2001年初中数学竞赛试题

合集下载

求不定方程的整数解(含答案)-

求不定方程的整数解(含答案)-

求不定方程整数解有三对夫妻一同上商店买东西.男的分别姓孙、姓陈、姓金,女的分别姓李、•姓赵、姓尹。

他们每人只买一种商品,并且每人所买商品的件数正好等于那种商品的单价(元数).现在知道每一个丈夫都比他的妻子多花63元,并且孙先生所买的商品比赵女士多23件,金先生所买的商品比李女士多11件,问孙先生、陈先生、金先生的爱人各是谁?例1.若b a ,都是正整数,且2001500143=+b a ,求b a +的值.(2001年北京市初中数学竞赛)例2 设m 为正整数,且方程组⎩⎨⎧-==+17001113mx y y x ()()21 有整数解,求m 的值。

(“希望杯”数学竞赛试题)例3 已知自然数y x ,满足789=+yx ,求y x +的值.(五羊杯数学竞赛试题) 【例1】若关于x 的方程054)15117()9)(6(2=+----x k x k k 的解都是整数,则符合条件的整数k 的值有 个.思路点拨 用因式分解法可得到根的简单表达式,因方程的类型未指明,故须按一次方程、二次方程两种情形讨论,这样确定是的值才能全面而准确.注:系数含参数的方程问题,在没有指明是二次方程时,要注意有可能是一次方程,根据问题的题设条件,看是否要分类讨论.【例2】 已知a 、b 为质数且是方程0132=+-c x x 的根,那么ba ab +的值是( ) A .22127 B .22125 C .22123 D .22121 思路点拨 由韦达定理a 、b 的关系式,结合整数性质求出a 、b 、c 的值.【例4】 当m 为整数时,关于x 的方程01)12()12(2=++--x m x m 是否有有理根?如果有,求出m 的值;如果没有,请说明理由.思路点拨 整系数方程有有理根的条件是△为完全平方数.设△=22224)12(544)12(4)12(n m m m m m =+-=+-=--+(n 为整数)解不定方程,讨论m 的存在性. 注:一元二次方程02=++c bx ax (a ≠0)而言,方程的根为整数必为有理数,而△=ac b 42-为完全平方数是方程的根为有理数的充要条件.【例5】 若关于x 的方程0)13()3(22=-+--a x a ax 至少有一个整数根,求非负整数a 的值. 思路点拨 因根的表示式复杂,从韦达定理得出的a 的两个关系式中消去a 也较困难,又因a 的次数低于x 的次数,故可将原方程变形为关于a 的一次方程.1.已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数a 有 .2.已知方程019992=+-m x x 有两个质数解,则m = .3.给出四个命题:①整系数方程02=++c bx ax (a ≠0)中,若△为一个完全平方数,则方程必有有理根;②整系数方程02=++c bx ax (a ≠0)中,若方程有有理数根,则△为完全平方数;③无理数系数方程02=++c bx ax (a ≠0)的根只能是无理数;④若a 、b 、c 均为奇数,则方程02=++c bx ax 没有有理数根,其中真命题是 .4.已知关于x 的一元二次方程0)12(22=+-+a x a x (a 为整数)的两个实数根是1x 、2x ,则21x x -= . 5.设rn 为整数,且4<m<40,方程08144)32(222=+-+--m m x m x 有两个整数根,求m 的值及方程的根1.已知实数x,y,z 适合x+y=6,z 2=xy -9,则z 等于( )A.±1B.0C.1D.-12.方程组44,23.ab bc ac bc +=⎧⎨+=⎩的正整数解(a,b,c)的组数是( ) A.4 B.3 C.2 D.13.方程xy=x+y 的整数解有_____组.4.设x,y 都是正整数,且使,则y=+的最大值为________.5.求满足1116x y -=的所有正整数x,y.1.( )A.不存在B.仅有1组C.有2组D.至少有4组2.设a 、b 、c 为有理数,且等式则2a+999b+1 001c 的值是( )A.1 999B.2 000C.2 001D.2 0033.满足方程11x 2+2xy+9y 2+8x -12y+6=0的实数对(x,y)的个数等于_____.4.实数x,y 满足x ≥y ≥1和2x 2-xy -5x+y+4=0,则x+y=_________.5.a 、b 、c 都是正整数,且满足ab+bc=3 984,ac+bc=1 993,则abc•的最大值是______.6.象棋比赛共有奇数个选手参加,每位选手都同其他选手比赛一盘,记分办法是胜一盘得1分,平一盘各得0.5分,输一盘得0分,已知其中两名选手共得8分,其他人的平均分为整数,求参加此次比赛共有多少人?、。

