},5,3,,,{ ππππ-=M ;取 ,1,0,=n ,则},5,3,,,{ ππππ-=N . N M =∴即选B法三:合理分类讨论,利用集合有关定义准确判断例3:已知集合}),12(51{Z k k x x M ∈+==,},5154{Z k k x x N ∈±==,则集合N M ,之间的关系为( )A N M ⊂B M N ⊂C N M =D N M ≠解:设M x ∈1,则有Z k k x ∈+=111),12(51 当Z n n k ∈=,21时,5154)14(511+=+=n n x N x ∈∴1 当Z n n k ∈-=,121时,5154)124(511-=+-=n n x N x ∈∴1 从而有N M ⊂又设N x ∈2,则Z k k k x ∈±=±=2222),14(515154 )(1422Z k k ∈± 表示奇数,)(12Z n n ∈+也表示奇数Z n n k x ∈+=±=∴),12(51)14(5122 M x ∈∴2从而有M N ⊂ 综上可得,N M =法四:挖掘元素的限制条件,利用它们的差异特征解题例4(2002年全国高考题)设集合},412{Z k k x x M ∈+==,},214{Z k k x x N ∈+==,则( ) A N M = B N M ⊂C N M ⊃D Φ=⋂N M解:集合M 的元素为)(,412412Z k k k x ∈+=+=, 集合N 的元素为)(,42214Z k k k x ∈+=+= 12+k 为奇数,2+k 为整数 }{}{整数奇数⊂∴则N M ⊂故选B法五:类比不等式的传递性速判断例5:已知集合B A ⊆,},)412({Z k k x x B ∈+==π,},)214({Z k k x x C ∈+==π,那么集合A 与C 的关系为_____解:将B ,C 分别变形得},412{Z k k x x B ∈+==π,},42{Z k k x x C ∈+==π 在集合B 中,x 为π412+k ,分子为π的奇数倍; 在集合C 中,x 为π42+k ,分子为π的整数倍 C B ⊂∴ 又B A ⊆ C B A ⊂⊆∴则有C A ⊂ 综上可见,求解含参数的两个集合关系题的策略是多种多样的。

集合与常用逻辑用语(5大易错点分析+解题模板+举一反三+易错题通关)-备战24年高考数学(原卷版)

集合与常用逻辑用语(5大易错点分析+解题模板+举一反三+易错题通关)-备战24年高考数学(原卷版)

专题01集合与常用逻辑用语易错点一:对集合表示方法的理解存在偏差(集合运算问题两种解题方法)方法一:列举法列举法就是通过枚举集合中的所有元素,然后根据集合基本运算的定义求解的方法。

其解题具体步骤如下:第一步定元素:确定已知集合中的所有元素,利用列举法或画数轴写出所有元素或范围;第二步定运算:利用常见不等式或等式解未知集合;第三步:定结果。

方法二:赋值法高考对集合的基本运算的考查以选择题为主,所以我们可以利用特值法解题,即根据选项之间的明显差异,选择一些特殊元素进行检验排除,从而得到正确选项.其解题具体步骤如下:第一步:辨差异:分析各选项,辨别各选项的差异;第二步:定特殊:根据选项的差异,选定一些特殊的元素;第三步:验排除:将特殊的元素代入进行验证,排除干扰项;第四步:定结果:根据排除的结果确定正确的选项。

易错提醒:对集合表示法的理解先观察研究对象(丨前),研究对象是点集还是数集,故要对本质进行剖析,需要明确集合中的代表元素类型及代表元素的含义.例已知集合{}A x x π=<,(){},2B x y y =>,则集合A B = ()A .∅B .()2,πC .(),2-∞D .(),π-∞变式1:已知集合()(){}{}21402A x x x B y y x =--<==-,,则A B = ()A .∅B .{}14x x <<C .{}12x x <≤D .{}24x x ≤<变式2:已知集合{}22(,)1,,A x y x y x y =+=∈R ∣,{1,,}B x x y x y =+=∈R ∣,则()A .{0,1}AB = B .{(0,1),(1,0)}A B ⋂=C .A B=D .A B ⋂=∅变式3:已知集合(){}2|log 10A x x =-<,{||2|2}B x x =-<,则A B = ()A .{|12}x x <<B .{|14}x x <<C .{|04}x x <<D .{|4}x x <1.集合(){},32A x y y x ==-,(){},4B x y y x ==+,则A B = ()A .{}3,7B .(){}3,7C .{}7,3D .{}3,7x y ==2.已知集合{}220|A x x x =-<,集合(){}22log 2|B y y x ==-,则A B = ()A .(]0,1B .(,1)-∞C .(,2)-∞D .()0,23.设全集U =R ,集合{|3,10}P y y x x ==-<<,|02x Q x x ⎧⎫=≥⎨⎬+⎩⎭,则U P Q ⋂ð等于()A .()2,0-B .[)2,0-C .()3,2--D .(]3,2--4.已知集合{}N 14A x x =∈-≤<,(){}2lg 23B x y x x ==-++,则A B = ()A .{}1,2B .{}0,1,2C .[)1,3-D .()1,3-5.已知集合{|12},{|ln }M x x N x y x =-≤≤==,则M N ⋂=()A .{|12}x x -≤≤B .{|12}x x -<≤C .{|02}x x <≤D .{|1x x <-或2}x ≥1.利用两个集合之间的关系确定参数的取值范围解题时务必注意:由于∅是任意集合的子集,若已知非空集合B,集合A满足A⊆B或A⊂B,则对集合A分两种情中的含参问题况讨论:(1)当A=∅时,若集合A是以不等式为载体的集合,则该不等式无解;(2)当A≠∅时,要利用子集的概念把子集关系转化为两个集合对应区间的端点值的大小关系,从而构造关于参数的不等式(组)求解.2.利用两集合的运算求参数的值或取值范围解决此类问题的步骤一般为:第一步:化简所给集合;第二步:用数轴表示所给集合;第三步:根据集合端点间关系列出不等式(组);(4)解不等式(组);第四步:检验,通过返回代入验证端点是否能够取到.第五步:解决此类问题多利用数形结合的方法,结合数轴或Venn图进行求解.易错提醒:勿忘空集和集合本身.由于∅是任意集合的子集,是任何集合的真子集,任何集合的本身是该集合的子集,所以在进行列举时千万不要忘记。

高一必修一数学集合中含参取值范围专项练习(含解析)

高一必修一数学集合中含参取值范围专项练习(含解析)

