一元二次因式分解

合集下载

解一元二次方程五种方法

解一元二次方程五种方法

解一元二次方程五种方法解一元二次方程五种方法解一元二次方程是初中数学中的基础知识,也是高中数学中的重要内容,掌握多种解法对于提高数学能力和解题能力有着重要作用。

下面介绍五种解一元二次方程的方法。

方法一:配方法(也称为配方根公式)配方法是一种常见的解一元二次方程的方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项分离出完全平方项;2. 将方程化为完全平方形式,即形如(x + a) = b;3. 对方程两边取平方根,得到x的两个解:x = -a ± b。

方法二:公式法公式法是解一元二次方程的常用方法之一,它的公式为:x = (-b ±√(b-4ac)) / 2a其中a、b、c分别为一次项系数、二次项系数和常数项。

方法三:图像法图像法是一种直观的解题方法,它的步骤如下:1. 将方程化为标准形式:ax+bx+c=0;2. 将方程左侧变形为y=ax+bx+c的二次函数的图像;3. 通过观察二次函数的图像,得到x的解。

方法四:因式分解法如果一元二次方程的左侧可以因式分解,那么可以使用因式分解法解题。

例如:x+5x+6=0,可以因式分解为(x+2)(x+3)=0。

因此,x的解为x=-2或x=-3。

方法五:完全平方公式完全平方公式是解一元二次方程的一种简便方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项计算出Δ=b-4ac;2. 如果Δ是完全平方数,那么方程的解为x=(-b±√Δ)/2a。

以上是解一元二次方程的五种方法,希望对大家有所帮助。

掌握多种解题方法可以提高数学思维和解题能力,也可以在考试中提高解题速度和准确性。

一元二次方程公式大全

一元二次方程公式大全

一元二次方程公式大全
1. 一元二次方程的一般式:ax²+bx+c=0(a≠0)。

2. 一元二次方程的根公式:x=[-b±√(b²-4ac)]/2a。

3.一元二次方程的顶点公式:x=-b/2a,y=c-b²/4a。

4.一元二次方程的轴对称式:y=a(x-h)²+k,其中(h,k)为顶点坐标。

5. 一元二次方程的判别式公式:Δ=b²-4ac;当Δ>0时,有两个不
相等的实根;当Δ=0时,有一个重根;当Δ<0时,无实根。

6.一元二次方程的解的性质公式:两根之和=-b/a,两根之积=c/a。

7. 一元二次方程的因式分解公式:ax²+bx+c=a(x-x₁)(x-x₂),其中x₁、x₂为方程的两个实根。

8. 一元二次方程的求导公式:y'=2ax+b,其中a、b为方程系数。

9. 一元二次方程的求和差公式:(x+y)²=x²+2xy+y²,(x-y)²=x²-
2xy+y²。

10. 一元二次方程的配方法公式:根据(a±b)²=a²±2ab+b²,将一元
二次方程化为完全平方形式。

第4讲 一元二次方程的解法-因式分解法

第4讲 一元二次方程的解法-因式分解法

一元二次方程的解法(四)----因式分解法知识要点梳理:1.分解因式的方法有:提公因式法、利用平方差公式分解因式、利用完全平方公式分解因式、十字相乘法、分组分解法等2.因式分解法解一元二次方程的原理:000==⇔=b a ab 或预习引入:将下列各式分解因式(1)y y 22-(2)942-x (3)2222+-x x(4)862+-x x(5)y y x x 2422--+经典例题例1:用因式分解法解下列方程:(1) t (2t -1)=3(2t -1);(2) y 2+7y +6=0(3)(2x -1)(x -1)=1.(4)0)34()43(22=---x x例2:用适当方法解下列方程: (1)3(1-x )2=27; (2)x 2-6x -19=0;(3)3x 2=4x +1; (4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0; (6)4(3x +1)2=25(x -2)2.例3.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.经典练习:一.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 *(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .3二.填空题(1)方程(2x +1)2+3(2x +1)=0的解为__________.(2)方程t (t +3)=28的解为_______.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.三.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0; (2)(x-2)2=256; (3)x2-3x+1=0;(4)x2-2x-3=0; (5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9; (7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0; (9)2x2-8x=7(10)(x+5)2-2(x+5)-8=0.拓展练习1.已知x 2+3xy -4y 2=0(y ≠0),试求y x yx +-的值.2.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.3.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y , 则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗巩固作业:1.分别用三种方法来解以下方程(1)x2-2x-8=0 (2)3x2-24x=0用因式分解法:用配方法:用公式法:用因式分解法:用配方法:用公式法:2.已知x2+3x+5的值为9,试求3x2+9x-2的值.3.当x取何值时,能满足下列要求?(1)3x2-6的值等于21;(2)3x2-6的值与x-2的值相等.4.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.。