代数式恒等变形及答案

代数式恒等变形及答案

代数式恒等变形A 卷1、若3265122-+-+=+--x bx a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴⎪⎩⎪⎨⎧-=--=++-=1236051b a M b a M M ,解得:⎪⎩⎪⎨⎧=-==831b a M 提示:利用待定系数法解决问题。

2、(2002年重庆市初中竞赛题)若012192=+-x x ,则=+441xx ( ) A 、411 B 、16121 C 、1689 D 、427答案:C 解答:∵0≠x ∴2191=+x x ,411122=+xx ∴168921122244=-⎪⎭⎫ ⎝⎛+=+x x x x提示:本题的关键是利用211222-⎪⎭⎫⎝⎛+=+x x x x 进行化简。

3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D解答:∵143=-x x∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

4、(全国竞赛题)如果52332412---=----+cc b a b a ,则c b a ++的值是( ) A 、6 B 、8 C 、20 D 、24 答案:C解答:∵52332412---=----+cc b a b a ∴()[]()[]()[]053293632142421121=+--+----+---++---c c b b a a∴()()()033212211222=-----+--c b a∴011=--a ,022=--b ,033=--c ∴2=a ,6=b ,12=c ∴20=++c b a提示:本题利用添项构造完全平方式解决问题。

初中数学 一元二次方程根与系数的关系

初中数学 一元二次方程根与系数的关系

内容 基本要求略高要求较高要求一元二次方程了解一元二次方程的概念,会将一元二次方程化为一般形式,并指出各项系数;了解一元二次方程的根的意义能由一元二次方程的概念确定二次项系数中所含字母的取值范围;会由方程的根求方程中待定系数的值一元二次方程的解法理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能选择恰当的方法解一元二次方程;会用方程的根的判别式判别方程根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会用配方法对代数式做简单的变形;会应用一元二次方程解决简单的实际问题如果一元二次方程20ax bx c ++=(0a ≠)的两根为12x x ,,那么,就有()()212ax bx c a x x x x ++=--比较等式两边对应项的系数,得1212b x x ac x x a ⎧+=-⎪⎪⎨⎪⋅=⋅⎪⎩①,② ①式与②式也可以运用求根公式得到.人们把公式①与②称之为韦达定理,即根与系数的关系.因此,给定一元二次方程20ax bx c ++=就一定有①与②式成立.反过来,如果有两数1x ,2x 满足①与②,那么这两数12x x ,必是一个一元二次方程20ax bx c ++=的根.利用这一基本知识常可以简捷地处理问题. 利用根与系数的关系,我们可以不求方程20ax bx c ++=的根,而知其根的正、负性. 在24b ac ∆=-≥0的条件下,我们有如下结论: 当0c a<时,方程的两根必一正一负.若0b a -≥,则此方程的正根不小于负根的绝对值;若0ba -<,则此方程的正根小于负根的绝对值. 当0c a>时,方程的两根同正或同负.若0b a ->,则此方程的两根均为正根;若0ba -<,则此方程的两根均为负根.⑴ 韦达定理:如果20(0)ax bx c a ++=≠的两根是1x ,2x ,则12b x x a +=-,12cx x a=.(隐含的条件:0∆≥)⑵ 若1x ,2x 是20(0)ax bx c a ++=≠的两根(其中12x x ≥),且m 为实数,当0∆≥时,一般地: ① 121()()0x m x m x m --<⇔>,2x m <中考要求一元二次方程根与系数的关系及其应用特殊地:当0m =时,上述就转化为20(0)ax bx c a ++=≠有两异根、两正根、两负根的条件. ⑶ 以两个数12,x x 为根的一元二次方程(二次项系数为1)是:21212()0x x x x x x -++=. ⑷ 其他:①若有理系数一元二次方程有一根aa a ,b 为有理数). ② 若0ac <,则方程20(0)ax bx c a ++=≠必有实数根. ③ 若0ac >,方程20(0)ax bx c a ++=≠不一定有实数根. ④ 若0a b c ++=,则20(0)ax bx c a ++=≠必有一根1x =.⑤ 若0a b c -+=,则20(0)ax bx c a ++=≠必有一根1x =-. ⑸ 韦达定理主要应用于以下几个方面:① 已知方程的一个根,求另一个根以及确定方程参数的值; ② 已知方程,求关于方程的两根的代数式的值; ③ 已知方程的两根,求作方程;④ 结合根的判别式,讨论根的符号特征;⑤ 逆用构造一元二次方程辅助解题:当已知等式具有相同的结构时,就可以把某两个变元看作某个一元二次方程的两根,以便利用韦达定理;⑤ 利用韦达定理求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱.【例 1】 ⑴若方程240x x c -+=的一个根为2+,则方程的另一个根为 ,c = .⑵已知方程2350x x +-=的两根为1x 、2x ,则2212x x += .⑶已知α、β是方程2250x x +-=的两个实数根,22ααβα++的值为 . ⑷已知α、β是方程2520x x ++=+【巩固】 已知12,x x 为方程20x px q ++=的两根,且126x x +=,221220x x +=,求,p q 的值.【例 2】 已知方程22350x x --=的两根为12x x ,,求:⑴2212x x +; ⑵3312x x + ⑶5512x x +【巩固】1x 、2x 是方程22350x x --=的两个根,不解方程,求下列代数式的值: (1)2212x x + (2)12x x - (3)2212233x x x +-【例 3】 已知1x ,2x 是方程2310x x -+=的两个实数根,则2212x x += ,12(2)(2)x x -⋅-= ,221122x x x x +⋅+= ,2112x xx x += ,12x x -= ,2212x x -= ,1211x x -= ,2112x x x x -= .【巩固】 (2005年温州市中考试题)已知1x ,2x 方程2310x x -+=两个实数根,则1211x x += .【例 4】 关于x 的方程22410x kx +-=的一个根是-2,则方程的另一根是 ;k = 。