集合中含参取值范围一.选择题(共8小题)1.集合A={x|x2=1},B={x|ax=1}.若B⊆A,则实数a的值为()A.1 B.﹣1 C.±1 D.0或±12.已知,那么实数a的取值范围是()A.(﹣1,2)B.C.D.3.设A=[﹣2,4),B={x|x2﹣ax﹣4≤0},若B⊆A,则实数a的取值范围为()A.[﹣1,2)B.[﹣1,2]C.[0,3]D.[0,3)4.设集合A={x,y|y=},B={x,y|y=k(x﹣b)+1},若对任意0≤k≤1都有A∩B≠∅,则实数b的取值范围是()A.B.C. D.5.已知集合A={1,2},B={x|mx﹣1=0},若A∩B=B,则符合条件的实数m的值组成的集合为()A.{1,}B.{﹣1,}C.{1,0,}D.{1,﹣}6.已知集合A={x|0<x<1},B={x|0<x<c},若A∪B=B,则实数c的取值范围是()A.[1,+∞)B.(0,1]C.(0,1 D.(1,+∞)7.已知集合A={x|x≤1},B={x|x>a},且A∪B=R,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,∞)D.[1,+∞)8.集合M={1,2(m2﹣2m﹣5)+(m2+5m+6)i},N={3,10},且M∩N≠∅,则实数m的值为()A.﹣2 B.﹣2或4 C.﹣2或﹣3 D.﹣2或5二.填空题(共10小题)9.不等式的解集是空集,则实数a的取值范围是.10.设全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},若N⊆M,则实数a的取值范围是.11.已知集合A={﹣1,0,a},B={x|1<2x<2},若A∩B≠∅,则实数a的取值范围是.12.已知集合A={x|﹣2≤x≤7},B={x|m+1<x<2m﹣1}且B≠∅,若A∪B=A,则m的取值范围是.13.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是.14.已知函数,A={x|t≤x≤t+1},B={x||f(x)|≥1},若集合A∩B只含有一个元素,则实数t的取值范围是.15.设f(x)=x2+ax+bcosx,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}≠∅,则满足条件的所有实数a,b 的值分别为.16.已知,B={(x,y)|y=kx+3},并且A∩B=∅,则实数k的值是.17.设集合,B={x|x2﹣3ax﹣10a2≤0,a>0},满足A∩B=A的正实数a 的取值范围是.18.已知集合S={x|kx2+1>kx},若S=R,则实数k的取值范围.三.解答题(共16小题)19.设集合A={x|x2+4a=(a+4)x,a∈R},B={x|x2+4=5x}.(1)若A∩B=A,求实数a的值;(2)求A∪B,A∩B.20.已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=∅,求a的范围.21.已知M={x|﹣2≤x≤5},N={x|a+1≤x≤2a﹣1}.(Ⅰ)若M⊆N,求实数a的取值范围;(Ⅱ)若M⊇N,求实数a的取值范围.22.A={x|x2+4x=0},B={x|x2+2(a﹣1)x+a2﹣1=0},如果A∩B=B,求实数a的取值范围.23.设集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},C={x|x≥a﹣1}.(1)求A∩B;(2)若B∪C=C,求实数a的取值范围.24.已知集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+a﹣1=0},C={x|x2﹣mx+2=0},且A∪B=A,A∩C=C,求实数a,m的取值范围.25.设A={x|x2﹣3x+2=0},B={x|x2﹣ax+2=0},B⊆A.(1)写出集合A的所有子集;(2)若B非空,求a的值.26.已知集合A={x||x﹣1|<2},B={x|x2+ax﹣6<0},C={x|x2﹣2x﹣15<0}(1)若A∪B=B,求a的取值范围;(2)是否存在a的值使得A∪B=B∩C,若存在,求出a的值;若不存在,请说明理由.27.已知集合A={x|(x+1)(x﹣5)≤0},集合B={x|1﹣m≤x≤1+m,m>0}.(1)若A⊆B,求实数m的取值范围;(2)若集合A∩B中有且只有3个整数,求实数m的取值范围.28.已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.(1)当m=3时,求集合A∩B;(2)若B⊆A,求实数m的取值范围.29.已知集合A={(x,y)|y=﹣x2+mx﹣1},B={(x,y)|x+y=3,0≤x≤3},若A∩B中有且仅有一个元素,求实数m的取值范围.30.设集合A={x|﹣2≤x≤4},B={x|m﹣3≤x≤m}.(1)若A∩B={x|2≤x≤4},求实数m的值;(2)若A⊆(∁R B),求实数m的取值范围.31.已知集合A={x∈R|mx2﹣2x+1=0},在下列条件下分别求实数m的取值范围:(Ⅰ)A=∅;(Ⅱ)A恰有两个子集;(Ⅲ)A∩(,2)≠∅32.设x、y为实数,集合A={(x,y)|y2﹣x﹣1=0},B={(x,y)|16x2+8x﹣2y+5=0},C={(x,y)|y=kx+b},问是否存在自然数k,b使(A∪B)∩C=∅?33.已知A={x|a≤x≤2a+3},B={x|x2+5x﹣6>0}.(Ⅰ)若A∩B={x|1<x≤3},求a的值;(Ⅱ)若A∪B=B,求a的取值范围.34.已知集合A={x|x2﹣2ax+4a2﹣3=0},集合B={x|x2﹣x﹣2=0},集合C={x|x2+2x﹣8=0}(1)是否存在实数a,使A∩B=A∪B?若存在,试求a的值,若不存在,说明理由;(2)若A∩B≠∅,A∩C=∅,求a的值.参考答案一.选择题(共8小题)1.解:∵A={x|x2=1}={﹣1,1},又∵B⊆A,当a=0,ax=1无解,故B=∅,满足条件若B≠∅,则B={﹣1},或Q={1},即a=﹣1,或a=1故满足条件的实数a∈{0,1,﹣1}故选D.2.