制氮
制氮机的组成清单

制氮机的组成清单1. 压缩机压缩机是制氮机的核心组成部件之一,它的主要作用是将空气从大气压力压缩到制氮机的操作压力。
在制氮机中,通常采用螺杆压缩机或者涡旋式压缩机,这两种压缩机均具有高效率、低噪音、长寿命等优点。
2. 空气预冷器空气预冷器是用来冷却压缩机压缩的空气,以降低空气的温度和湿度。
通过预冷器,可以有效地减少制氮机后续工艺中对冷却水和制冷剂的需求,并提高制氮机的工作效率。
3. 空气净化器空气净化器是用来去除空气中的水分、油和颗粒等杂质的设备。
在制氮机中,通常采用冷凝器、过滤器、干燥器等设备,通过这些设备可以使得进入制氮机的空气变得更加干燥和干净。
4. 空气分离装置空气分离装置是制氮机最关键的部件之一,它是用来将空气中的氧气和其他杂质分离出去,从而得到高纯度的氮气。
在制氮机中,常用的空气分离技术包括膜分离、压力摩尔吸附(PSA)、低温分馏等方法。
5. 液氮储罐液氮储罐是用来储存制氮机产生的液态氮的设备。
液氮储罐通常采用低温绝热设计,可以有效地保持液态氮的温度和压力,确保其在储存和运输过程中不会发生挥发或泄漏。
6. 氮气净化器氮气净化器是用来去除氮气中的水分、油和颗粒等杂质的设备。
在制氮机中,通常采用活性炭过滤器、吸附剂过滤器等设备,通过这些设备可以使得制得的氮气更加纯净和干燥。
7. 控制系统控制系统是制氮机的智能大脑,它用来监控和控制整个制氮机的运行状态和参数。
控制系统通常包括PLC控制器、触摸屏面板等设备,它可以实时监测氮气纯度、流量、温度等参数,并采取相应的控制措施,确保制氮机稳定、高效地工作。
以上就是制氮机的主要组成部件,每个部件都承担着重要的角色,它们共同组成了一台完整的制氮机设备。
制氮机作为一种重要的工业设备,其在工业生产中具有不可替代的作用,可以极大地提高生产效率、降低能源消耗、保护环境等,因此受到了广泛的关注和应用。
相信随着技术的不断进步,制氮机的性能和效率会不断提升,为各行各业的发展带来更多的帮助。
分子筛制氮机规格技术参数

分子筛制氮机规格技术参数1. 什么是分子筛制氮机?嘿,朋友们,今天咱们聊聊一个可能有点冷门,但其实超级有用的玩意儿——分子筛制氮机!听名字就有点高大上,对吧?别担心,今天我会把它讲得简单明了,让你轻松搞懂这东西是干嘛的。
首先,分子筛制氮机的主要任务就是从空气中提取出纯净的氮气。
你说,氮气有什么用?哈哈,那可多了,工业生产、食品包装,甚至是一些高大上的实验室里都少不了它的身影。
2. 规格和技术参数2.1 主要规格好啦,既然你对它的用途有了初步了解,那我们就聊聊它的规格和技术参数。
你可以把分子筛制氮机想象成一个“氮气工厂”,它的工作原理其实挺简单的,就是通过分子筛材料把空气中的氮气和氧气分开。
通常来说,这种机器的输出能力在10到1000立方米每小时之间,具体要看你的需求,像小规模的企业可能只需要个小型设备,但大企业可能就得上个“巨无霸”了。
2.2 工作原理而且,分子筛制氮机的工作原理可真是妙不可言。
它利用分子筛的特性,选择性地吸附空气中的氧气,让氮气“自顾自”地溜出来。
想象一下,就像是一个超级聪明的派对策划师,把不合适的人群隔离开,确保你只留下最精华的部分。
是不是很形象?3. 选择分子筛制氮机时需要考虑的因素3.1 设备的大小和容量当然,选择分子筛制氮机的时候,可不是随便选择的。
首先得考虑设备的大小和容量。
你可不想买了一个“庞然大物”,结果在你的车间里占了一整面墙,最后却发现根本用不着那么大。
一般来说,考虑你们的实际需求和空间,合理选择才是王道。
3.2 能耗和维护然后就是能耗问题。
谁都不想买个吃电怪兽,省钱才是硬道理。
所以,挑选分子筛制氮机的时候,看看它的能耗参数,选择那些相对高效节能的产品,让你心里不至于那么肉疼。