一元二次方程根的判别式

一元二次方程根的判别式

第二讲一元二次方程根的判别式【趣题引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺。

一日师傅韦达对小精灵道:“师傅给你一件随身法宝━━“△”,出去闯荡一下吧!”小精灵拜别师傅韦达,来到“方程堡”,守门将喝道:“来者何人!”小精灵拱手答道:“晚辈小精灵奉师傅之命前来方程堡见识见识。

”守门将道:“先要破我一方程方能进堡!”说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x2+2xy+7y2-10x-18y+19=0,并且问道:“你能说出实数x、y的值吗?”小精灵取出法宝灵机一动,将上式中的y看成已知数,把它整理成关于x的一元二次方程2x2+(2y-10)x+(7y2-18y+19)=0。

好哇!因为x是实数,上面的方程必有实数根,所以△≥0,即(2y-10)2-4×2(7y2-18y+19)≥0,可得(y-1)2≤0,一下子便得到了y=•1,再将y=1代入原方程就可得x=2.小精灵这里用的法宝“△”是什么呢?它就是一元二次方程根的判别式。

一元二次方程ax2+bx+c=0(a≠0),当△〉0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△〈0时,没有实数根,反过来也成立。

【知识延伸】例1已知关于x的二次方程x2+p1x+q1=0与x2+p2x+q2=0,求证:当p1p2=2(q1+q2)时,这两个方程中至少有一个方程有实根.证明设这两个方程的判别式为△1,△2,则△1+△2=p12+p22-4(q1+q2).∵p1p2=2(q1+q2),∴△1+△2=p12+p22-2p1p2=(p1-p2)2≥0.∴△1≥0与△2≥0中至少有一个成立,即两个方程中必有一个方程有实根.点评两个方程中至少有一个方程有实根,可转化为证明△1+△2≥0;本题还可用反证法来证明,即假设△1<0且△2<0,则△1+△2<0,但△1+△2=(p1-p2)2≥0,两者矛盾,从而导出原题结论还成立。