解:由题意,,由A∪B=A得B⊆A又B={x|x2﹣2ax+a+2≤0}当B是空集时,符合题意,此时有△=4a2﹣4a﹣8<0解得﹣1<a<2 当B不是空集时,有解得2≤a≤综上知,实数a的取值范围是故选D3.解:∵△=a2+16>0∴设方程x2﹣ax﹣4=0的两个根为x1,x2,(x1<x2)即函数f(x)=x2﹣ax﹣4的两个零点为x1,x2,(x1<x2)则B=[x1,x2]若B⊆A,则函数f(x)=x2﹣ax﹣4的两个零点在[﹣2,4)之间注意到函数f(x)的图象过点(0,﹣4)∴只需,即解得:0≤a<3故选 D4.解:∵集合A={(x,y)|y=},B={(x,y)|y=k(x﹣b)+1},当0≤k≤1时,都有A∩B≠∅,作图如下:集合A中的曲线为以(0,0)为圆心,2为半径的上半圆,B中的点的集合为过(b,1)斜率为k的直线上的点,由图知,当k=0时,显然A∩B≠∅,当k=1,y=(x﹣b)+1经过点B(2,0)时,b=3;当k=1,直线y=(x﹣b)+1与曲线y=相切与点A时,由圆心(0,0)到该直线的距离d==2得:b=1﹣2或b=1+2(舍).∵0≤k≤1时,都有A∩B≠∅,∴实数b的取值范围为:1﹣2≤b≤3.故选C.5.解:∵A∩B=B∴B⊆A当m=0时,B=∅满足要求;当B≠∅时,m+1=0或2m﹣1=0m=﹣1或∴综上,m∈{1,0,}.故选C.6.解:若A∪B=B,则A⊆B,∵A={x|0<x<1},B={x|0<x<c},∴c≥1.故选A.7.解:∵集合A={x|x≤1},B={x|x>a},且A∪B=R,∴a≤1,故选B.8.解:∵M={1,2,(m2﹣2m﹣5)+(m2+5m+6)i},N={3,10},且M∩N≠∅,∴(m2﹣2m﹣5)+(m2+5m+6)i=3或(m2﹣2m﹣5)+(m2+5m+6)i=10即m2+5m+6=0解得m=﹣2或﹣3当m=﹣2时(m2﹣2m﹣5)+(m2+5m+6)i=3,满足条件当m=﹣3时(m2﹣2m﹣5)+(m2+5m+6)i=10,满足条件故选C二.填空题(共10小题)9.解:根据题意,x+a>0的解集为x>﹣a,若这个不等式组的解集是空集,则ax>﹣1,即ax+1>0的解集为{x|x≤﹣a}的子集,分析可得,当a≤﹣1,成立;故答案为a≤﹣1.10.解:∵全集U=R,集合M={x|2a﹣1<x<4a,a∈R},N={x|1<x<2},N⊆M,∴2a﹣1≤1 且4a≥2,解得2≥a≥,故实数a的取值范围是[,1],故答案为[,1].11.解:∵集合A={﹣1,0,a},B={x|1<2x<2}={x|0<x<1},若A∩B≠∅,则有0<a<1,故实数a的取值范围是(0,1),故答案为(0,1).12.解:据题意得B⊆A,故有﹣2≤m+1<2m﹣1≤7,转化为不等式组,解得2<m≤4,故m的取值范围是的取值范围是(2,4],故答案为(2,4].13.解:∵B={x|1<x<2},∴∁R B={x|x≥2或x≤1},要使A∪(∁R B)=R,则a≥2.故答案为:{a|a≥2}.14.解:∵要解|f(x)|≥1,需要分类来看,当x≥0时,|2x2﹣4x+1|≥1∴2x2﹣4x+1≥1或2x2﹣4x+1≤﹣1∴x≥2或x≤0或x=1∵x≥0∴x≥2或x=1或x=0.当x<0时,|﹣2x2﹣4x+1|≥1∴﹣2x2﹣4x+1≥1或﹣2x2﹣4x+1≤﹣1∴﹣2≤x≤0或x或x∵x<0∴﹣2≤x<0或x综上可知B={x|﹣2≤x≤0或x或x≥2或x=1}∵集合A∩B只含有一个元素,∴t>0且t+1<2∴0<t<1故答案为:0<t<115.解:∵f(x)=x2+ax,∴f(f(x))=f(x)2+af(x)=(x2+ax)2+a•(x2+ax)=x4+2ax3+(a2+a)x2+a2x 当a=0时,{x|f(x)=0,x∈R}={x|f(f(x))=0,x∈R}={0}≠∅当a≠0时,{x|f(x)=0,x∈R}={0,﹣a}.若{x|f(f(x))=0,x∈R}={0,﹣a},则f(f(﹣a))=0且除0,﹣a外f(f(x))=0无实根,即x2+ax+a=0无实根即a2﹣4a<0,即0<a<4综上满足条件的所有实数a的取值范围为0≤a<4故答案为:0≤a<4,b=0.16.解:由题意A集合是一条直线y=﹣3x﹣2去掉一个点(﹣1,1)后所有点的集合,B集合是直线y=kx+3所有点的集合,∵A∩B=∅,∴两直线的位置关系是平行,或者是直线y=kx+3过点(﹣1,1),若两直线平行,则有k=﹣3,若直线y=kx+3过点(﹣1,1),则有1=﹣k+3,得k=2综上,实数k的值是2或﹣3故答案为2或﹣317.解:集合={x|﹣2≤x≤2}.B={x|x2﹣3ax﹣10a2≤0,a>0}={x|(x+2a)(x﹣5a)≤0,a>0}={x|﹣2a≤x≤5a}.因为A∩B=A,所以A⊆B,即,所以,即a≥1.所以正实数a的取值范围是[1,+∞).故答案为:[1,+∞).18.解:要使若S=R,需kx2+1>kx恒成立,即kx2 ﹣kx+1>0 恒成立.当k=0时,不等式即1>0,显然成立;当k≠0时,由△=k2﹣4k<0,解得0<k<4,故答案为:[0,4).三.解答题(共16小题)19.解:A={x|x=4或x=a},B={x|x=1或x=4}(1)因为A∩B=A 所以A⊆B,由此得a=1 或a=4(2)若a=1,则A=B={1,4}所以A∪B={1,4},A∩B={1,4}若a=4,则A={4}所以A∪B={1,4},A∩B={4}若a≠1,4则A={4,a}所以A∪B={1,4,a},A∩B={4}20.解:当A=φ时即2a>a+3,a>3,此时满足A∩B=∅当A≠∅时,2a≤a+3,即a≤3时有2a≥﹣1且a+3≤5解之﹣≤a≤2,此时A∩B=φ综合知,当a>3或﹣≤a≤2时,A∩B=∅21.解:(Ⅰ)由于M⊆N,则,解得a∈Φ(4分)(Ⅱ)①当N=Φ时,即a+1>2a﹣1,有a<2.(6分)②当N≠Φ,则,解得2≤a≤3,综合①②得a的取值范围为a≤3.(10分)22.解:A═{x|x2+4x=0}={0,﹣4},∵A∩B=B,∴B⊆A.方程x2+2(a﹣1)x+a2﹣1=0的判别式△=4(a﹣1)2﹣4(a2﹣1)=﹣8a+8.