一元二次方程的解法及判别

一元二次方程的解法及判别

一元二次方程的解法及判别一、一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为2的方程。

一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,且a ≠ 0。

二、一元二次方程的解法1.因式分解法:将一元二次方程进行因式分解,使其变为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。

2.公式法:利用一元二次方程的求根公式(也称二次公式)求解。

求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)。

三、一元二次方程的判别式判别式是用来判断一元二次方程的根的情况的数值。

判别式的公式为:Δ = b^2 - 4ac。

四、判别式的性质与解的情况1.当Δ > 0时,方程有两个不相等的实数根。

2.当Δ = 0时,方程有两个相等的实数根,也称为重根。

3.当Δ < 0时,方程没有实数根,而是有两个共轭的复数根。

五、一元二次方程的解法比较1.因式分解法适用于方程的系数较小,且容易分解的情况。

2.公式法适用于任何形式的一元二次方程,无论系数的大小和是否容易分解。

六、一元二次方程的应用一元二次方程在实际生活中有广泛的应用,如物体的运动轨迹、投资收益、面积计算等方面。

总结:一元二次方程的解法及判别是中学数学中的重要知识点,掌握因式分解法和公式法求解一元二次方程,以及理解判别式的性质和解的情况,对于解决实际问题具有重要意义。

习题及方法:已知一元二次方程x^2 - 5x + 6 = 0,求解该方程。

这是一个一元二次方程,我们可以尝试使用因式分解法来解它。

首先,我们需要找到两个数,它们的乘积等于常数项6,而它们的和等于一次项的系数(-5)。

这两个数是-2和-3。

因此,我们可以将方程重写为:(x - 2)(x - 3) = 0。

根据零因子定律,我们得到x - 2 = 0或x - 3 = 0。

解得x1 = 2,x2 = 3。

给定一元二次方程2x^2 + 5x - 3 = 0,求解该方程。

一元二次方程因式分解法的四种方法

一元二次方程因式分解法的四种方法

一元二次方程因式分解法的四种方法【实用版3篇】目录(篇1)一、引言二、一元二次方程的概述三、因式分解法概述四、四种因式分解方法1.提取公因式法2.完全平方公式法3.平方差公式法4.完全平方公式与平方差公式的结合法五、每种方法的例题解析六、总结正文(篇1)一、引言在解决一元二次方程时,因式分解法是一种常用的方法,它可以帮助我们快速找到方程的解。

本文将为大家介绍四种因式分解的方法,以帮助大家更好地理解和运用这一方法。

二、一元二次方程的概述一元二次方程是指形如 ax+bx+c=0 的方程,其中 a、b、c 为常数,且 a≠0。

在这个方程中,a、b、c 分别称为二次项系数、一次项系数和常数项。

三、因式分解法概述因式分解法是将一元二次方程的左边化为两个一次因式的积的形式,从而得到方程的解。

通过因式分解,我们可以将一元二次方程转化为两个一元一次方程来求解,从而简化了解题过程。

四、四种因式分解方法1.提取公因式法提取公因式法是指在方程的两边同时提取公因式,以达到简化方程的目的。

这种方法适用于当方程的一次项系数 b 为零的情况。

2.完全平方公式法完全平方公式法是指利用完全平方公式 (a+b)=a+2ab+b将方程进行因式分解。

这种方法适用于当方程的二次项系数 a 为 1 的情况。

3.平方差公式法平方差公式法是指利用平方差公式 (a+b)(a-b)=a-b将方程进行因式分解。

这种方法适用于当方程的一次项系数 b 不等于零且二次项系数 a 不等于 1 的情况。

4.完全平方公式与平方差公式的结合法当方程的二次项系数 a 不为 1,一次项系数 b 不为 0 时,我们可以将完全平方公式和平方差公式结合使用,以达到因式分解的目的。

五、每种方法的例题解析这里我们分别对四种因式分解方法进行例题解析,以便大家更好地理解和掌握这些方法。

六、总结因式分解法是一种解决一元二次方程的有效方法,掌握四种因式分解方法有助于我们在解题过程中更加灵活地选择合适的方法。

一元二次方程因式分解以及根与系数的关系

一元二次方程因式分解以及根与系数的关系

一元二次方程(因式分解,根与系数的关系 )当一元二次方程的一边为__________,另一边易于分解成两个____________因式的乘积时,可使这两个一次因式分别等于__________,从而得到原方程的解,这种解一元二次方程的方法称为因式分解。