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

历届(第1-23届)希望杯数学竞赛初一七年级真题及答案

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。

-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。

-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。

-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。

-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。

-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。

-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。

-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。

-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。

-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。

-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。

-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。

-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。

-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。

-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。

2001年第16届江苏省初中数学竞赛试卷(初三C卷)

2001年第16届江苏省初中数学竞赛试卷(初三C卷)

2001年第16届江苏省初中数学竞赛试卷(初三C卷)一、选择题(共6小题,每小题6分,满分36分)1.(2005•菏泽)已知,则的值为()A.5 B.6 C.3 D.42.若两个方程x2+ax+b=0和x2+bx+a=0只有一个公共根,则()A.a=b B.a+b=0 C.a+b=1 D.a+b=﹣13.下列给出的4个命题:命题1 若|a|=|b|,则a|a|=b|b|;命题2 若a2﹣5a+5=0,则;命题3 若x的不等式(m+3)x>1的解集是x<,则m<﹣3;命题4 若方程x2+mx﹣1=0中m>0,则该方程有一正根和一负根,且负根的绝对值较大.其中正确的命题的个数是()A.1 B.2 C.3 D.44.如图,四边形ABCD中,∠BAD=90°,AB=BC=2,AC=6,AD=3,则CD的长为()A.4 B.4C.3D.35.已知三角形的每条边长的数值都是2001的质因数,那么这样的不同的三角形共有()A.6 B.7 C.5 D.96.12块规格完全相同的巧克力,每块至多被分为两小块(可以不相等),如果这12块巧克力可以平均分给n名同学,则n可以为()A.26 B.23 C.17 D.15二、填空题(共8小题,每小题5分,满分40分)7.若=3,=2,且ab<0,则a﹣b=_________.8.如图,D、E、F分别是△ABC的边BC、CA、AB上的点,且DE∥BA,DF∥CA,(1)要使四边形AFDE是菱形,则要增加条件:_________;(2)要使四边形AFDE是矩形,则要增加条件:_________.9.方程的解是_________.10.要使26+210+2x为完全平方数,那么非负整数x可以是_________.(要求写出x的3个值)11.如图,直线y=﹣2x+6与x轴、y轴分别交于P、Q两点,把△POQ沿PQ翻折,点O落在R处,则点R的坐标是_________.12.如图,已知八边形ABCDEFGH中4个正方形的面积分别为25,144,48,121个平方单位,PR=13(单位),则该八边形的面积=_________平方单位.13.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_________.14.如图,一个田字形的区域A、B、C、D栽种观赏植物,要求同一个区域中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,那么有_________种栽种方案.三、解答题(共4小题,满分64分)15.某商店有A种练习本出售,每本零售价为0.30元,1打(12本)售价为3.00元,买10打以上的,每打还可以按2.70付款.(1)初三(1)班共57人,每人需要1本A种练习本,则该班集体去买时,最少需付多少元?(2)初三年级共227人,每人需要1本A种练习本,则该年级集体去买时,最少需付多少元?16.设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实根,当m为何值时,x12+x22有最小值,并求这个最小值.17.(1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>;(2)已知:如图2,在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.18.编号为1到25的25个弹珠被分放在两个篮子A和B中.15号弹珠在篮子A中,把这个弹珠从篮子A移至篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加,篮子B中弹珠号码数的平均数也等于原平均数加.问原来在篮子A中有多少个弹珠?2001年第16届江苏省初中数学竞赛试卷(初三C卷)参考答案与试题解析一、选择题(共6小题,每小题6分,满分36分)1.(2005•菏泽)已知,则的值为()A.5 B.6 C.3 D.4考点:二次根式的化简求值。

初二数学竞赛题(含答案)

初二数学竞赛题(含答案)

初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利2.5元C 、亏本7.5元D 、亏本15元2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( ) A 、c b a << B 、b c a << C 、a c b << D 、a b c <<3、已知,511ba b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3 D 、31 4、已知xB x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( ) A 、-2 B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A 、0B 、2C 、3D 、47、本题中有两小题,请你选一题作答:(1)在19991002,1001,1000 这1000个二次根式中,与2000是同类二次根式的个数共有……………………( )A 、3B 、4C 、5D 、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A 、10个B 、12个C 、13个D 、14个8、钟面上有十二个数1,2,3,…,12。