①若B=∅时,△=﹣8a+8<0,得a>1;②若B={0},则,解得a=1;③B={﹣4}时,则,此时方程组无解.④B={0,﹣4},,此时a无解.综上所述实数a≥1.23.解:(1)由题意知,B={x|2x﹣4≥x﹣2}={x|x≥2}…(2分)所以A∩B={x|2≤x<3}…(4分)(2)因为B∪C=C,所以B⊆C…(6分)所以a﹣1≤2,即a≤3…(8分)24.解:由已知得A={1,2},B={x|(x﹣1)(x﹣a+1)=0},由A∪B=A,知B⊆A由题意知B≠∅,当B为单元素集合时,只需a=2,此时B={1}满足题意.当B为双元素集合时,只需a=3,此时B={1,2}也满足题意所以a=2或a=3,由A∩C=C得C⊆A当C是空集时,△=m2﹣8<0即﹣2<m<2;当C为单元素集合时,△=0,求得m=±2,此时C={}或C={﹣},此时不满足题意,舍去;当C为双元素集合时,C只能为{1,2},此时m=3;综上m的取值集合为{m|m=3或﹣2<m<2}.25.解:(1)由题可知:A={1,2},所以集合A的所有子集是:∅,{1},{2},{1,2};(2)因为B非空集合,①当集合B中只有一个元素时,由判别式等于0可得,a2﹣8=0可知,此时B={x|x2﹣ax+2=0}={x|=0},故B={}或{},不满足B⊆A,不符合题意.②当集合B中有两个元素时,A=B,比较方程的系数可得a=3,综上可知:a=3.26.解:(1)∵集合A={x||x﹣1|<2},B={x|x2+ax﹣6<0},C={x|x2﹣2x﹣15<0}∴A={x|﹣1<x<3},C={x|﹣3<x<5},由A∪B=B知A⊆B,令f(x)=x2+ax﹣6,则得﹣5≤a≤﹣1(2)假设存在a的值使A∪B=B∩C,由A∪B=B∩C⊆B知A⊆B,又B⊆A∪B=B∩C知B⊆C,∴A⊆B⊆C.由(1)知若A⊆B,则a∈[﹣5,1]当B⊆C时,△=a2+24>0,∴B≠φ∴得≤a≤﹣1,故存在a∈[﹣,﹣1]满足条件.27.解:(1)因为A={x|(x+1)(x﹣5)≤0}={x|﹣1≤x≤5},因为m>0,所以B≠∅.所以要使A⊆B,则有,即,即m≥4,所以实数m的取值范围[4,+∞).(2)因为A={x|﹣1≤x≤5},B={x|1﹣m≤x≤1+m,m>0}.则集合B的区间长度为1+m﹣(1﹣m)=2m.所以集合A∩B中有且只有3个整数,则有2m<4,即m<2.此时1+m<3.①若2≤1+m<3,要使集合A∩B中有且只有3个整数,此时三个整数为0,1,2,所以满足﹣1<1﹣m≤0,即,解得,所以此时1≤m<2.②若1≤1+m<2,要使集合A∩B中有且只有3个整数,此时三个整数为﹣1,0,1,所以满足1﹣m≤﹣1,即,解得,所以m无解.综上实数m的取值范围[1,2).28.解:(1)当m=3时,B={x|4≤x≤5}(3分)则A∩B={x|4≤x≤5}(6分)(2)①当B为空集时,得m+1>2m﹣1,则m<2(9分)当B不为空集时,m+1≤2m﹣1,得m≥2由B⊆A可得m+1≥﹣2且2m﹣1≤5(12分)得2≤m≤3(13分)故实数m的取值范围为m≤3(14分)29.解:由题意,得x2﹣(m+1)x+4=0在[0,3]上有且仅有一解①△=0时方程有相等实根且在[0,3]上,即∴m=3②△>0时,只有一根在[0,3]上,两根之积为4>0,则32﹣(m+1)×3+4<0,∴m>所以,m的取值范围是m=3或m>.30.解:(1)因为A={x|﹣2≤x≤4},B={x|m﹣3≤x≤m}.所以若A∩B={x|2≤x≤4},则,即,所以m=5.…6分(2)因为B={x|m﹣3≤x≤m},所以∁R B={x|x>m或x<m﹣3},要使A⊆(∁R B),则m﹣3>4或m<﹣2,即m>7或m<﹣2.即m的取值范围为(﹣∞,﹣2)∪(7,+∞)…12分.31.解:(Ⅰ)若A=∅,则关于x的方程mx2﹣2x+1=0 没有实数解,则m≠0,且△=4﹣4m<0,所以m>1;(3分)(Ⅱ)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2﹣2x+1=0 恰有一个实数解,讨论:①当m=0时,x=,满足题意;②当m≠0时,△=4﹣4m,所以m=1.综上所述,m的集合为{0,1}.(3分)(Ⅲ)若A∩(,2)≠∅,则关于x的方程mx2=2x﹣1在区间(,2)内有解,这等价于当x∈(,2)时,求值域:m=﹣=1﹣(﹣1)2∴m∈(0,1](5分)32.解:若(A∪B)∩C=∅,则(A∩C)∪(B∩C)=φ,即有A∩C=φ且B∩C=φ.即方程组①与②都无解,由①得k2x2+(2kb﹣1)x+b2﹣1=0,若k=0,则方程为x=1﹣b2,有解,不满足条件,若k≠0,则判别式△=(2kb﹣1)2﹣4k2(b2﹣1)<0,即1﹣4kb+4k2<0,∴b>,∵k,b是自然数,∴b>1,由②得16x2+8x﹣2(kx+b)+5=0,即16x2+(8﹣2k)x+5﹣2b=0,判别式△=(8﹣2k)2﹣4×16(5﹣2b)<0,即k2﹣8k+32b﹣64<0,即b<=≤=,∵b是自然数,∴b=2,此时k=1,故存在b=2,k=1使得使(A∪B)∩C=∅.33.解:∵A={x|a≤x≤2a+3},B={x|x2+5x﹣6>0}=[x|x<﹣6,或x>1}.﹣﹣﹣﹣﹣﹣(2分)(Ⅰ)依题意A∩B={x|1<x≤3}可得,∴a=0.﹣﹣﹣﹣(5分)(Ⅱ)由A∪B=B得A⊆B.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)①当A=∅时满足题意,此时,a>2a+3,解得a<﹣3.﹣﹣﹣﹣﹣﹣(8分)②当A≠∅时,有,解得a>1.﹣﹣﹣﹣﹣﹣(11分)综上,a的取值范围为:a<﹣3 或a>1,即(﹣∞,﹣3)∪(1,+∞).﹣﹣﹣﹣﹣﹣(12分)34.解:(1)若A∩B=A∪B,则A=B,∵B={x|x2﹣x﹣2=0}={﹣1,2},∴A={﹣1,2},即﹣1和2是方程x2﹣2ax+4a2﹣3=0的两个根,∴,∴.满足△>0,∴a存在.(2)若A∩B≠∅,A∩C=∅,则可知集合A中无﹣4,2.至少有一个元素﹣1.当A={﹣1}时,当A={﹣1,x},x≠2时,.。