例:已知关于X 的一元二次方程022=++m x x(1)当m=3时,判断方程的根的情况(2)当m=-3时,求方程的根例2:现定义运算◊,对于任意实数a,b 都有a ◊b=3,32如b a a +-◊533-352+⨯=,若x ◊2=6,则实数x 的值是_______________A.基础巩固训练知识点:因式分解法解一元二次方程1.方程(x-1)(x+2)=0的两根分别为( )A.2,121=-=x xB.2,121==x xC.2-,121=-=x xD.2-,121==x x2.方程的解为032=-x x _______________3.解方程)2(2)2(3x x x -=-B.能力提升训练7.先化简,再求值:()⎪⎭⎫ ⎝⎛-+÷-1121x x ,其中x 为方程0232=++x x 的根9.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x-4)=0的根,求这个三角形的周长C 思维拓展训练10:观察下面解方程0361324=+-x x 的方法 你能否求出方程0232==-x x 的解? 0361324=+-x x解:原方程可以化为()()09422=--x x0)3)(3)(2)(2=-+-+∴x x x x (03030202=-=+=-=+∴x x x x 或或或3,3,2,24321=-==-=∴x x x x一元二次方程的根与系数的关系()04,0022≥-≠=++ac b a c bx ax 方程的两根21,x x 和系数a,b 有如下关系:21x x +=________,21x x =_______ 例1:已知实数a,b 分别满足,046,04622=+-=+-a b a a 且ba ab b a +≠则,的值是_________例2:已知关于x 方程0)1(2)13(2=-+--k x k kx ,(1)求证无论k 为何实数,方程总有实数根(2)若方程有两个实数根2121,,x x x x -且=2,求k 的值A.基础巩固训练知识点:一元二次方程的根与系数的关系1.若21x x ,是一元二次方程01610x 2=++x 的两个根,则21x x +的值是( )A.-10B.10C.-16D.162.已知21x x ,是一元二次方程014x 2=+-x 的两个实数根,则21x x 等于( )A.-4B.-1C.1D.43.已知x=-2是方程062=-+mx x 的一个根,则方程的另一个根是_____________B.能力提升训练4.若a,b 是方程0322=--x x 的两个实数根,则22b a +的值为( )A.10B.9C.7D.55.方程0)6(22=++-m x m x 有两个相等的实数根,且满足21x x +=21x x ,则m 的值是( )A.-2或3B.3C.-2D.-3或26.如图所示,菱形ABCD 的边长是5,两条对角线交于O 点,且AO,BO (AO>BO )的长是关于x 的方程03)12(22=++-+m x m x 的两个根,则m 的值为( )A.-3B.5C.5或-3D.-5或37.若两个不等实数m,n 满足条件:012,01222=--=--n n m m ,则22n m +的值是____________8.已知m,n 是方程0522=-+x x 的两个实数根,则n m mn m ++-32=_________________9.关于x 的一元二次方程0122=+++k x x 的实数解是21x x 和,如果21x x +-21x x <-1,且K 为整数,则K 的值为_________________10.一元二次方程0222=-+-m mx mx(1)若方程有两实数根,求m 的取值范围(2)设方程两实数根为21x x ,且21x x -=1,求mC.思维拓展训练11.若21x x ,是关于x 的方程c bx x ++2=0的两个实数根,且是整数),k k x x (221=+称方程c bx x ++2=0为偶系二次方程,如方程x x x x x x x ,04273,082,0276222=-+=--=--02762=-=x ,0442=++x x 都是偶系二次方程 (1)判断方程0122=-+x x 是否是偶系二次方程,并说明理由(2)对于任意一个整数b,是否存在实数c ,使得关于x 的方程2x +bx+c=0是偶系二次方程,并说明理由。

《解一元二次方程》一元二次方程PPT(因式分解法)

《解一元二次方程》一元二次方程PPT(因式分解法)
分析:出现了x2 +4x,接近完全平方式的结构特点,考虑用配方法.
〔3〕9〔x+1〕2=〔2x-5〕2 ;
分析:移项易发现符合平方差公式,考虑用因式分解法.
〔4〕9x2-12x-1 = 0.
分析:方程的结构没有明显特殊性,考虑公式法.
解:∵ a = 9,b = -12,c = -1,
∴ Δ = b 2-4 a c =〔-12〕2-4×9×〔-1〕= 144+36
(x + m) 〔x + n〕=0
解法选择根本思路
1.一般地,当一元二次方程一次项系数为0时〔ax2+c=0〕, 应选用直接开平方法; 2.假设常数项为0〔 ax2+bx=0〕,应选用因式分解法; 3.假设一次项系数和常数项都不为0 (ax2+bx+c=0〕,先化为 一般式,看一边的整式是否容易因式分解,假设容易,宜选 用因式分解法,不然选用公式法; 4.当二次项系数是1,且一次项系数是偶数时,用配方法也较 简单.
不过现在教同学们一个 小办法,左边我为大家准备 了一张视力保健“远眺图” ,看看图就能缓解眼疲劳, 起到远眺解乏的作用。
远眺图是利用心理学 空间知觉原理,在一张二维 空间平面上,强烈显示出三 维空间的向远延伸的立体图 形,远视和视力良好的人在 长时间近距离用眼情况下引 起的视力疲劳,可以通过此 种方法获得一定的缓解。
远眺图使用方法
第一步、首先在能把远眺图都看清的位置,熟悉 一下最远处几个框细微的纹路,
第二步、然后逐渐加大距离至远眺图最远处的几 个框处于模糊与清晰之间的位置停止。
第三步、思想集中,认真排除干扰,精神专注, 开始远眺,双眼看整个图表,产生向前深进的感 觉,然后由外向内逐步辨认最远处几个框每一层 的绿白线条。