另外,维护也是个大问题,有些设备保养起来简直像带小孩,麻烦得很。
选择那些相对容易维护的机器,会让你省心不少。
3.3 价格和品牌最后,价格和品牌也是需要注意的。
虽然说“一分钱一分货”,但不一定贵的就是好的。
制氮机设备原理及参数

制氮机设备原理及参数制氮机是一种广泛应用于工业生产中的设备,通过对空气进行分离,将其中的氮气提取出来,从而获得高纯度的氮气。
制氮机的原理和参数是制氮机设备中非常重要的内容。
制氮机的原理主要基于空分技术,即利用空气中氧气和氮气的不同沸点进行分离。
空气经过滤、压缩、冷却等一系列处理后,进入分离装置。
在分离装置中,利用分子筛或膜等材料对氧气和氮气进行分离。
由于氧气的沸点较低,所以在一定的条件下,氧气会先于氮气从分离装置中蒸发出来,而氮气则被提取出来,从而实现了对氮气的制备。
制氮机的参数包括氮气流量、氮气纯度、氮气压力等。
氮气流量是指制氮机每单位时间内产生的氮气量,通常以立方米/小时或升/分钟来表示。
氮气纯度是指氮气中氧气的含量,通常以百分比来表示。
氮气压力是指氮气的输出压力,通常以兆帕(MPa)或千帕(kPa)来表示。
制氮机的氮气流量和氮气纯度是根据用户的需求来确定的。
不同的工业生产过程对氮气的流量和纯度要求不同,因此制氮机的设计和选择要根据具体的应用场景来确定。
一般来说,高纯度的氮气适用于电子、光电、化工等领域,而低纯度的氮气则适用于食品、饮料、冷冻等领域。
制氮机的性能参数还包括能耗、稳定性、噪音等方面。
能耗是指制氮机在工作过程中消耗的能量,通常以千瓦时/立方米来表示。
制氮机的能耗越低,能够节约能源,提高生产效率。
稳定性是指制氮机在长时间运行中的稳定性能,包括氮气流量和纯度的稳定性。
噪音是指制氮机在运行过程中产生的噪音水平,对于一些对噪音要求较低的场合,制氮机的噪音要尽量降低。
在使用制氮机时,还需要考虑一些其他的因素,比如设备的维护保养、安全性等。
制氮机作为一种特殊设备,需要定期进行维护保养,包括清洗、更换滤芯、检查气路等。
此外,制氮机的运行过程中需要注意安全性,防止发生意外事故。
总的来说,制氮机是一种通过分离空气中的氧气和氮气来制备高纯度氮气的设备。
制氮机的原理基于空分技术,通过对空气进行一系列处理和分离来获得氮气。
制氮机原理及流程

制氮机原理及流程
制氮机是一种用于生产高纯度氮气的设备,其原理基于空气分离技术。
在空气中,氮气和氧气的沸点不同,因此可以通过物理方法将它们分离开来。
制氮机通常采用压缩空气、分子筛吸附和膜分离等技术,下面将详细介绍制氮机的原理及流程。
首先,制氮机的原理是基于压缩空气。
当空气被压缩到一定压力后,其中的氮气和氧气会因为其不同的沸点而分离。
这时,压缩空气中的水分和杂质会被去除,以确保后续的分离过程更加稳定和高效。
接着,制氮机利用分子筛吸附技术进行进一步的氮气和氧气分离。
分子筛是一种特殊的吸附剂,它可以选择性地吸附氧气分子,而将氮气分子通过。
通过控制气流的方向和时间,可以实现氮气和氧气的有效分离,从而得到高纯度的氮气。
此外,制氮机也可以采用膜分离技术进行氮气的生产。
膜分离是利用特殊的半透膜,通过气体分子的大小和渗透性差异来实现氮气和氧气的分离。
这种技术具有操作简单、能耗低的优点,适用于一些特定的氮气生产场景。
在制氮机的流程中,以上所述的原理通常会被结合在一起,以实现更高效、更稳定的氮气生产。
首先,压缩空气会被送入分子筛吸附装置,经过一系列的吸附和脱附过程,氮气和氧气得到有效分离。
随后,通过膜分离技术对氮气进行进一步的提纯,最终得到所需的高纯度氮气产品。
总的来说,制氮机是一种基于空气分离原理的设备,通过压缩空气、分子筛吸附和膜分离等技术,可以实现高效、稳定的氮气生产。
在实际应用中,制氮机广泛用于化工、电子、食品等行业,为生产过程提供了可靠的氮气来源。
希望本文所介绍的制氮机原理及流程能对您有所帮助。
