2020-2021郑州市第七中学七年级数学上期末一模试卷带答案
2020-2021七年级数学上期末一模试卷带答案

2020-2021七年级数学上期末一模试卷带答案一、选择题1.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15 D .0.8×40%x ﹣x =15 2.若x =5是方程ax ﹣8=12的解,则a 的值为( ) A .3B .4C .5D .63.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是04.下列方程变形中,正确的是( ) A .由3x =﹣4,系数化为1得x =34- B .由5=2﹣x ,移项得x =5﹣2C .由123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=1 D .由 3x ﹣(2﹣4x )=5,去括号得3x+4x ﹣2=55.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( ) A .350元 B .400元 C .450元 D .500元 6.整式23x x -的值是4,则2398x x -+的值是( )A .20B .4C .16D .-47.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中: ①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( ) A .1个 B .2个 C .3个 D .4个 8.钟表在8:30时,时针与分针的夹角是( )度.A .85B .80C .75D .709.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =-B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 10.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( ) A .2.897×106B .28.94×105C .2.897×108D .0.2897×10711.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③12.已知x =y ,则下面变形错误的是( ) A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 二、填空题13.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.14.已知﹣5a 2m b 和3a 4b 3﹣n 是同类项,则12m ﹣n 的值是_____. 15.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元. 16.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.17.小强在解方程时,不小心把一个数字用墨水污染成了x=1﹣•5x -,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是_______.18.明明每天下午5:40放学,此时钟面上时针和分针的夹角是_____.19.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.20.若()2320m n -++=,则m+2n 的值是______。
郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库

郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+4.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 5.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-26.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab += 7.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( )A .1B .﹣1C .3D .﹣3 8.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33°9.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y10.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 12.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,213.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯14.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .150二、填空题16.已知单项式245225n m xy x y ++与是同类项,则m n =______.17.|-3|=_________;18.9的算术平方根是________19.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20 餐费¥100.00-20.如图,在长方形ABCD 中,10,13.,,,AB BC E F G H ==分别是线段,,,AB BC CD AD 上的定点,现分别以,BE BF 为边作长方形BEQF ,以DG 为边作正方形DGIH .若长方形BEQF 与正方形DGIH 的重合部分恰好是一个正方形,且,BE DG =,Q I 均在长方形ABCD 内部.记图中的阴影部分面积分别为123,,s s s .若2137S S =,则3S =___21.若方程11222m x x --=++有增根,则m 的值为____. 22.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.23.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.24.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.25.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)26.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).27.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.28.已知代数式235x -与233x -互为相反数,则x 的值是_______. 29.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.30.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.34.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个. 35.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.36.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库

郑州市第七中学人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元 B .(b ﹣10)元 C .(10a ﹣b )元 D .(b ﹣10a )元 2.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°3.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .64.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3 B .-3C .±3D .+65.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm6.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm7.方程3x +2=8的解是( ) A .3B .103C .2D .128.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .10.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A.45人B.120人C.135人D.165人二、填空题13.﹣30×(1223-+45)=_____.14.若a a-=,则a应满足的条件为______.15.如图,在数轴上点A,B表示的数分别是1,–2,若点B,C到点A的距离相等,则点C所表示的数是___.16.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC2BC=,若OC6=,则线段AB的长为______.17.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.18.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.19.小颖按如图所示的程序输入一个正数x,最后输出的结果为131.则满足条件的x值为________.20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 21.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.22.数字9 600 000用科学记数法表示为 .23.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 24.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.三、压轴题25.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.26.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.27.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.28.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?29.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)30.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.31.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.32.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a元,剩下(b﹣10a)元.【详解】购买单价为a元的物品10个,付出b元(b>10a),应找回(b﹣10a)元.故选D.【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.B解析:B 【解析】 【分析】直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案. 