通关练01 集合含参问题【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)

通关练01 集合含参问题【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)

通关练01集合含参问题○通○关○练一、单选题1.(2022·江西·高一期末)已知集合{}21,,3A x x =+,若2A ∈,则x =()A .-1B .0C .2D .3【解析】因为2A ∈,所以2x =或232x +=,而232x +=无实数解,所以2x =.故选:C.2.(2022·重庆·高一期末)已知集合{}{}011,0,3A B a ==-+,,,且A B ⊆,则a 等于()A .﹣3B .﹣2C .0D .1【解析】因为A B ⊆,所以312a a +=⇒=-,经验证,满足题意.故选:B.3.(2022·全国·高一期末)已知集合(){}2210M x x x =-=,{}2,N m m =,若M N M ⋃=,则m =()A .-1B .-1或0C .±1D .0或±1【解析】依题意,(){}{}22101,0,1M x x x =-==-.由M N M ⋃=,可知:N M ⊆,又2m m ≠,则1m =-.故选:A .4.(2022·贵州毕节·高一期末)已知集合{2=<-A x x 或}1≥x ,{}B x x a =≥,若A B =R ,则实数a 的取值范围是()A .(,2)-∞-B .(,2]-∞-C .(,1)-∞D .(2,1)-【解析】因为集合{2=<-A x x 或}1≥x ,{}B x x a =≥,A B =R ,所以2a ≤-.故选:B .5.(2022·河北·武安市第一中学高一期末)已知集合{|24}A x x =< ,{|3}B x a x a =-<+ ,若AB A =,则a 取值范围是()A .2a >-B .1a ≤-C .1aD .2a >【解析】由A B A =知A B ⊆,故234a a -<⎧⎨+⎩,解得1a .故选:C .6.(2022·广东深圳·高一期末)已知集合{}2,1A =-,{}|2B x ax ==,若A B B =,则实数a 值的集合为()A .{}1-B .{}2C .{}1,2-D .{}1,0,2-【解析】A B B B A ⋂=⇒⊆,{} 2,1A =-的子集有{}{}{},2,1,2,1φ--,当B φ=时,显然有0a =;当{}2B =-时,221a a -=⇒=-;当{}1B =时,122a a ⋅=⇒=;当{}2,1B =-,不存在a 符合题意,实数a 值集合为{}1,0,2-,故选:D.7.(2022·四川雅安·高一期末)设集合{|12},{|}A x x B x x a =-≤<=<,若A B ⋂≠∅,则a 的取值范围是()A .12a -<≤B .2a >C .1a ≥-D .1a >-【解析】集合{|12},{|}A x x B x x a =-≤<=<,因为A B ⋂≠∅,所以集合A ,B 有公共元素,所以1a >-.故选:D二、多选题8.(2022·全国·高一开学考试)已知集合{}4A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是()A .−1B .1C .−2D .2【解析】因为B A ⊆,所以4A ∈A ,则444a ≤⎧⎪≤,解得1a ≤.故选:ABC9.(2022·全国·高一课时练习)设集合{}3M x a x a =<<+,{2N x x =<或}4x >,则下列结论中正确的是()A .若1a <-,则M N ⊆B .若4a >,则M N ⊆C .若MN =R ,则12a <<D .若MN ≠∅,则12a <<【解析】对于A ,若1a <-,则32a +<,则M N ⊆,故A 正确;对于B ,若4a >,则显然任意x M ∈,则4x >,则x ∈N ,故M N ⊆,故B 正确;对于C ,若MN =R ,则234a a <⎧⎨+>⎩,解得12a <<,故C 正确;对于D ,若M N ⋂=∅,则234a a ≥⎧⎨+≤⎩,不等式无解,则若MN ≠∅,a R∈,故D 错误.故选:ABC.10.(2022·全国·高一课时练习)已知{}22,3,23U m m =+-,{}|1|,2A m =+,{}5U A =ð,则m 的值可以是()A .-4B .-2C .2D .4【解析】由题可知213235m m m ⎧+=⎪⎨+-=⎪⎩,解得2m =或4m =-,故选:AC.11.(2022·全国·高一课时练习)设集合{|28}S x x =-≤≤,{|04}T x x =<<,若集合()R P T S ⊆⋂ð,则P 可以是()A .{|20}x x -≤≤B .{|57}x x ≤≤C .{|28}x x -≤≤D .{|15}x x ≤≤【解析】因为{|28}S x x =-≤≤,{|04}T x x =<<,所以{0R T x x =≤ð或4}x ≥,(){20R T S x x ⋂=-≤≤ð或48}x ≤≤,因为集合()R P T S ⊆⋂ð,所以集合P 可以是AB.故选:AB12.(2022·广东汕尾·高一期末)设{}29140A x x x =-+=,{}10B x ax =-=,若A B B =,则实数a 的值可以为()A .2B .12C .17D .0【解析】集合2{|9140}{2A x x x =-+==,7},{|10}B x ax =-=,又A B B =,所以B A ⊆,当0a =时,B =∅,符合题意,当0a ≠时,则1{}B a =,所以12a=或17a =,解得12a =或17a =,综上所述,0a =或12或17,故选:BCD三、填空题13.(2022·上海·同济大学第二附属中学高一期末)若集合2{|(1)320,}A x a x x x R =-+-=∈有且仅有两个不同的子集,则实数a =_______;【解析】因为集合A 仅有两个不同子集,所以集合A 中仅有1个元素,当10a -=时,23x =,所以23A ⎧⎫=⎨⎬⎩⎭,满足要求;当10a -≠时,()()234120a ∆=--⋅-=,所以18a =-,此时方程解为43x =,即43A ⎧⎫=⎨⎬⎩⎭,满足要求,所以18a =-或1,故答案为:18-或1.14.(2022·湖南·长沙市雨花区教育科学研究所高一期末)已知集合{}22,2A a a a =++,若3A ∈,求实数a 的值_______【解析】由题可知:集合{}22,2A a a a =++,3A∈所以23a +=或223+=a a ,则1a =或32a =-当1a =时,222a a a +=+,不符合集合元素的互异性,当32a =-时,1,32⎧⎫=⎨⎬⎩⎭A ,符合题意所以32a =-,故答案为:32-15.(2022·浙江丽水·高一期末)已知集合2{|0}A x x ax b =++=,{3}=B ,若A B =,则实数a b +=_______【解析】因为{3}A B ==,所以方程20x ax b ++=有且只有一个实数根3x =,所以240390a b a b ⎧-=⎨++=⎩,解得6,9a b =-=.所以3a b +=故答案为:3四、解答题16.(2022·浙江台州·高一期末)已知集合{|12)A x x =-<,集合{(1)()0}B x x x a =-+<∣.(1)求集合A ;(2)若2A B -∈⋃,求实数a 的取值范围.【解析】(1)|1|2,x -<212,x ∴-<-<13x ∴-<<,所以集合{13}A xx =-<<∣;(2)2A B -∈⋃且2A -∉,2B∴-∈(21)(2)0a ∴--⋅-+<,解得:2a >,∴实数a 的取值范围是(2,)+∞.17.(2022·重庆市巫山大昌中学校高一期末)已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-.(1)求A .(2)求A B A ⋃=,求m 的取值范围.【解析】(1)由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-,又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆;当B ≠∅时,则满足2121m m m m≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<,综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.18.(2022·云南德宏·高一期末)设全集U =R ,集合{}{}2230,242A x x x B x x x =--<=-≥-∣∣(1)求()U A B ⋂ð;(2)若集合{20}C xx a =+>∣满足C C =B∪,求实数a 的取值范围.【解析】(1)化简{}{}13,2A x x B x x =-<<=≥,{}23A B x x ⋂=≤<,所以{()2U A B x x ⋂=<ð或3}x ≥.