制氮机的用途

制氮机的用途制氮机是一种利用空气分离技术制取高纯度氮气的设备。
它将空气中的氧气和氮气分离出来,获得高纯度的氮气,可以被广泛应用于多个领域和行业。
工业在工业领域,氮气是一种重要的工业气体。
制氮机可以制造出高纯度、干燥和无油的氮气,这种气体可以被用于各种工业过程。
例如,在金属冶炼和加工领域,氮气可以被用作惰性气体,它可以保护金属材料,防止氧化反应的发生。
在食品加工和包装领域,氮气可以被用作保鲜剂。
制氮机可以保证从氮气中除去所含氧气和水分,从而确保氮气不会促进食品变质。
医疗在医疗领域,氮气可以被用作麻醉剂和进行医疗治疗。
例如,一些医疗设施需要使用高纯度的氮气,如医院的麻醉管道系统、病房氧气设备以及医疗设备中的气体稳定系统。
氮气的低温性质也使其成为冷冻试验、储存和输送的最佳气体之一。
此外,氮气的无毒性和无味性使它成为一种非常安全和可靠的气体,因此在手术室,紧急和救援场景中使用氮气是非常常见的。
能源行业制氮机在能源行业也有广泛用途。
煤炭、石油和天然气等化石燃料都需要向高压气体中注入氮气来提高系统的效率。
氮气可以被用于压电材料制造、太阳能电池的生产、以及半导体研发中的氮化二氮化硅生产。
在石油和天然气勘探和开采工作中,氮气可以被用于增加井压,从而防止井塌陷,同时还可以强化水驱注入系统,提高油藏开发利用率。
其优异的干燥性能,使得氮气可以被用于选煤工业以及生产和输送管道中的防腐保护。
城市规划在城市规划领域,氮气也具有重要作用。
例如,氮气可以被用于城市公园和绿地中的废水处理,氮气的作用可以使污水的处理和净化工作更加快速、高效和环保。
同时,氮气也被用于城市石化厂、化工厂和造纸厂的净化系统中,在净化废气中起到重要的作用。
总结制氮机的用途非常广泛,可以被应用在工业、医疗、能源、城市规划等多个领域和行业。
高纯度的氮气为其他气体或气溶胶制备提供了必要的条件,从而创造了广泛的应用前景。
随着制氮机技术的不断发展,未来还将会有更多的用途被挖掘出来,这将为相应的领域和行业带来更多的机遇和挑战。
制氮机的原理

制氮机的原理
制氮机是一种用于生产高纯度氮气的设备,其原理是通过物理
方法将空气中的氧气和其他杂质分离,从而得到高纯度的氮气。
制
氮机主要由压缩空气系统、分离系统和氮气储存系统三部分组成。
首先,压缩空气系统将自然界中的气体进行压缩,使其达到制
氮机工作所需的压力。
通常采用的是空气压缩机,将大气中的气体
进行压缩,这样可以提高气体分子的密度,为后续的分离过程提供
条件。
接下来,压缩后的空气进入分离系统,分离系统采用的是分子
筛技术。
分子筛是一种多孔性固体物质,它可以根据气体分子的大
小和极性来选择性地吸附气体,从而实现气体的分离。
在制氮机中,分子筛主要用于吸附空气中的氧气和其他杂质气体,使其与氮气分离。
在分离系统中,压缩空气经过预处理后,进入吸附塔,其中的
分子筛材料能够选择性地吸附氧气和其他杂质气体,而将氮气通过。
随着时间的推移,吸附塔中的分子筛会逐渐饱和,需要进行再生。
再生过程主要是通过减压和加热来释放吸附的氧气和其他杂质气体,
使分子筛恢复吸附能力。
最后,经过分离系统处理的氮气进入氮气储存系统,氮气储存系统主要包括氮气储罐和氮气净化器。
氮气储罐用于储存高纯度的氮气,而氮气净化器则用于去除氮气中的微量杂质,使其达到工业或实验室所需的纯度要求。
总的来说,制氮机的原理是利用分子筛技术将空气中的氧气和其他杂质气体分离出来,从而得到高纯度的氮气。
通过压缩空气、分离和储存系统的协同作用,制氮机能够稳定、高效地生产出所需纯度的氮气,广泛应用于化工、电子、医药等领域。
制氮机与空压机的原理

制氮机与空压机的原理
制氮机(Nitrogen generator)和空压机(Air compressor)是两种常见的气体设备,其工作原理如下:
制氮机:制氮机是将空气中的氧气和杂质去除,使纯度达到或接近100%的氮气的设备。
制氮机主要通过压缩空气,然后分离氮气和氧气来实现。
它通常包括以下组件:压缩机、空气热交换器、分离膜或吸附剂和氮气储气罐。
首先,空气经过压缩机被压缩成高压空气,然后通过空气热交换器去除空气中的水分和其他杂质。
接下来,高压空气会进入分离膜或吸附剂,通过选择性地通过分离膜或吸附剂,氧气和其他杂质被分离出来,而纯净的氮气被收集到氮气储气罐中。
空压机:空压机是将空气压缩成高压气体的设备。
它主要通过电动机或柴油发动机提供动力,使压缩机运转。
空压机主要由以下组件构成:压缩机、冷却器和油分离器。
首先,空气进入压缩机,在压缩机内被压缩成高压气体。
然后,高压气体通过冷却器进行冷却,以降低温度并去除部分水分。
最后,冷却后的气体会通过油分离器,将油份和其他杂质分离出来,得到纯净的高压气体。
制氮机原理

制氮机原理
制氮机是一种用于生产高纯度氮气的设备,其原理是通过物理方法将空气中的氧气和氮气分离,从而得到高纯度的氮气。
制氮机的原理主要包括压力摩擦法、膜分离法和吸附法三种。
首先,压力摩擦法是指利用气体在不同压力下的摩擦系数不同的特性,通过不同的压力来分离氮气和氧气。
在这种原理下,气体混合物首先通过压缩机增压,然后通过冷却器冷却至低温,使氧气和氮气分别凝结成液体,再通过分离器将液氧和液氮分离出来,从而得到高纯度的氮气。
其次,膜分离法是指利用特制的膜材料,通过膜的选择性透气性,将氧气和氮气分离。
在这种原理下,气体混合物通过膜分离器,氧气由于分子大小和形状的不同,会比氮气更容易渗透膜而得到分离,从而获得高纯度的氮气。
最后,吸附法是指利用吸附剂对气体混合物进行吸附,通过不同的吸附速度来分离氮气和氧气。
在这种原理下,气体混合物首先通过吸附器,氧气由于其分子大小和形状的不同,会比氮气更容易被吸附剂吸附,从而实现氮气和氧气的分离,最终得到高纯度的氮气。
综上所述,制氮机通过不同的原理实现了氮气和氧气的分离,从而得到高纯度的氮气。
在工业生产和实验室等领域,制氮机的应用越来越广泛,为各行各业提供了高质量的氮气资源,推动了产业的发展和科研的进步。
希望通过本文的介绍,读者对制氮机的原理有了更深入的了解,为相关领域的工作提供了帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 液氮
液氮是深冷空分制氮的产物,在标准状态下,1m3液氮可气化为643m3的氮气,但使用时的实际利用率一般在95%上下,即1m3液氮能实际利用的氮气约为610m3左右,目前市场液氮价格平均为1000元/m3左右,则氮气单价为1.67元/m3。
使用液氮时,用户必须配备液氮贮罐与流量相应的气化器及与压力相应的调压阀等。
液氮纯度高,质量稳定,供应一般有保证,使用方便。
3.3 现场制氮
现场制氮是指氮气用户自购制氮设备制氮,目前国内外,工业规模制氮有三类:即深冷空分制氮、变压吸附制氮和膜分离制氮。
3.3.1 深冷空分制氮
它是一种传统的空分技术,已有九十余年的历史,它的特点是产气量大,产品氮纯度高,无须再纯化便可直接应用于磁性材料,但它工艺流程复杂,占地面积大,基建费用高,需专门的维修力量,操作人员较多,产气慢(18~24h),它适宜于大规模工业制氮,氮气成本在0.7元/m3左右。
3.3.2 变压吸附制氮与氮气纯化装置相组合
变压吸附(Pressure Swing Adsorption,简称PSA)气体分离技术是非低温气体分离技术的重要分支,是人们长期来努力寻找比深冷法更简单的空分方法的结果。
七十年代西德埃森矿业公司成功开发了碳分子筛,为PSA空分制氮工业化铺平了道路。
三十年来该技术发展很快,技术日趋成熟,在中小型制氮领域已成为深冷空分的强有力的竞争对手。