【详解】解:∵一个角的补角是130︒, ∴这个角为:50︒,∴这个角的余角的度数是:40︒. 故选:B . 【点睛】此题主要考查了余角和补角,正确把握相关定义是解题关键.3.C解析:C 【解析】 【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项, ∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.4.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.5.C解析:C 【解析】 【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.7.C解析:C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】解:移项、合并得,36x=,化系数为1得:2x=,故选:C.【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.8.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m时水位变化记作0.6m+,∴水位下降0.8m时水位变化记作0.8m-,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)× =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45)=﹣30×12+(﹣30)×(23-)+(﹣30)×45=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 14.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.15.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.16.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 17.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.18.从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.19.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.20.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.21.【解析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 22.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.23.5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+BC=8+3=11cm ;当C 点在B 点左侧时,如图所示:AC=AB ﹣BC=8﹣3=5cm ;所以线段AC 等于11cm 或5cm.24.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x -【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.三、压轴题25.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t ﹣2+5t =22,解得t =3.答:若点P 、Q 同时出发,2.5或3秒时P 、Q 之间的距离恰好等于2;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.26.(1)13-;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)由点P比点Q迟1秒钟出发,则点Q运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C表示的数为a,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-3+2t=1-t,解得:t=43,∴41 3233 -+⨯=-,∴点P和点Q相遇时的位置所对应的数为13 -;(2)∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,若点P和点Q在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43. 【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.27.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC 第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC =∠AOC -∠AON =90°-∠MOC 即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON 列方程求解即可.【详解】(1)①∵∠AOC =30°,OM 平分∠BOC ,∴∠BOC =2∠COM =2∠BOM =150°,∴∠COM =∠BOM =75°.∵∠MON =90°,∴∠CON =15°,∠AON +∠BOM =90°,∴∠AON =∠AOC ﹣∠CON =30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.28.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.本题考查了一元一次方程的应用.解题的关键是分类讨论.29.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.30.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314.【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =,∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.31.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,。
2020-2021郑州市七年级数学上期末试卷及答案

2020-2021郑州市七年级数学上期末试卷及答案一、选择题1.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个 B .2个C .3个D .4个2.下列计算正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a3.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个.A .2B .3C .4D .54.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1D .(-1)n x 2n +15.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中:①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( ) A .1个B .2个C .3个D .4个6.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C7.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 8.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是( )A.63B.70C.96D.1059.如图所示,C、D是线段AB上两点,若AC=3cm,C为AD中点且AB=10cm,则DB=()A.4cm B.5cm C.6cm D.7cm10.关于的方程的解为正整数,则整数的值为()A.2B.3C.1或2D.2或311.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+612.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=12AB C.AE=34AB D.AD=12CB二、填空题13.如果方程2x+a=x﹣1的解是﹣4,那么a的值为_____.14.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块;(2)第n个图案有白色地面砖______块.15.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2020的值为___.16.已知多项式kx2+4x﹣x2﹣5是关于x的一次多项式,则k=_____.17.元旦期间,某超市某商品按标价打八折销售.小田购了一件该商品,付款64元.则该项商品的标价为_____18.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度. 19.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A 、B 、D 三点在同一直线上,BM 为∠CBE 的平分线,BN 为∠DBE 的平分线,则∠MBN 的度数为_____________.20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.三、解答题21.一个角的补角比它的余角的2倍大20゜,求这个角的度数.22.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差值 (单位:千克) -1 -0.5 0 0.5 1 1.5 箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克? (2)若苹果每千克售价4元,则这15箱苹果可卖多少元? 23.解方程(1)2(4)3(1)x x x --=- (2)1-314x -=32x+ 24.解方程:(1)()43203x x --= (2)23211510x x -+-= 25.已知点O 为直线AB 上的一点,∠BOC =∠DOE =90°(1)如图1,当射线OC 、射线OD 在直线AB 的两侧时,请回答结论并说明理由; ①∠COD 和∠BOE 相等吗? ②∠BOD 和∠COE 有什么关系?(2)如图2,当射线OC 、射线OD 在直线AB 的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:①3a+2b无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a²,∴原式计算错误,故此选项符合题意;④∵53a−33a=23a,∴原式计算错误,故此选项符合题意;⑤∵a⩽0,−|a|=a,∴原式计算错误,故此选项符合题意;故选D2.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.3.B解析:B 【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B .4.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负, ∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n ,∴第n 个单项式是 (-1)n -1x 2n +1 ,故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.5.B解析:B 【解析】 【分析】根据图示,可得c <a <0,b >0,|a |+|b |=|c |,据此逐项判定即可. 