(2){2a C x x ⎫=>-⎬⎭,因为C C =B∪,所以B C ⊆,所以242aa -<⇒>-,所以实数a 的取值范围为()4,-+∞19.(2022·湖南邵阳·高一期末)已知集合{}2320A x x x =-+-≥,{}1B x m x m =-≤≤+.(1)若1m =时,求A B ;(2)若A B ⊆,求实数m 的取值范围.【解析】(1)因为2320x x -+-≥,所以23+20x x ≤-,所以={12}A x x ≤≤.因为1m =,所以{12}B x x =-≤≤所以{12}A B x x ⋂=≤≤(2)因为A B ⊆,所以112m m -≤⎧⎨+≥⎩,解得m 1≥,∴实数m 的取值范围为m 1≥.20.(2022·内蒙古赤峰·高一期末)已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若AB A =,求a 的取值范围.【解析】(1)∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅,∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤,∴a 的取值范围为[]1,2-;(2)∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a <-或5a >,∴a 的取值范围是()(),45,-∞-+∞.21.(2022·山西·高一期末)已知集合{}20,R,R A x x ax b a b =-+=∈∈.(1)若{}1A =,求a ,b 的值;(2)若{}Z 30B x x =∈-<<,且A B =,求a ,b 的值.【解析】(1)若{}1A =,则有210Δ40a b a b -+=⎧⎨=-=⎩,解得21a b =⎧⎨=⎩;(2){}{}Z 302,1B x x =∈-<<=--,因为A B =,所以42010a b a b ++=⎧⎨++=⎩,解得32a b =-⎧⎨=⎩.22.(2022·广东佛山·高一期末)已知集合{}121A x a x a =-<<+,{}2650B x x x =-+<.(1)若A B =,求实数a 的值;(2)若A B =∅,求实数a 的取值范围.【解析】(1)由已知得{}{}265015B x x x x x =-+<=<<A B=11215a a -=⎧∴⎨+=⎩,解得2a =;(2)AB =∅当A =∅时,121a a -≥+,得2a ≤-当A ≠∅时,15121a a a -≥⎧⎨-<+⎩或211121a a a +≤⎧⎨-<+⎩,解得20a -<≤或6a ≥,综合得0a ≤或6a ≥.23.(2022·湖北黄石·高一期末)已知集合{}02A x x =≤≤,{}B 32x a x a =≤≤-.(1)若()R A B ⋃=R ð,求实数a 的取值范围;(2)若A B B ≠I ,求实数a 的取值范围.【解析】(1)因为{}A 02x x =≤≤,所以{R A |0x x =<ð或}2x >.又{}B 32x a x a =≤≤-且()R A B ⋃=R ð,所以320322a aa a -≥⎧⎪≤⎨⎪-≥⎩,解得0a ≤所以实数a 的取值范围是(],0-∞.(2)若A B B =(补集思想),则B A ⊆.当B =∅时,32-<a a ,解得1a >;当B ≠∅时,32a a -≥,即1a ≤,要使B A ⊆,则0322a a ≥⎧⎨-≤⎩,得112a ≤≤.综上,知A B B =时,12a ≥,所以A B B ≠I 时,实数a 的取值范围是12a a ⎧⎫<⎨⎬⎩⎭.24.(2022·河北·武安市第一中学高一期末)已知集合{}2|80,,{|10,}A x x x m m R B x ax a R =-+=∈=-=∈,且A B A ⋃=.(1)若{}3A B =ð,求m ,a 的值.(2)若12m =,求实数a 组成的集合.【解析】(1)因为{}2|80,,{|10,}A x x x m m R B x ax a R =-+=∈=-=∈,且A B A ⋃=.{}3A B =ð,所以3A ∈,3B ∉,所以23830m -⨯+=解得15m =,所以{}3,5A =,所以5∈B ,所以510a -=,解得15a =(2)若12m =,所以{}2,6A =,因为A B A ⋃=,所以B A ⊆当B =∅,则0a =;当{}2B =,则12a =;当{}6B =,则16a =;综上可得110,,26a ⎧⎫∈⎨⎬⎩⎭25.(2022·全国·益阳平高学校高一期末)已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭.(1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=ð,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.【解析】(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤.(2)若选①A B =∅:则满足15a ->或13a +≤-,所以a 的取值范围为{|4a a ≤-或6}a >.若选②()R B A R ⋃=ð:所以{|1R A x x a =<-ð或1}x a >+,则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤.若选③A B B ⋃=:由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩所以a 的取值范围为{|24}a a -<≤26.(2022·河北沧州·高一期末)已知集合401x A xx ⎧⎫-=≤⎨⎬-⎩⎭,{}12B x a x a =+≤≤.(1)当2a =时,求A B ;(2)若B A ⋂=∅R ð,求实数a 的取值范围.【解析】(1){}14A x x =<≤,当2a =时,{}|34B x x =≤≤,∴{}|14A B x x ⋃=<≤;(2)A =R ð{|1x x ≤或x >4},当B =∅时,B A ⋂=∅R ð,12a a >+,解得a <1;当B ≠∅时,若B A ⋂=∅R ð,则241121a a a a ≤⎧⎪⎨⎪≥⎩,+>,+,解得12a ≤≤.综上,实数a 的取值范围为{}2a a ≤.27.(2022·广东惠州·高一期末)已知全集U =R ,集合{}2120A x x px =++=,集合{}250B x x x q =-+=.(1)若集合A 中只有一个元素,求p 的值;(2)若{}3A B ⋂=,求A B .【解析】(1)因为集合A 中只有一个元素,所以24120p ∆=-⨯=,p =±(2)当{}3A B ⋂=时,22331203530p q ⎧+⨯+=⎨-⨯+=⎩,7p =-,6q =,此时{}3,4A =,{}2,3B =,{}2,3,4A B =28.(2022·重庆·高一期末)已知集合{}3A x x =≤,{}31B x a x a =-<<+.(1)当4a =时,求()A B R ð;(2)若AB A =,求实数a 的取值范围.【解析】(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-ð或3}x >,当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<<ð;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩,∴实数a 的取值范围为6a >,即(6,)a ∈+∞.29.(2022·广西玉林·高一期末)已知集合{}22150M x x x =--≤,{}N x m x m =-≤≤.(1)当1m =时,求M N ⋂以及()()R R M N ⋃痧;(2)若MN ,求实数m 的取值范围.【解析】(1){}{}(3)(5)035M x x x x x =+-≤=-≤≤,当1m =时,[1,1]N =-,∴[1,1]=-MN ,(,3)(5,)=-∞-+∞R M ð,(,1)(1,)=-∞-+∞R N ð,∴()()(,1)(1,)=-∞-+∞R RM N 痧.(2)由题可知M N Ü,所以35-≤-⎧⎨≥⎩m m ,解得5m ≥,所以实数m 的取值范围为[5,)+∞.30.(2022·青海海东·高一期末)已知集合{2}A xa x a =<<∣,{4B x x =≤-或}3x ≥.(1)当2a =时,求()R A B ⋃ð;(2)若R A B ⊆ð,求a 的取值范围.【解析】(1)由题意得{}24A x x =<<,{4B x x =≤-或}3x ≥,{}R 43B x x ∴=-<<ð,故(){}R 44A B x x ⋃=-<<ð.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a ,故a 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦.。