一元二次方程因式分解法的公式

一元二次方程因式分解法的公式

一元二次方程因式分解法的公式《一元二次方程因式分解法的公式,其实没那么难!》嘿,小伙伴们!今天咱们来唠唠一元二次方程因式分解法的公式。

这听起来是不是有点高大上?其实呀,就像解开一个神秘的小盒子一样有趣呢。

一元二次方程长啥样呢?就是ax²+bx + c = 0这个样子啦,这里的a、b、c可都是数字哦,而且a不能是0,要是a是0的话,那就不是一元二次方程啦,就好像一个队伍少了队长,那就乱套了。

那因式分解法是干啥的呢?就好比把一个大蛋糕切成好多块小蛋糕。

我们要把ax²+bx + c这个式子变成两个式子相乘等于0的形式。

比如说,要是我们能把它变成(mx + p)(nx+q)=0这样,那就太棒了。

这里面的mx + p和nx+q就像是两个小伙伴,它们一乘起来就得到了原来的一元二次方程。

那具体怎么做呢?这就有个小公式啦。

对于方程ax²+bx + c = 0,如果能找到两个数m和n,使得m + n = b,m×n = a×c,那这个方程就可以分解成(x + m/a)(x + n/a)=0。

这就像是在玩一个数字的拼图游戏。

我给你们举个例子哈。

比如说方程x²+5x+6 = 0。

这里a = 1,b = 5,c = 6。

那我们就得找两个数m和n,m + n = 5,m×n = 1×6 = 6。

嘿,一下子就能想到2和3啦,2+3 = 5,2×3 = 6。

那这个方程就可以分解成(x + 2)(x+3)=0。

这时候就像找到了打开宝藏的两把钥匙一样兴奋呢。

我再给你们说个难一点的。

2x² - 7x+3 = 0。

这里a = 2,b = - 7,c = 3。

那我们要找m和n,m + n = - 7,m×n = 2×3 = 6。

想一下,- 6和- 1就合适呀,- 6+(-1)= - 7,- 6×(-1)=6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例析“十字相乘法分解因式”
同学们都知道,型的二次三项式是分解因式中的常见题型,那么此类多项式该如何分解呢?
观察=,可知=。

这就是说,对于二次三项式,如果常数项b可以分解为p、q的积,并且有p+q=a,那么=。

这就是分解因式的十字相乘法。

下面举例具体说明怎样进行分解因式。

例1、因式分解。

分析:因为
7x + (-8x) =-x
解:原式=(x+7)(x-8)
例2、因式分解。

分析:因为
-2x+(-8x)=-10x
解:原式=(x-2)(x-8)
例3、因式分解。

分析:该题虽然二次项系数不为1,但也可以用十字相乘法进行因式分解。

因为
9y + 10y=19y
解:原式=(2y+3)(3y+5)
例4、因式分解。

分析:因为
21x + (-18x)=3x
解:原式=(2x+3)(7x-9)
例5、因式分解。

分析:该题可以将(x+2)看作一个整体来进行因式分解。

因为
-25(x+2)+[-4(x+2)]= -29(x+2)
解:原式=[2(x+2)-5][5(x+2)-2]
=(2x-1)(5x+8)
例6、因式分解。

分析:该题可以先将()看作一个整体进行十字相乘法分解,接着再套用一次十字相乘。

因为
-2+[-12]=-14 a + (-2a)=-a 3a +(-4a)=-a
解:原式=[-2][ -12]
=(a+1)(a-2)(a+3)(a-4)
从上面几个例子可以看出十字相乘法对于二次三项式的分解因式十分方便,大家一定
要熟练掌握。

但要注意,并不是所有的二次三项式都能进行因式分解,如在实数范围内就不能再进一步因式分解了。

相关文档
最新文档