【详解】 ∵c <a <0,b >0, ∴abc >0,∴选项①不符合题意. ∵c <a <0,b >0,|a |+|b |=|c |, ∴b +c <0, ∴a (b +c )>0, ∴选项②符合题意. ∵c <a <0,b >0,|a |+|b |=|c |, ∴-a +b =-c , ∴a -c =b ,∴选项③符合题意.∵a cb ab c++=-1+1-1=-1, ∴选项④不符合题意, ∴正确的个数有2个:②、③. 故选B . 【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.6.C解析:C 【解析】 【分析】根据相反数的定义进行解答即可. 【详解】解:由A 表示-2,B 表示-1,C 表示0.75,D 表示2.根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C. 【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.7.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.8.C解析:C 【解析】 【分析】设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=967,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.【点睛】此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.9.A解析:A【解析】【分析】从AD的中点C入手,得到CD的长度,再由AB的长度算出DB的长度.【详解】解:∵点C为AD的中点,AC=3cm,∴CD=3cm.∵AB=10cm,AC+CD+DB=AB,∴BD=10-3-3=4cm.故答案选:A.【点睛】本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.10.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.11.D解析:D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.D解析:D【解析】【分析】由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=14AB,即可知A、B、C均正确,则可求解【详解】由C,D,E是线段AB的四等分点,得AC=CD=DE=EB=14 AB,选项A,AC=14AB⇒AB=4AC,选项正确选项B,CE=2CD⇒CE=12AB,选项正确选项C,AE=3AC⇒AE=34AB,选项正确选项D,因为AD=2AC,CB=3AC,所以2AD CB3,选项错误故选D.【点睛】此题考查的是线段的等分,能理解题中:C,D,E是线段AB的四等分点即为AC=CD=DE=EB=14AB,是解此题的关键二、填空题13.【解析】【分析】把x=﹣4代入方程得到一个关于a的一次方程即可求解【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1解得:a=3故答案是:3【点睛】本题考查了一元一次方程方程的求解掌握一元一次方程的解解析:【解析】【分析】把x=﹣4,代入方程得到一个关于a的一次方程,即可求解.【详解】把x=﹣4代入方程得:﹣8+a=﹣4﹣1,解得:a=3.故答案是:3.【点睛】本题考查了一元一次方程方程的求解,掌握一元一次方程的解法是解题的关键.14.18块(4n+2)块【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:61014所以可以发现每一个图形都比它前一个图形多4个白色地砖所以可以得到第n个图案有白色地面砖(4n+2)解析:18块(4n+2)块.【解析】【分析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,所以第4个图应该有4×4+2=18块, 第n 个图应该有(4n+2)块. 【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.15.﹣1010【解析】【分析】先求出前6个值从而得出据此可得答案【详解】当a1=0时a2=﹣|a1+1|=﹣1a3=﹣|a2+2|=﹣1a4=﹣|a3+3|=﹣2a5=﹣|a4+4|=﹣2a6=﹣|a5解析:﹣1010. 【解析】 【分析】先求出前6个值,从而得出221||2n n a a n n -=-+=-,据此可得答案. 【详解】 当a 1=0时, a 2=﹣|a 1+1|=﹣1, a 3=﹣|a 2+2|=﹣1, a 4=﹣|a 3+3|=﹣2, a 5=﹣|a 4+4|=﹣2, a 6=﹣|a 5+5|=﹣3, …∴a 2n =﹣|a 2n ﹣1+2n |=﹣n , 则a 2020的值为﹣1010, 故答案为:﹣1010. 【点睛】本题主要考查数字的变化规律,解题的关键是计算出前几个数值,从而得出221||2n n a a n n -=-+=-的规律.16.【解析】【分析】根据多项式的次数的定义来解题要先找到题中的等量关系然后列出方程求解【详解】多项式kx2+4x ﹣x2﹣5是关于的一次多项式多项式不含x2项即k -1=0k =1故k 的值是1【点睛】本题考査解析:【解析】 【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解. 【详解】多项式kx 2+4x ﹣x 2﹣5是关于的一次多项式,∴多项式不含x 2项,即k -1=0,k =1. 故k 的值是1. 【点睛】本题考査了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.17.80【解析】【分析】根据标价×=售价求解即可【详解】解:设该商品的标价为x 元由题意08x =64解得x =80(元)故答案为:80元【点睛】考查了销售问题解题关键是掌握折扣售价标价之间的关系解析:80【解析】【分析】根据标价×10折扣=售价,求解即可. 【详解】解:设该商品的标价为x 元由题意0.8x =64解得x =80(元)故答案为:80元.【点睛】考查了销售问题,解题关键是掌握折扣、售价、标价之间的关系. 18.160【解析】∵4至9的夹角为30°×5=150°时针偏离9的度数为30°×=10°∴时针与分针的夹角应为150°+10°=160°故答案为160° 解析:160【解析】∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×13=10°,∴时针与分针的夹角应为150°+ 10°=160°.故答案为160°. 19.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°BM 为∠CBE 的平分线∴∠EBM=∠CBE=×75°=375°∵BN 为∠DBE 的平分线∴∠EBN=∠EBD=×6解析:5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°,BM 为∠CBE 的平分线,∴∠EBM=12∠CBE =12×75°=37.5°, ∵BN 为∠DBE 的平分线,∴∠EBN=12∠EBD=12×60°=30°, ∴∠MBN=∠EBM+∠EBN==37.5°+30°=67.5°故答案为:67.5°. 20.42或11【解析】【分析】由程序图可知输出结果和x 的关系:输出结果=4x-2当输出结果是166时可以求出x 的值若计算结果小于等于149则将结果4x-2输入重新计算结果为166由此求出x 的之即可【详解解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.三、解答题21.这个角的度数是20°.【解析】试题分析:设这个角的度数是x ,则它的补角为:180,x -余角为90x -;根据题意列出方程,再解方程即可,试题解析:设这个角的度数是x ,则它的补角为:180,x -余角为90x -;由题意,得:(180)2(90)20.x x ---=解得:20.x =答:这个角的度数是20.22.(1)2.5;(2)1216【解析】【分析】(1)最重的一箱苹果比标准质量重1.5千克,最轻的一箱苹果比标准质量轻1千克,则两箱相差2.5千克;(2)先求得15箱苹果的总质量,再乘以4元即可.【详解】解:(1)1.5﹣(﹣1)=2.5(千克).答:最重的一箱比最轻的一箱多重2.5千克;(2)(﹣1×1)+(﹣0.5×3)+0×4+0.5×3+1×2+1.5×2=﹣1﹣1.5+0+1.5+2+3=4(千克).20×15+4=304(千克)304×4=1216(元).答:这15箱苹果可卖1216元.【点睛】本题考查了正负数和有理数的加减混合运算,理解正负数的意义是解答此题的关键.23.(1)52x =-;(2)15x =- 【解析】【分析】(1)先去括号,再移项、合并同类项,系数化为1即可得答案;(2)先去分母,再去括号、移项、合并同类项,系数化为1即可得答案;【详解】(1)2(4)3(1)x x x --=-去括号得:2833x x x -+=-移项合并得:25x =-系数化为1得:52x =-. (2)1-314x -=32x + 去分母得:()43123x x --=+(), 去括号得:43126x x -+=+,移项、合并同类项得:51x =-,系数化为1得:15x =-. 【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤为:去分母、去括号、移项、合并同类项、系数化为1;熟练掌握解一元一次方程的解法及步骤是解题关键.24.(1)x=9;(2)x=8.5【解析】【分析】(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可; (2)方程两边都乘以10得到()()2232110x x --+=,再去括号得462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.【详解】解:(1)()43203x x --=,46033x x -+=,763x =,9x =;(2)23211510x x -+-=, ()()2232110x x --+=,462110---=,x xx=,2178.5x=.25.(1)①∠COD=∠BOE,理由见解析;②∠BOD+∠COE=180°,理由见解析;(2)①∠COD=∠BOE,②成立【解析】【分析】(1)①根据等式的性质,在直角的基础上都加∠BOD,因此相等,②将∠BOD+∠COE转化为两个直角的和,进而得出结论;(2)①根据同角的余角相等,可得结论,②仍然可以将∠BOD+∠COE转化为两个直角的和,得出结论.【详解】解:(1)①∠COD=∠BOE,理由如下:∵∠BOC=∠DOE=90°,∴∠BOC+∠BOD=∠DOE+∠BOD,即∠COD=∠BOE,②∠BOD+∠COE=180°,理由如下:∵∠DOE=90°,∠AOE+∠DOE+∠BOD=∠AOB=180°,∴∠BOD+∠AOE=180°﹣90°=90°,∴∠BOD+∠COE=∠BOD+∠AOE+∠AOC=90°+90°=180°,(2)①∠COD=∠BOE,∵∠COD+∠BOD=∠BOC=90°=∠DOE=∠BOD+∠BOE,∴∠COD=∠BOE,②∠BOD+∠COE=180°,∵∠DOE=90°=∠BOC,∴∠COD+∠BOD=∠BOE+∠BOD=90°,∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,因此(1)中的∠BOD和∠COE的关系仍成立.【点睛】本题考查角度的和差计算,找出图中角度之间的关系,熟练掌握同角的余角相等是解题的关键.。