集合中含参问题的分类讨论

集合中含参问题的分类讨论

集合中含参问题的分类讨论
【例1】设集合M={x|ax2-2x+2=0,x∈R}至多有一个元素,求实数a的取值范围.
变式:若集合A={x∈R∣ax2+ax+1=0}其中只有一个元素,则a=( )
A. 4
B. 2
C. 0
D. 0或4
【例2】已知集合A={x|−2≤x≤5}
(1)若B⊆A,B={x|m+1≤x≤2m−1},求实数m的取值范围;
(2)若A⊆B,B={x|m−6≤x≤2m−1},求实数m的取值范围;
(3)若A=B,B={x|m−6≤x≤2m−1},求实数m的取值范围.
<1或x>5},若A∩B=∅,则实数a的取值范围是__________. 变式1:已知集合A={x|2a≤x≤a+3},B={x∣x-
变式2:已知A={x∣x<−2或x>3},B={x|a≤x≤2a−1},若B⊆A,求实数a的取值范围.
【例3】已知集合A={x∣x2−3x+2=0},B={x∣x2−ax+a−1=0},C={x∣x2−mx+2=0},且A∪B=A,A∩C=C,求实数a,m 的取值范围.
变式1:设集合A={x∣x2+4x-5=0},B={x∣x2+2ax-2a2+3=0}
(1)若A∩B=B,求实数a的取值范围;
(2)若A∩B=A,求实数a的取值范围.
变式2:已知集合A={x|x2-ax+a2-19=0},集合B={x|x2-5x+6=0},是否存在实数a,使得集合A、B能同时满足下列
三个条件:(1)A≠B;(2)A∪B=B;(3)(A∩B)
若存在,求出这样的实数a的值;若不存在,试说明理由.。