将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n 个负号,这个数n 是( )A 、4B 、5C 、6D 、7二、填空题(每小题7分共84分)9、如图,XK ,ZF 是△XYZ 的高且交于一点H ,∠XHF =40°,那么∠XYZ = °。

历年初中数学竞赛真题库含答案

历年初中数学竞赛真题库含答案

1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则x x x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001年初中数学竞赛模拟试卷 (考试时间两小时,满分120分)
一、 ,请将正确结论的代号填在题后的括号内)
1. 若方程0122
=--x x 的二根为21,x x ,则代数式2111x x +的值为 ( ) (A) 1 (B) 1- (C) 2 (D)2- 2. 已知ABC Rt ∆中,∠C 为直角,设A A x cos sin +=,B B y cos sin +=,则y x ,的大小关系为 ( ) (A)y x > (B)y x = (C)y x < (D)以上情况都有可能 3. 下列几何图形中,既是轴对称图形又是中心对称图形的是 ( ) (A )等边三角形 (B )等腰梯形 (C )平行四边形 (D )菱形 4. 已知 ,012=-+m m 那么代数式2001223-+m m 的值是 ( ) (A)2000 (B)-2000 (C)2001 (D)-2001 5. 如图1,梯形ABCD 中,CD AB //,AC 平分BAD ∠,且BC AC ⊥,3=BC 厘米,
6=AC 厘米,则ACD ∆的面积是
(A )29平方厘米 (B )9 (C )6平方厘米 (D )3 图1 学 姓 编号
密 封 线 内 不 要 答 题 封 线 内
6. 已知当1=x 时,代数式43++x b ax 的值为5,则当1-=x ,代数式43++x b ax 的值为 ( )
(A)-5 (B)0 (C)3 (D)4
7. 若关于x 的方程a x =--12有三解,则a 的值为 ( )
(A)0 (B)1 (C)2 (D)3
8. 《中华人民共和国个人所得税法》规定:公民全月工资、薪金所得不超过800元的部分不纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累进计算
( )
(A)800~900元 (B) 900~1300元 (C) 1300~1500元 (D)1500~1800元
二 填空题(每小题5分,共30分,直接将答案填在横线上)
1.方程 x x x x x -=-+-+713222 的解为
2.如图,在高为2米,坡角为030的楼梯表面铺地毯,地毯
的长度至少需 米?(精确到0.1米,取73.13=)
3.已知y x ,为实数,则代数式122222--++x y xy x 的最小值为
4.若139+与139-
的小数部分分别为,a 与b ,则=+b a
5.已知1352++n n 是完全平方数,则自然数n 的值为
2米 030
五、(本题满分12分两题任选一题)某校原有教室若干个,各教室的课桌数相等,课桌总数为539张,现新增9个教室,课桌也增至1080个,此时,每个教室的课桌数仍相等,但每个教室的课桌数增加了,问现有教室多少个?
在抗洪抢险中,江堤边某蛙池地发生管涌,江水已涌进了x立方米,并且还以每分钟y立方米的速度不停地进水,现在要进行抽水堵涌工程,若用1台抽水机工作,需30分钟才能将水抽完,投入施工, 若用2台抽水机同时工作,需10分钟即可将水抽完,投入施工,因形势紧急,指挥部要求5分钟将水抽完立即投入施工,则至少需要组织多少台抽水机同时工作?(假设每台抽水机的抽水量均为每分钟抽水z立方米)
六、(本题满分12分)如图,在∆ABC中,D为BC边上一点,过点D作AC、AB的平行线分别交AB、AC于F、E
(1)若∆BFD的面积为4,∆DEC的面积为9,求∆ABC的面积.
(2) 设∆BDF 与∆DEC 的面积分别为21,S S ,平行四边形AFDE 的面积为3S ,
求证:321S S S ≥+,并指出点D 位于BC 的何处时321S S S =+成立?
A B C D E F。

相关文档
最新文档