2020-2021七年级数学上期末一模试卷及答案

2020-2021七年级数学上期末一模试卷及答案一、选择题1.下列计算中:①325a b ab +=;②22330ab b a -=;③224246a a a +=;④33532a a -=;⑤若0,a ≤a a -=-,错误..的个数有 ( ) A .1个 B .2个 C .3个 D .4个2.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 3.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( )A .16号B .18号C .20号D .22号4.下面的说法正确的是( )A .有理数的绝对值一定比0大B .有理数的相反数一定比0小C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等5.如图所示运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .3B .6C .4D .2 6.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( )A .不赚不亏B .赚8元C .亏8元D .赚15元 7.下列计算结果正确的是( ) A .22321x x -= B .224325x x x += C .22330x y yx -= D .44x y xy +=8.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米 9.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5± 10.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .16cmB .24cmC .28cmD .32cm11.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a 是方框①,②,③,④中的一个数,则数a 所在的方框是( )A .①B .②C .③D .④ 12.如图所示,C 、D 是线段AB 上两点,若AC=3cm ,C 为AD 中点且AB=10cm ,则DB=( )A .4cmB .5cmC .6cmD .7cm二、填空题13.如图,都是由同样大小的黑棋子按一定规律摆出的图案,第1个图有2颗黑棋子,第2个图有7颗黑棋子,第3个图有14颗黑棋子…依此规律,第5个图有____颗黑棋子,第n 个图有____颗棋子(用含n 的代数式示).14.若25113m n a b -+与-3ab 3-n 的和为单项式,则m+n=_________. 15.某同学做了一道数学题:“已知两个多项式为 A 、B ,B=3x ﹣2y ,求 A ﹣B 的 值.”他误将“A ﹣B”看成了“A+B”,结果求出的答案是 x ﹣y ,那么原来的 A ﹣B 的值应该是 .16.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.17.如图,若CB=4cm ,DB=7cm ,且D 是AC 的中点,则AC=_____cm .18.如图,将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后个数是7,第4行最后一个数是10,…依此类推,第20行第2个数是_____,第_____行最后一个数是2020.19.现在的时间是9时20分,此时钟面上时针与分针夹角的度数是_____度.20.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.三、解答题21.凤凰景区的团体门票的价格规定如下表购票人数1~55 56~110 111~165 165以上 价格(元/人) 10 9 8 7某校七年级(1)班和(2)班共112人去凤凰景区进行研学春游活动,当两班都以班为单位分别购票,则一共需付门票1060元.(1)你认为由更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班53人也一同前去春游时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需付门票多少元?22.已知:点C 在直线AB 上,AC=8cm ,BC=6cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.23.如图,C 为线段AB 上一点,点D 为BC 的中点,且AB =18cm ,AC =4CD . (1)图中共有 条线段;(2)求AC 的长;(3)若点E 在直线AB 上,且EA =2cm ,求BE 的长.24.如图,数轴的单位长度为1.(1)如果点A ,D 表示的数互为相反数,那么点B 表示的数是多少?(2)如果点B ,D 表示的数互为相反数,那么图中表示的四个点中,哪一点表示的数的绝对值最大?为什么?(3)当点B 为原点时,若存在一点M 到A 的距离是点M 到D 的距离的2倍,则点M 所表示的数是____.25.计算: (1)223(3)3(2)|4|-÷-+⨯-+-(2)1515158124292929⎛⎫⎛⎫⎛⎫-⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】【详解】解:①3a+2b 无法计算,故此选项符合题意;②3ab²−3b²a=0,正确,不合题意;③∵2a²+4a²=6a ²,∴原式计算错误,故此选项符合题意; ④∵53a −33a =23a ,∴原式计算错误,故此选项符合题意;⑤∵a ⩽0,−|a|=a ,∴原式计算错误,故此选项符合题意;故选D2.D【解析】【分析】【详解】解:由数轴上a,b两点的位置可知0<a<1,a<﹣1.根据异号的两个数相加,取绝对值较大的加数的符号,知a+b<0,故选项A错;数轴上右边的数总比左边的数大,所以a﹣b>0,故选项B错误;因为a,b异号,所以ab<0,故选项C错误;因为a,b异号,所以ba<0,故选项D正确.故选:D.3.C解析:C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x,则左日期=x﹣1,右日期=x+1,上日期=x﹣7,下日期=x+7,依题意得x﹣1+x+1+x﹣7+x+7=80解得:x=20故选:C.【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.4.D解析:D【解析】【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【详解】A.有理数的绝对值一定大于等于0,故此选项错误;B.正有理数的相反数一定比0小,故原说法错误;C.如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D.互为相反数的两个数的绝对值相等,正确.故选:D.【点睛】此题主要考查了绝对值和相反数,正确掌握相关定义是解题关键.5.D解析:D【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.6.C解析:C【解析】试题分析:设盈利的进价是x元,则x+25%x=60,x=48.设亏损的进价是y元,则y-25%y=60,y=80.60+60-48-80=-8,∴亏了8元.故选C.考点:一元一次方程的应用.7.C解析:C【解析】【分析】根据合并同类项法则逐一进行计算即可得答案.【详解】A. 22232x x x -=,故该选项错误;B. 222325x x x +=,故该选项错误;C. 22330x y yx -=,故该选项正确D. 4x y +,不能计算,故该选项错误故选:C【点睛】本题考查了合并同类项,掌握合并同类项法则是解题的关键.8.B解析:B【解析】【分析】设小长方形的宽为a 厘米,则其长为(m-2a )厘米,根据长方形的周长公式列式计算即可.【详解】设小长方形的宽为a 厘米,则其长为(m-2a )厘米,所以图2中两块阴影部分周长和为:2222224m a n a n m a a n (厘米)故选:B【点睛】本题考查的是列代数式及整式的化简,能根据图形列出代数式是关键.9.A解析:A【解析】【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4, ∵ab <0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.10.B解析:B【解析】【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.【详解】设小长方形的长为xcm,宽为ycm,根据题意得:7-x=3y,即7=x+3y,则图②中两块阴影部分周长和是:2×7+2(6-3y)+2(6-x)=14+12-6y+12-2x=14+12+12-2(x+3y)=38-2×7=24(cm).故选B.【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.11.B解析:B【解析】【分析】先假定一个方框中的数为A,再根据日历上的数据规律写出其他方框中的数,相加得5a+5,即可作出判断.【详解】解:设中间位置的数为A,则①位置数为:A−7,④位置为:A+7,左②位置为:A−1,右③位置为:A+1,其和为5A=5a+5,∴a=A−1,即a为②位置的数;故选B.【点睛】本题主要考查一元一次方程的应用,关键在于题干的理解.12.A解析:A【解析】【分析】从AD的中点C入手,得到CD的长度,再由AB的长度算出DB的长度.解:∵点C为AD的中点,AC=3cm,∴CD=3cm.∵AB=10cm,AC+CD+DB=AB,∴BD=10-3-3=4cm.故答案选:A.【点睛】本题考查了两点间的距离以及线段中点的性质,利用线段之间的关系求出CD的长度是解题的关键.二、填空题13.n(n+2)﹣1【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系找到规律利用规律求解即可【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×解析:[n(n+2)﹣1].【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】观察知:第1图有1×3﹣1=2个黑棋子;第2图有2×4﹣1=7个黑棋子;第3图有3×5﹣1=14个黑棋子;第4图有4×6﹣1=23个黑棋子;第5图有5×7﹣1=34个黑棋子…图n有n(n+2)﹣1个黑棋子.故答案为:34;[n(n+2)﹣1].【点睛】本题考查了图形的变化类问题,解题的关键是能够仔细观察并发现图形的变化规律,难度不大.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.4【解析】【分析】若与-3ab3-n的和为单项式a2m-5bn+1与ab3-n是同类项根据同类项的定义列出方程求出nm的值再代入代数式计算【详解】∵与-3ab3-n的和为单项式∴a2m-5bn+1与解析:4【解析】若25113m n a b -+与-3ab 3-n 的和为单项式,a 2m-5 b n+1 与ab 3-n 是同类项,根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算.【详解】 ∵25113m n a b -+与-3ab 3-n 的和为单项式, ∴a 2m-5 b n+1 与ab 3-n 是同类项,∴2m-5=1,n+1=3-n ,∴m=3,n=1. ∴m+n=4.故答案为4.【点睛】本题考查的知识点是同类项的定义,解题关键是熟记同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同.15.