集合中含参数问题的解题策略

集合中含参数问题的解题策略

ʏ黄冠品集合中的含参数问题是同学们学习的一个难点,也是一个易错点㊂其学习要点在于正确判断端点值能否取到,注意考虑空集的情况㊂高考关于集合中含参数问题的考查,往往与集合元素的性质㊁函数㊁解不等式等相结合,考查的题型主要以小题形式出现,有时渗透于解答题之中㊂类型一:元素与集合关系中的含参数问题例1已知集合M={-2,3x2+3x-4,x2+x-4},若2ɪM,求x的值㊂解:当3x2+3x-4=2时,3x2+3x-6=0,即x2+x-2=0,解得x=-2或x= 1,经检验知,x=-2或x=1均不合题意㊂当x2+x-4=2时,x2+x-6=0,解得x=-3或x=2,经检验知,x=-3或x=2均符合题意㊂故所求的x=-3或x=2㊂感悟:已知某元素属于或不属于集合,求参数的取值范围要注意两点:一是合理确定分类标准,做到不重不漏;二是要将所求得的参数值代入集合进行检验㊂变式1:已知集合A={(x,y)|2x-y+ m>0},B={(x,y)|x+y-nɤ0},若点P(2,3)ɪA,且P(2,3)∉B,求m,n的取值范围㊂提示:将点(2,3)代入集合A中的不等式,可得4-3+m>0,解得m>-1㊂因为点(2,3)不在集合B中,所以将点(2,3)代入B中得到2+3-nɤ0不成立,即2+3-n>0成立,解得n<5㊂故所求的mɪ(-1,+ɕ),nɪ(-ɕ,5)㊂类型二:集合中元素个数的含参数问题例2已知集合A={x|k x2-8x+16= 0},若集合A中只有一个元素,则实数k组成的集合为㊂解:当k=0时,方程k x2-8x+16=0可化为-8x+16=0,解得x=2,此时集合A={2},满足题意;当kʂ0时,要使集合A=x|k x2-8x+16=0{}中只有一个元素,需满足方程k x2-8x+16=0有两个相等的实数根,可得Δ=64-64k=0,解得k=1,此时集合A={4},满足题意㊂综上所述,k=0或k=1,即实数k组成的集合为{0,1}㊂感悟:解答本题要注意两点:一是解集是否可能为空集;二是二次项系数是否为0㊂变式2:已知集合{x|(x-2)(x2-2x+ a)=0,xɪR}中的所有元素之和为2,则实数a的取值集合为㊂提示:由集合{x|(x-2)(x2-2x+a)= 0,xɪR}中的所有元素之和为2,可知2是其中的一个元素,所以x2-2x+a=0的解为x=0或无解,所以a=0或Δ=4-4a<0㊂由4-4a<0,解得a>1㊂故实数a的取值集合为{a|a=0或a>1}㊂类型三:集合基本关系中的含参数问题例3集合A={x|x<-1或xȡ3}, B={x|a x+1ɤ0},若B⊆A,则实数a的取值范围是()㊂A.-13,1[)B.-13,1[]C.(-ɕ,-1)ɣ[0,+ɕ)D.-13,0[)ɣ(0,1)解:根据B⊆A,分B=⌀和Bʂ⌀两种情况讨论,建立不等关系,求出实数a的取值范围㊂①当B=⌀时,即a x+1ɤ0无解,此时a=0,满足题意㊂②当Bʂ⌀时,即a x+1ɤ0有解,当a>0时,可得xɤ-1a,要使B⊆A,需满足a>0,-1a<-1, {解得0<a<1;当a<3知识结构与拓展高一数学2022年9月Copyright©博看网. All Rights Reserved.0时,可得x ȡ-1a ,要使B ⊆A ,需满足a <0,-1aȡ3,{解得-13ɤa <0㊂综上可知,实数a 的取值范围是-13,1[)㊂应选A ㊂感悟:由两个集合间的包含关系求参数的取值范围,常利用子集将问题转化为方程(组)或不等式(组)求解㊂变式3:若集合A ={x |2a +1ɤx ɤ3a -5},B ={x |5ɤx ɤ16},则能使A ⊆B 成立的所有实数a 组成的集合为( )㊂A .{a |2ɤa ɤ7} B .{a |6ɤa ɤ7}C .{a |ɤ7}D .⌀提示:要使A ⊆B 成立,可分集合A =⌀和A ʂ⌀两种情况讨论求解㊂当A =⌀时,由2a +1>3a -5,可得a <6;当A ʂ⌀时,由2a +1ɤ3a -5,3a -5ɤ16,2a +1ȡ5,ìîíïïï解得6ɤa ɤ7㊂综上所述,a ɤ7㊂应选C ㊂类型四:集合基本运算中的含参数问题例4 已知集合A ,B 满足A ɣB ={x |1<x ɤ3},A ɘB ={x |a ɤx ɤa +1},则实数a 的取值范围为( )㊂A .[1,2]B .(1,2)C .(1,2]D .⌀解:由题意知A ɘB ⊆A ɣB ,所以a >1,a +1ɤ3,{解得a ɪ(1,2]㊂应选C ㊂感悟:集合基本运算中的含参数问题,一般通过观察得到两个集合间元素之间的关系,再列方程或不等式求解㊂变式4:已知集合S ={x ɪN |x ɤ5},T ={x ɪR |x 2=a 2},且S ɘT ={1},则S ɣT =( )㊂A.{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3}提示:集合S ={x ɪN |x ɤ5}={0,1,2}㊂因为S ɘT ={1},所以1ɪT ,所以a 2=1,所以T ={x ɪR |x 2=a 2}={-1,1}㊂由此可得,S ɣT ={-1,0,1,2}㊂应选C ㊂1.已知集合M ={a ,2a -1,2a 2-1},若1ɪM ,则M 中所有元素之和为( )㊂A.3B .1C .-3D .-1提示:若a =1,则2a -1=1,这时与集合中元素的互异性矛盾;若2a -1=1,则a =1,这时与集合中元素的互异性矛盾㊂故2a 2-1=1,解得a =1(舍去)或a =-1,所以M ={-1,-3,1},可得元素之和为-3㊂应选C ㊂2.已知集合A ={x |x 2>2x },B ={x |a <x <a +1},若A ɘB =⌀,则a 的取值范围是( )㊂A.[0,1]B .[-1,0]C .(0,1)D .(-1,1)提示:因为A ={x |x 2>2x }={x |x >2或x <0},B ={x |a <x <a +1},又A ɘB =⌀,所以a ȡ0且a +1ɤ2,解得0ɤa ɤ1㊂应选A ㊂3.已知集合A ={a ,b ,2},B ={2,b2,2a },若A =B ,则a +b =㊂提示:利用A =B 求解㊂由a =b2,b =2a ,{解得a =0,b =0{或a =14,b =12㊂ìîíïïïï当a =b =0时,集合A ,B中的元素均不满足互异性;当a =14,b =12时,A =B =14,12,2{},符合题意,这时a +b =14+12=34㊂同理,由a =2a ,b =b2,{解得a =0,b =0{或a =0,b =1,{所以a =0,b =1{满足题意,这时a +b =1㊂综上所述,a +b =1或a +b =34㊂作者单位:江苏省郑梁梅高级中学(责任编辑 郭正华)4知识结构与拓展 高一数学 2022年9月Copyright ©博看网. All Rights Reserved.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合中含参的问题
1、已知{}53<<-=x x A ,{}a x x B <=,若满足B A ⊆,则实数a 的取值范围为________。

2、已知{}52≤≤-=x x A ,{}121-≤≤+=m x m x B ,若满足A B ⊆,则实数m 的取值范围为________。

3、已知集合{}0232≤+-=x x x A ,{}a x x B ≤≤=1,且φ≠B .若A 是B 的真子集,则实数a 的取值范围为________若A B ⊆,则实数a 的取值范围为________。

4、已知集合{},0232=+-=x x x A 且集合{},02=-=mx x B 若A B ⊆,则实数m 的取值范围为________。

5、已知集合{}
R a x ax x A ∈=+-=,0232,若集合A 中不含任何元素,则实数a 的取值范围为________;若集合A 中只有一个元素,则实数a =_____;若集合A 中至多有一个元素,则实数a 的取值范围为________。

6、设集合A={x|2420,x x a x R +-+=∈}
(1)、当A 中有两个元素时,求a 的取值范围.
(2)、当A 中没有元素时,求a 的取值范围.
(3)、当A 中有且仅有一个元素,求a 的取值范围. <
7、已知集合{}220A x x x =-=,集合{}2220B x x ax a a =-+-=,x R ∈.
(1)若A B B =,求实数a 的值;
(2)若A B B =,求实数a 的取值范围.
8、…
9、已知集合A={x|2x -2x-8≤0},集合B={x|2x -(2m-3)x+(3)m m -≤0,m ∈R},
10、(Ⅰ)若A ∩B=[2,4],求实数m 的值; 11、(Ⅱ)设全集为R ,若A ⊆∁R B ,求实数m 的取值范围.
9、已知集合{}220A x x x a =+->,
(1)A R =,求实数a 的取值范围.
(2)若[)1,B =+∞,A B A =,求实数a 的取值范围.

10、已知集合A={222(1)(1)0y y a a y a a -++++>},B={}215,0322
y y x x x =-+≤≤ (1)若A ∩B φ=,求实数a 的取值范围.
(2)当a 取使不等式21()x ax x R +≥∈恒成立的a 的最小值时,求(∁R A )∩B.
/。

相关文档
最新文档