变压吸附制氮是以空气为原料,用碳分子筛作吸附剂,利用碳分子筛对空气中的氧和氮选择吸附的特性,运用变压吸附原理(加压吸附,减压解吸并使分子筛再生)而在常温使氧和氮分离制取氮气。
变压吸附制氮与深冷空分制氮相比,具有显著的特点:吸附分离是在常温下进行,工艺简单,设备紧凑,占地面积小,开停方便,启动迅速,产气快(一般在30min左右),能耗小,运行成本低,自动化程度高,操作维护方便,撬装方便,无须专门基础,产品氮纯度可在一定范围内调节,产氮量≤2000Nm3/h。
但到目前为止,除美国空气用品公司用PSA制氮技术,无须后级纯化能工业化生产纯度≥99.999%的高纯氮外(进口价格很高),国内外同行目前一般用PSA制氮技术只能制取氮气纯度为99.9%的普氮(即O2≤0.1%),个别企业可制取99.99%的纯氮(O2≤0.01%),纯度更高从PSA制氮技术上是可能的,但制作成本太高,用户也很难接受,所以用非低温制氮技术制取高纯氮还必须加后级纯化装置。
氮气纯化方法(工业规模)目前有三种:
(1)加氢除氧法。
在催化剂作用下,普氮中残余氧和加入的氢发生化学反应生成水,其反应式:2H2+O2=2H2O,再通过后级干燥除去水份,而获得下列主要成份的高纯氮:N2≥99.999 %,O2≤5×10-6,H2≤1500×10-6,H2O≤10.7×10-6。
制氮成本在0.5元/m3左右。
(2)加氢除氧、除氢法。
此法分三级,第一级加氢除氧,第二级除氢,第三级除水,获得下列组成的高纯氮:N2≥99.999%,O2≤5×10-6,H2≤5×10-6,H2O≤10.7×10-6。
制氮成本在0.6元/m3左右。
(3)碳脱氧法。
在碳载型催化剂作用下(在一定温度下),普氮中之残氧和催化剂本身提供的碳发生反应,生成CO2。
反应式:C+O2=CO2。
再经过后级除CO2和H2O获得下列组成的高纯氮气:N2≥99.999%,O2≤5×10-6,CO2≤5×10-6,H2O≤10.7×10-6。
制氮成本在0.6元/m3左右。
上述三种氮气纯化方法中,方法(1)因成品氮中H2量过高满足不了磁性材料的要求,故
不采用;方法(2)成品氮纯度符合磁性材料用户的要求,但需氢源,而且氢气在运输、贮存、使用中都存在不安全因素;方法(3)成品氮的质量完全可满足磁性材料的用气要求,工艺中不使用H2,无加氢法带来的问题,氮中无H2且成品氮的质量不受普氮波动的影响,故和其他氮气纯法相比,氮气质量更加稳定,是最适合磁性材料行业中一种氮气纯化方法。
3.3.3 膜分离空分制氮与氮纯化装置相组合
膜分离空分制氮也是非低温制氮技术的新的分支,是80年代国外迅速发展起来的一种新的制氮方法,在国内推广应用还是近几年的事。
膜分离制氮是以空气为原料,在一定的压力下,利用氧和氮在中空纤维膜中的不同渗透速率来使氧、氮分离制取氮气。
它与上述两种制氮方法相比,具有设备结构更简单、体积更小、无切换阀门、操作维护也更为简便、产气更快(3min以内)、增容更方便等特点,但中空纤维膜对压缩空气清洁度要求更严,膜易老化而失效,难以修复,需要换新膜,膜分离制氮比较适合氮气纯度要求在≤98%左右的中小型用户,此时具有最佳功能价格比;当要求氮气纯度高于98%时,它与同规格的变压吸附制氮装置相比,价格要高出30%左右,故由膜分离制氮和氮纯化装置相组合制取高纯氮时,普氮纯度一般为98%,因而会增加纯化装置的制作成本和运行成本。
除上述三种高纯氮现场制气方法外,近年来又出现了一种租赁供氮方式即由用户租赁制氮设备现场制气或由制氮设备生产企业在氮气使用现场制氮,用户买气,按量付款。
因供气量多少不同,价格在1.0~1.4元/m3左右。
虽然单位制氮成本比自购设备现场制氮要高,但一次性投资少,使用方便,用户无风险,但此种方式适宜于用气量较大的场合,否则,租赁费用会增加。