﹣5x+3y 【解析】【分析】先根据题意求出多项式A 然后再求A-B 【详解】解:由题意可知:A+B=x-y ∴A=(x-y )-(3x-2y )=-2x+y ∴A-B=(-2x+y )-(3x-2y )=-5x+3解析:﹣5x+3y .【解析】【分析】先根据题意求出多项式A ,然后再求A-B .【详解】解:由题意可知:A+B=x-y ,∴A=(x-y )-(3x-2y )=-2x+y ,∴A-B=(-2x+y )-(3x-2y )=-5x+3y .故答案为:-5x+3y .【点睛】本题考查多项式的加减运算,注意加减法是互为逆运算.16.99【解析】(+()+()+25×4=-1+100=99故答案为99解析:99【解析】(0.25)++(1-)0.5++(0.75-)+25×4=-1+100=99.故答案为99.17.【解析】解:CD=DB ﹣BC=7﹣4=3cmAC=2CD=2×3=6cm 故答案为6 解析:【解析】解:CD =DB ﹣BC =7﹣4=3cm ,AC =2CD =2×3=6cm .故答案为6.18.674【解析】【分析】根据图中前几行的数字可以发现数字的变化特点从而可以写出第n 行的数字个数和开始数字从而可以得到第20行第2个数是几和第多少行的最后一个数字是2020【详解】解:由图可知第一行1个解析:674【解析】【分析】根据图中前几行的数字,可以发现数字的变化特点,从而可以写出第n 行的数字个数和开始数字,从而可以得到第20行第2个数是几和第多少行的最后一个数字是2020.【详解】解:由图可知,第一行1个数,开始数字是1,第二行3个数,开始数字是2,第三行5个数,开始数字是3,第四行7个数,开始数字是4,…则第n 行(2n ﹣1)个数,开始数字是n ,故第20行第2个数是20+1=21,令2020﹣(n ﹣1)=2n ﹣1,得n =674,故答案为:21,674.【点睛】考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出相应的数字所在的位置.19.160【解析】∵4至9的夹角为30°×5=150°时针偏离9的度数为30°×=10°∴时针与分针的夹角应为150°+10°=160°故答案为160° 解析:160【解析】∵“4”至“9”的夹角为30°×5=150°,时针偏离“9”的度数为30°×13=10°,∴时针与分针的夹角应为150°+ 10°=160°.故答案为160°. 20.100【解析】【分析】设进价是x 元则(1+20)x =200×06解方程可得【详解】解:设进价是x 元则(1+20)x =200×06解得:x =100则这件衬衣的进价是100元故答案为100【点睛】考核知解析:100【解析】【分析】设进价是x 元,则(1+20%)x =200×0.6,解方程可得. 【详解】解:设进价是x 元,则(1+20%)x =200×0.6,解得:x =100.则这件衬衣的进价是100元.故答案为100.【点睛】考核知识点:一元一次方程的应用.三、解答题21.(1)有更省钱的购票方式,能节省164元;(2)(2)班人数为52,(1)班人数为60;(3)共需1162元【解析】【分析】(1)最节约的办法就是团体购票,节省的钱=1060-团体票价;(2)由(1)班人数多于(2)班及两班共112人可知两班人数不相等,且(1)班人数多于55,(2)班人数小于等于55,设出未知数求解即可;(3)还是采用团体购票,总人数是165,可买166张票,票价可降低1元,总票价=总人数×单位票价.【详解】(1)当两班合在一起共同买票时,每张票价为8元,则总票价为:112×8=896元, 节省:1060-896=164元,答,有更省钱的购票方式,能节省164元;(2)设(2)班人数为x ,(1)班人数为112-x ,(1)班人数多于(2)班人数,故1≤x≤55,56≤112-x≤110,则(2)班每张票价为10元,(1)班人每张票价为9元,则有()1091121060x x +-=,解得:52x =,11260x -=,答:(2)班人数为52人,(1)班人数为60人;(3)三个班的人数加起来为165人,可买166张票每张票价可降低1元,每张票价为7元,则总票价为:166×7=1162元, 答:共需1162元.【点睛】本题考查一元一次方程的应用,主要是找准确等量关系,要注意考虑全面,购票最省钱的办法就是团体购票.22.7cm 或1cm【解析】【分析】分类讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得答案.【详解】当点C在线段AB上时,如图1,由点M、N分别是AC、BC的中点,得MC=12AC=12×8cm=4cm,CN=12BC=12×6cm=3cm,由线段的和差,得MN=MC+CN=4cm+3cm=7cm;当点C在线段AB的延长线上时,如图2,由点M、N分别是AC、BC的中点,得MC=12AC=12×8cm=4cm,CN=12BC=12×6cm=3cm.由线段的和差,得MN=MC﹣CN=4cm﹣3cm=1cm;即线段MN的长是7cm或1cm.【点睛】本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.23.(1)5(2)12cm(3)16cm或20cm【解析】【分析】(1)线段的个数为n n-12(),n为点的个数.(2)由题意易推出CD的长度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.【详解】(1)图中有四个点,线段有=6.故答案为6;(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3,AC=4CD=4×3=12cm;(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16cm,②当点E在线段BA的延长线上,由线段的和差,得BE =AB+AE =18+2=20cm .综上所述:BE 的长为16cm 或20cm .【点睛】本题考查的知识点是射线、直线、线段,解题的关键是熟练的掌握射线、直线、线段.24.(1)-1;(2)点A 表示的数的绝对值最大.理由是点A 的绝对值是4最大;(3)2或10;【解析】【分析】(1)先确定原点,再求点B 表示的数,(2)先确定原点,再求四点表示的数,(3)分两种情况①点M 在AD 之间时,②点M 在D 点右边时分别求解即可.【详解】(1)根据题意得到原点O ,如图,则点B 表示的数是-1;(2)当B ,D 表示的数互为相反数时,A 表示-4,B 表示-2,C 表示1,D 表示2, 所以点A 表示的数的绝对值最大.点A 的绝对值是4最大.(3)2或10.设M 的坐标为x .当M 在A 的左侧时,-2-x=2(4-x ),解得x=10(舍去)当M 在AD 之间时,x+2=2(4-x ),解得x=2当M 在点D 右侧时,x+2=2(x-4),解得x=10故答案为:①点M 在AD 之间时,点M 的数是2②点M 在D 点右边时点M 表示数为10.【点睛】本题主要考查了数轴,解题的关键是熟记数轴的特点.25.(1)-3(2)0【解析】【分析】(1)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)逆运用乘法分配律进行计算即可得解.【详解】解:(1)原式=()99324-÷+⨯-+-=164--+=-3.(2)原式= ()15812429⎛⎫-⨯-+- ⎪⎝⎭, = 15029⎛⎫-⨯ ⎪⎝⎭=0.【点睛】题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
2020-2021郑州中学七年级数学上期末第一次模拟试卷带答案

2020-2021郑州中学七年级数学上期末第一次模拟试卷带答案一、选择题1.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .2.如果水库的水位高于正常水位5m 时,记作+5m ,那么低于正常水位3m 时,应记作( )A .+3mB .﹣3mC .+13mD .﹣5m3.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A .x+1=2(x ﹣2)B .x+3=2(x ﹣1)C .x+1=2(x ﹣3)D .1112x x +-=+ 4.如图的正方体盒子的外表面上画有3条黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是( )A .B .C .D .5.下列结论正确的是( )A .c>a>bB .1b >1cC .|a|<|b|D .abc>0 6.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( ) A .2 B .3 C .4 D .57.-4的绝对值是( )A .4B .C .-4D .8.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元9.已知x =y ,则下面变形错误的是( )A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 10.若a =2,|b |=5,则a +b =( )A .-3B .7C .-7D .-3或7 11.关于的方程的解为正整数,则整数的值为( ) A .2 B .3 C .1或2 D .2或312.a ,b 在数轴上的位置如图所示,则下列式子正确的是( )A .a +b >0B .ab <0C .|a |>|b |D .a +b >a ﹣b二、填空题13.一件商品的售价为107.9元,盈利30%,则该商品的进价为_____.14.若13a +与273a -互为相反数,则a=________. 15.某商品的价格标签已丢失,售货员只知道“它的进价为90元,打七折出售后,仍可获利5%,你认为售货员应标在标签上的价格为________元.16.若312x a +与2415x a +-的和是单项式,则x 的值为____________. 17.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是______. 18.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x 米,根据题意列方程为_____.19.已知一个角的补角是它余角的3倍,则这个角的度数为_____.20.用科学记数法表示24万____________.三、解答题21.《孙子算经》中记载:“今有三人共车,二车空二人共车,九人步,问人与车各何?”译文大意为:令有若干人乘车,每三人乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问有多少人,多少辆车?请解答上述问题.22.(1)解方程: 8753x x +=-(2)先化简,再求值:2222(32)2(2)a b ab ab a b ---,其中2a =,1b =-23.已知点O 为直线AB 上的一点,∠BOC =∠DOE =90°(1)如图1,当射线OC 、射线OD 在直线AB 的两侧时,请回答结论并说明理由; ①∠COD 和∠BOE 相等吗?②∠BOD 和∠COE 有什么关系?(2)如图2,当射线OC 、射线OD 在直线AB 的同侧时,请直接回答;①∠COD和∠BOE相等吗?②第(1)题中的∠BOD和∠COE的关系还成立吗?24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:元2×6+4×(8-6)=20(1)若该户居民2月份用水12.5m3,则应收水费元;(2)若该户居民3、4月份共用水20m3(4月份用水量超过3月份),共交水费64元,则该户居民3,4月份各用水多少立方米?25.某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,α∠表示,故本选项正确;C、因为顶点B处有3个角,所以这3个角均不能用∠B表示,故本选项错误;D、因为顶点B处有4个角,所以这4个角均不能用∠B表示,故本选项错误.故选:B.【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.2.B解析:B【解析】【分析】根据正数和负数表示相反意义的量,可得答案.【详解】水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作-3m,故选B.【点睛】本题考查了正数和负数,确定相反意义的量是解题关键.3.C解析:C【解析】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x只羊,∴乙有13122x x+++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2xx++=-即x+1=2(x−3)故选C.4.D解析:D【解析】根据正方体的表面展开图可知,两条黑线在一行,且相邻两条成直角,故A、B选项错误;该正方体若按选项C展开,则第三行第一列处的黑线的位置应为小正方形的另一条对角线,所以C不符合题意.故选D.点睛:本题是一道关于几何体展开图的题目,主要考查了正方体展开图的相关知识.对于此类题目,一定要抓住图形的特殊性,从相对面,相邻的面入手,进行分析解答.本题中,抓住黑线之间位置关系是解题关键.5.B解析:B【解析】【分析】根据数轴可以得出,,a b c 的大小关系以及这三者的取值范围,再通过适当变形即可的出答案.【详解】解:由图可知1,01,1a b c <-<<>∴c b a >>,A 错误;11111,01,b c b c∴><<∴>,B 正确; 1,01,a b a b ∴><<∴>,C 错误;0abc ∴<,D 错误故选B .【点睛】本题考查了在数轴上比较数的大小,通过观察数轴得出各数的取值范围,通过适当变形即可进行比较.6.C解析:C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x 3y 2m 与-3x n y 2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C .【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.7.A解析:A【解析】【分析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆. 8.B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.9.D解析:D【解析】解:A.B、C的变形均符合等式的基本性质,D项a不能为0,不一定成立.故选D.10.D解析:D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.11.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.12.B解析:B【解析】【分析】根据数轴上的两数位置得到a>0、b<0,b距离远点距离比a远,所以|b|>|a|,再挨个选项判断即可求出答案.【详解】A. a+b<0 故此项错误;B. ab<0 故此项正确;C. |a|<|b| 故此项错误;D. a+b<0, a﹣b>0,所以a+b<a﹣b, 故此项错误.故选B.【点睛】本题考查数轴,解题的关键是根据数轴找出两数的大小关系,本题属于基础题型.二、填空题13.83元【解析】【分析】设该商品的进价是x元根据售价﹣进价=利润列出方程并解答【详解】设该商品的进价是x元依题意得:1079﹣x=30x解得x=83故答案为:83元【点睛】本题考查一元一次方程的应用读解析:83元【解析】【分析】设该商品的进价是x元,根据“售价﹣进价=利润”列出方程并解答.【详解】设该商品的进价是x元,依题意得:107.9﹣x=30%x,解得x=83,故答案为:83元.【点睛】本题考查一元一次方程的应用,读懂题意,掌握好进价、售价、利润三者之间的关系是解题的关键.14.【解析】根据题意列出方程+=0直接解出a 的值即可解题解:根据相反数和为0得:+=0去分母得:a+3+2a ﹣7=0合并同类项得:3a ﹣4=0化系数为1得:a ﹣=0故答案为 解析:43【解析】 根据题意列出方程13a ++273a -=0,直接解出a 的值,即可解题. 解:根据相反数和为0得:13a ++273a -=0, 去分母得:a+3+2a ﹣7=0,合并同类项得:3a ﹣4=0,化系数为1得:a ﹣43=0, 故答案为43. 15.元【解析】【分析】依据题意建立方程求解即可【详解】解:设售货员应标在标签上的价格为x 元依据题意70x=90×(1+5)可求得:x=135故价格应为135元考点:一元一次方程的应用解析:元【解析】【分析】依据题意建立方程求解即可.【详解】解:设售货员应标在标签上的价格为x 元,依据题意70%x=90×(1+5%)可求得:x=135,故价格应为135元.考点:一元一次方程的应用.16.3【解析】【分析】两个单项式的和仍为单项式则这两个单项式为同类项【详解】解:由题意可知该两个单项式为同类项则3x+1=2x+4故x=3故答案为:3【点睛】本题考查了同类项的定义掌握两个单项式的和仍为解析:3【解析】【分析】两个单项式的和仍为单项式,则这两个单项式为同类项.【详解】解:由题意可知该两个单项式为同类项,则3x+1=2x+4,故x=3故答案为:3.【点睛】本题考查了同类项的定义,掌握两个单项式的和仍为单项式,则这两个单项式为同类项是解题的关键.17.8【解析】【分析】根据题意得出单项式与是同类项从而得出两单项式所含的字母ab 的指数分别相同从而列出关于mn 的方程再解方程即可求出答案【详解】解:∵单项式与的和仍是单项式∴单项式与是同类项∴∴∴故答案 解析:8【解析】【分析】根据题意得出单项式12m a b -与212n a b 是同类项,从而得出两单项式所含的字母a 、b 的指数分别相同,从而列出关于m 、n 的方程,再解方程即可求出答案.【详解】 解:∵单项式12m a b -与212n a b 的和仍是单项式 ∴单项式12m a b -与212n a b 是同类项 ∴m-1=22=n⎧⎨⎩ ∴m=3n=2⎧⎨⎩ ∴3=2=8m n故答案为:8.【点睛】本题考查了同类项的定义,所含字母相同,并且相同字母的指数也相同,解题的关键是灵活运用定义.18.2x ﹣2×15=340×2【解析】【分析】设这时汽车离山谷x 米根据司机按喇叭时汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离列出方程求解即可【详解】设按喇叭时汽车离山谷x 米根据题意列方程解析:2x ﹣2×15=340×2【解析】【分析】设这时汽车离山谷x 米,根据司机按喇叭时,汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离,列出方程,求解即可.【详解】设按喇叭时,汽车离山谷x 米,根据题意列方程为 2x ﹣2×15=340×2. 故答案为:2x ﹣2×15=340×2. 【点睛】本题考查了由实际问题抽象出一元一次方程,关键是找出题目中的相等关系,列方程. 19.45°【解析】【分析】根据互为余角的和等于90°互为补角的和等于180°用这个角表示出它的余角与补角然后列方程求解即可【详解】设这个角为α则它的余角为90°﹣α补角为180°﹣α根据题意得180°-解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.20.【解析】【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>10时n 是正数;当原数解析:52.410⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】24万5240000 2.410==⨯故答案为:52.410⨯【点睛】此题考查的知识点是科学记数法-原数及科学记数法-表示较小的数,关键要明确用科学记数法表示的数还原成原数时,n <0时,|n|是几,小数点就向左移几位.用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.三、解答题21.有39人,15辆车【解析】【分析】找准等量关系:人数是定值,列一元一次方程可解此题.【详解】解:设有x 辆车,则有3(x ﹣2)人,根据题意得:2x +9=3(x ﹣2)解的:x =153(x ﹣2)=39答:有39人,15辆车.【点睛】本题运用了列一元一次方程解应用题的知识点,找准等量关系是解此题的关键.22.(1)310x =-;(2)7a 2b -4ab 2,-36 【解析】【分析】(1)根据解一元一次方程的方法解方程即可;(2)先去括号,再合并同类项,化简为7a 2b -4ab 2 ,再代入求值即可.【详解】(1)8753x x +=-移项得,73x 58x +=-,合并得,103x =-,系数化为1得,310x =-; (2)原式=3a 2b -2ab 2-2ab 2+4a 2b =7a 2b -4ab 2,当a =2,b =-1时,原式=-28-8=-36.【点睛】本题考查一元一次方程的解法和整式的化简求值,熟练掌握一元一次方程的解法和整式的运算法则是解题的关键.23.(1)①∠COD =∠BOE ,理由见解析;②∠BOD +∠COE =180°,理由见解析;(2)①∠COD =∠BOE ,②成立【解析】【分析】(1)①根据等式的性质,在直角的基础上都加∠BOD ,因此相等,②将∠BOD +∠COE 转化为两个直角的和,进而得出结论;(2)①根据同角的余角相等,可得结论,②仍然可以将∠BOD +∠COE 转化为两个直角的和,得出结论.【详解】解:(1)①∠COD =∠BOE ,理由如下:∵∠BOC =∠DOE =90°,∴∠BOC +∠BOD =∠DOE +∠BOD ,即∠COD =∠BOE ,②∠BOD +∠COE =180°,理由如下:∵∠DOE =90°,∠AOE +∠DOE +∠BOD =∠AOB =180°,∴∠BOD +∠AOE =180°﹣90°=90°,∴∠BOD +∠COE =∠BOD +∠AOE +∠AOC =90°+90°=180°,(2)①∠COD =∠BOE ,∵∠COD +∠BOD =∠BOC =90°=∠DOE =∠BOD +∠BOE ,∴∠COD =∠BOE ,②∠BOD +∠COE =180°,∵∠DOE =90°=∠BOC ,∴∠COD +∠BOD =∠BOE +∠BOD =90°,∴∠BOD +∠COE =∠BOD +∠COD +∠BOE +∠BOD =∠BOC +∠DOE =90°+90°=180°,因此(1)中的∠BOD 和∠COE 的关系仍成立.【点睛】本题考查角度的和差计算,找出图中角度之间的关系,熟练掌握同角的余角相等是解题的关键.24.(1) 48;(2) 3月份用水8m 3,4月份用水量为12m 3【解析】【分析】(1)根据价目表列出式子,计算有理数运算即可得;(2)根据价目表,对3月份的用水量分情况讨论,再根据水费分别建立方程求解即可得.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元故答案为:48;(2)设3月份用水3xm ,则4月份用水()320x m - 依题意,分以下三种情况:①当3月份用水不超过36m 时则()226448201064x x +⨯+⨯+--= 解得:2263x =>(不符题意,舍去) ②当3月份用水超过36m ,但不超过310m 时则()()264626448201064x x ⨯+-+⨯+⨯+⨯--=解得:810x =<(符合题意)此时,32020812()x m -=-=③当3月份用水超过310m 时由4月份用水量超过3月份用水量可知,不合题意综上,3月份用水38m ,4月份用水量为312m .【点睛】本题考查了一元一次方程的实际应用,读懂题意,正确建立方程是解题关键. 25.780个【解析】【分析】首先设原计划每小时生产x 个零件,然后根据零件总数量的关系列出一元一次方程,从而得出x 的值,然后得出生产零件的总数.【详解】解:设原计划每小时生产x 个零件,则后来每小时生产(x+5)个零件,根据题意可得: 26x=24(x+5)-60解得:x=30则26x=26×30=780(个) 答:原计划生产780个零件.【点睛】本题考查一元一次方程的应用.。
河南省郑州市2020-2021年度 七年级上学期期末测试模拟卷

期末达标检测卷一、选择题(每题3分,共30分)1.下列各数中是正数的是( )A .-12B .2C .0D .-0.22.在下列单项式中,与2xy 是同类项的是( )A.2x 2y 2B.3yC.xyD.4x3.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 4.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A.3cmB.6cmC.9cmD.12cm5.移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .162×106C .1.62×108D .0.162×1096.已知一个三角形的周长是3m -n ,其中两边长的和为m +n -4,则这个三角形的第三边的长为( )A.2m -4B.2m -2n -4C.2m -2n +4D.4m -2n +47.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )8.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x+1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A.1B.2C.3D.49.如图,C 、D 在线段BE 上,下列说法:①直线CD 上以B 、C 、D 、E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE =100°,∠DAC =40°,则以A 为顶点的所有小于平角的角的度数和为360°;④若BC =2,CD =DE =3,点F 是线段BE 上任意一点,则点F 到点B ,C ,D ,E 的距离之和的最大值为15,最小值为11.其中说法正确的个数有( )A.1个B.2个C.3个D.4个10.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2cm 2,第②个图形的面积为8cm 2,第③个图形的面积为18cm 2……则第⑩个图形的面积为( )A.196cm 2B.200cm 2C.216cm 2D.256cm 2二、填空题(每题3分,共30分)11.-3的倒数是________;|-3|=________.12.单项式-2x 2y 5的系数是 ,次数是 W. 13.已知多项式9a +20与4a -10的差等于5,则a 的值为 .14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.如图①所示的∠AOB 纸片,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB (OA 与OB重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB = °.16.若x ,y 为有理数,且(5-x)4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 017的值为________.17.若a -2b =3,则9-2a +4b 的值为 W.18.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2016个格子中的整数是-2.19.可以盈利50元,那么这款大衣每件的标价是 元.20.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.三、解答题(21题6分,22题、23题、24题、每题8分,其余每题10分,共60分) 21.计算:(1)-14+⎝ ⎛⎭⎪⎫-112-38+712×(-24);(2)-62×⎝ ⎛⎭⎪⎫-1122-32÷⎝ ⎛⎭⎪⎫-1123×3;(3)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).22.先化简再求值:(1)-9y +6x 2+3⎝ ⎛⎭⎪⎫y -23x 2,其中x =2,y =-1;(2)2a 2b -[2a 2+2(a 2b +2ab 2)],其中a =12,b =1.23.解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;24.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,则共需交旅游费多少元(用含字母的式子表示)?并计算当a =300,b =200时的旅游费用.25.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:(1)甲、乙两班联合给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?26.如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a m,计算:(1)窗户的面积;(2)窗框的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).27.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE 的度数之间的关系,说明理由.。
七年级上册郑州市第七中学数学期末试卷试卷(word版含答案)

七年级上册郑州市第七中学数学期末试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.【答案】(1)解:设x秒点P、Q两点相遇根据题意得:2x+3x=20,解得x=4答:4秒后,点P、Q两点相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021郑州市第七中学七年级数学上期末一模试卷带答案一、选择题1.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯2.下列说法:(1)两点之间线段最短; (2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90°;(4)A 、B 两点间的距离是指A 、B 两点间的线段;其中正确的有( ) A .一个 B .两个C .三个D .四个3.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 4.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折 B .八五折C .八折D .七五折5.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.016.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯7.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ). A .32824x x =- B .32824x x=+ C .2232626x x +-=+ D .2232626x x +-=- 8.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 9.中国海洋面积是2897000平方公里,2897000用科学记数法表示为( )A .2.897×106B .28.94×105C .2.897×108D .0.2897×10710.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)11.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是( )A .63B .70C .96D .105 12.一副三角板不能拼出的角的度数是( )(拼接要求:既不重叠又不留空隙)A .75︒B .105︒C .120︒D .125︒二、填空题13.若关于x 的一元一次方程12018x-2=3x+k 的解为x=-5,则关于y 的一元一次方程12018(2y+1)-5=6y+k 的解y=________. 14.若13a+与273a -互为相反数,则a=________.15.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.16.一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则()xyz 的值为___.17.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4筐白菜的总质量为__________千克.18.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x 米,根据题意列方程为_____.19.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.20.已知关于x的一元一次方程1999(x+1)﹣3=2(x+1)+b的解为x=9,那么关于y的一元一次方程1999y﹣3=2y+b的解y=_____.三、解答题21.一果农在市场上卖15箱苹果,以每箱20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)-1-0.500.51 1.5箱数134322(1)这15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)若苹果每千克售价4元,则这15箱苹果可卖多少元?22.计算题(1)(3)(5)-+-(2)111 12+436⎛⎫⨯-⎪⎝⎭23.如图所示,已知∠BAC=∠EAD=90o.(1)判断∠BAE与∠CAD的大小关系,并说明理由.(2)当∠EAC=60o时,求∠BAD的大小.(3)探究∠EAC与∠BAD的数量关系,请直接写出结果,不要求说明理由.24.某校组织七年级师生旅游,如果单独租用45座客车若干辆,则好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加旅游的人数.(2)已知租用45座的客车日租金为每辆250元,60座的客车日租金为每辆300元,在只租用一种客车的前提下,问:怎样租用客车更合算?25.如图,直线SN为南北方向,OB的方向是南偏东60°,∠SOB与∠NOC互余,OA 平分∠BON.(1)射线OC的方向是.(2)求∠AOC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;(4)根据两点间的距离的定义即可求解.【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90°是正确的;(4)A、B两点间的距离是指A、B两点间的线段的长度,原来的说法是错误的.故选C . 【点睛】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握.3.A解析:A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】2180000的小数点向左移动6位得到2.18, 所以2180000用科学记数法表示为2.18×106, 故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.A解析:A 【解析】 【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可. 【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x⨯=+ 解得:x=9.答:该商品的打9折出售。
故选:A. 【点睛】本题考查一元一次方程的应用——应用一元一次方程解决销售问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.5.B解析:B 【解析】 【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可. 【详解】∵45+0.03=45.03,45-0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03. ∵44.9不在该范围之内,∴不合格的是B . 故选B .6.B解析:B 【解析】解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.A解析:A 【解析】 【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可. 【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x=- 故选:A . 【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.8.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:Q 单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m,n的值是解题的关键.9.A解析:A【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将2897000用科学记数法表示为:2.897×106.故选A.考点:科学记数法—表示较大的数.10.D解析:D【解析】【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【详解】第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,依此类推,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n个,即:白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律.11.C解析:C【解析】【分析】设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=967,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.【点睛】此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.12.D解析:D【解析】【分析】【详解】解:一副三角板的度数分别为:30°、60°、45°、45°、90°,因此可以拼出75°、105°和120°,不能拼出125°的角.故选D.【点睛】本题考查角的计算.二、填空题13.-3【解析】【分析】先把x=-5代入x-2=3x+k求出k的值再把k代入(2y+1)-5=6y+k解方程求出y值即可【详解】∵关于x的一元一次方程x-2=3x+k的解为x=-5∴-2=-15+k解得解析:-3【解析】【分析】先把x=-5代入12018x-2=3x+k求出k的值,再把k代入12018(2y+1)-5=6y+k,解方程求出y值即可.【详解】∵关于x的一元一次方程12018x-2=3x+k的解为x=-5,∴52018-2=-15+k,解得k=122013 2018,∴12018(2y+1)-5=6y+1220132018, 解得y=-3. 故答案为-3 【点睛】本题考查了一元一次方程的解及解一元一次方程,使等式两边成立的未知数的值叫做方程的解,熟练掌握一元一次方程的解法是解题关键.14.【解析】根据题意列出方程+=0直接解出a 的值即可解题解:根据相反数和为0得:+=0去分母得:a+3+2a ﹣7=0合并同类项得:3a ﹣4=0化系数为1得:a ﹣=0故答案为解析:43【解析】 根据题意列出方程13a ++273a -=0,直接解出a 的值,即可解题. 解:根据相反数和为0得:13a ++273a -=0, 去分母得:a+3+2a ﹣7=0, 合并同类项得:3a ﹣4=0, 化系数为1得:a ﹣43=0, 故答案为43. 15.两点确定一条直线【解析】【分析】根据直线的公理确定求解【详解】解:答案为:两点确定一条直线【点睛】本题考查直线的确定:两点确定一条直线熟练掌握数学公理是解题的关键解析:两点确定一条直线 【解析】 【分析】根据直线的公理确定求解. 【详解】解:答案为:两点确定一条直线. 【点睛】本题考查直线的确定:两点确定一条直线,熟练掌握数学公理是解题的关键.16.【解析】【分析】正方体的表面展开图相对的面之间一定相隔一个正方形根据这一特点确定出相对面再根据相对面上的两个数字互为倒数解答【详解】正方体的表面展开图相对的面之间一定相隔一个正方形x 与是相对面y 与2解析:18-【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数字互为倒数解答. 【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“13”是相对面, “y”与“2”是相对面, “z”与“-1”是相对面,∵各相对面上所填的数字互为倒数,∴()xyz =18-.【点睛】此题考查正方体相对两个面上的文字,解题关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.17.99【解析】(+()+()+25×4=-1+100=99故答案为99解析:99 【解析】(0.25)++(1-)0.5++(0.75-)+25×4=-1+100=99. 故答案为99.18.2x ﹣2×15=340×2【解析】【分析】设这时汽车离山谷x 米根据司机按喇叭时汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离列出方程求解即可【详解】设按喇叭时汽车离山谷x 米根据题意列方程解析:2x ﹣2×15=340×2 【解析】 【分析】设这时汽车离山谷x 米,根据司机按喇叭时,汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离,列出方程,求解即可. 【详解】设按喇叭时,汽车离山谷x 米, 根据题意列方程为 2x ﹣2×15=340×2. 故答案为:2x ﹣2×15=340×2. 【点睛】本题考查了由实际问题抽象出一元一次方程,关键是找出题目中的相等关系,列方程.19.100【解析】【分析】设进价是x 元则(1+20)x =200×06解方程可得【详解】解:设进价是x元则(1+20)x=200×06解得:x=100则这件衬衣的进价是100元故答案为100【点睛】考核知解析:100【解析】【分析】设进价是x元,则(1+20%)x=200×0.6,解方程可得.【详解】解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.【点睛】考核知识点:一元一次方程的应用.20.【解析】【分析】令x=y﹣1后代入(x+1)﹣3=2(x+1)+b可得:y﹣3=2y+b由题意可知y﹣1=9【详解】解:令x=y﹣1后代入(x+1)﹣3=2(x+1)+ b可得:y﹣3=2y+b该方程解析:【解析】【分析】令x=y﹣1后代入1999(x+1)﹣3=2(x+1)+b可得:1999y﹣3=2y+b,由题意可知y﹣1=9.【详解】解:令x=y﹣1后代入1999(x+1)﹣3=2(x+1)+b,可得:1999y﹣3=2y+b,该方程的解为x=9,∴y﹣1=9,∴y=10,故答案是:10.【点睛】此题考查一元一次方程的解.解题的关键是理解一元一次方程的解的定义,注意此题涉及换元法,整体的思想.三、解答题21.(1)2.5;(2)1216【解析】【分析】(1)最重的一箱苹果比标准质量重1.5千克,最轻的一箱苹果比标准质量轻1千克,则两箱相差2.5千克;(2)先求得15箱苹果的总质量,再乘以4元即可.【详解】解:(1)1.5﹣(﹣1)=2.5(千克).答:最重的一箱比最轻的一箱多重2.5千克;(2)(﹣1×1)+(﹣0.5×3)+0×4+0.5×3+1×2+1.5×2=﹣1﹣1.5+0+1.5+2+3=4(千克).20×15+4=304(千克)304×4=1216(元).答:这15箱苹果可卖1216元.【点睛】本题考查了正负数和有理数的加减混合运算,理解正负数的意义是解答此题的关键.22.(1)-8;(2)5【解析】【分析】(1)根据有理数的加法法则进行计算即可;(2)去括号,再计算加减即可.【详解】(1)(3)(5)8-+-=-;(2)11112+3425 436⎛⎫⨯-=+-=⎪⎝⎭.【点睛】本题考查有理数的运算,解题时需注意,若先去括号比较简单,则应先去括号,再计算加减.23.(1)∠BAE=∠CAD,理由见解析;(2)120︒;(3)∠EAC+∠BAD=180︒.【解析】【分析】(1)由同角的余角相等可得;(2)当∠EAC=60o时,可求得∠BAE=30o,从而得出∠BAD的度数.(3)根据第(2)得出的∠BAD的度数,可得出二者的数量关系.【详解】(1)解:∠BAE与∠CAD的大小关系是:∠BAE=∠CAD理由是:∠BAE+∠EAC=∠EAC+∠CAD=90o所以,由同角的余角相等可得,∠BAE=∠CAD .(2)解:当∠EAC=60o时,已知∠BAC=∠EAD=90o.所以,∠BAE=∠BAC-∠EAC=90o-60o=30o.因此,∠BAD=∠BAE+∠EAD=30o+90o=120o.(3)解:∠EAC 与∠BAD 的数量关系是:∠EAC+∠BAD=180o .【点睛】本题考查的知识点是角的计算,根据已知条件判断两角的大小并探究两角之间的数量关系,考验了学生探究归纳的能力.24.(1)该校参加社会实践活动有225人;(2)该校租用60座客车更合算.【解析】【分析】(1)设该校参加旅游有x 人,根据租用客车的数量关系建立方程求出其解即可;(2)分别计算出租用两种客车的数量,就可以求出租用费用,再比较大小就可以求出结论.【详解】解:(1)设该校参加旅游有x 人,根据题意,得:15_14560x x +=, 解得:x=225,答:该校参加社会实践活动有225人;(2):由题意,得需45座客车:225÷45=5(辆), 需60座客车:225÷60=3.75≈4(辆),租用45座客车需:5×250=1250(元), 租用60座客车需:4×300=1200(元), ∵1250>1200,∴该校租用60座客车更合算.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,有理数大小的比较的运用,解答时租用不同客车的数量关系建立方程是关键.25.(1)北偏东30°;(2)∠AOC =30°.【解析】【分析】(1)先根据余角的定义计算出∠NOC ,然后得到OC 的方向;(2)由OB 的方向是南偏东60°得到∠BOE=30°,则∠NOB=120°,根据OA 平分∠NOB 得到∠NOA=60°,再根据角的和差计算即可.【详解】解:(1)由OB 的方向是南偏东60°,可得∠SOB =60°,∵∠SOB 与∠NOC 互余,∴∠NOC =90°﹣∠SOB =30°,∴OC 的方向是北偏东30°;故答案为:北偏东30°;(2)∵OB 的方向是南偏东60°,∴∠BOE =30°,∴∠NOB=30°+90°=120°,∵OA平分∠BON,∴∠NOA=12∠NOB=60°,∵∠NOC=30°,∴∠AOC=∠NOA﹣∠NOC=60°﹣30°=30°.【点睛】本题考查了方向角:方向角是从正北或正南方向到目标方向所形成的小于九十度的角.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度,若正好为45度,则表示为正西(东)南(北).。