2.2二次函数图象与性质(第2课时)教学设计4
第2课时 二次函数y=a(x-h)2的图象和性质说课稿

第2课时二次函数y=a(x-h)2的图象和性质说课稿各位领导,各位老师:大家好,今天我说课的题目是二次函数y=a(x-h) 2+k的图像和性质第二课时y=a(x-h) 2。
下面我将围绕“教什么”,“怎么教”,“为什么这样教”三个问题,从教材分析,教法学法分析,教学过程分析,教学评价分析和板书设计这五个方面进行分析说明。
一、教材分析1. 教材的地位和作用本课时是学生在学习二次函数y=ax2的图象和性质的基础上,通过对其图象左右平移进一步研究二次函数的图象和性质,体现了从特殊到一般的数学思想.二次函数y=a(x-h)2是一条顶点为(h,0),对称轴为直线x=h的抛物线,其开口方向由a的正负决定.在研究二次函数y=a(x-h)2的图象和性质时,要注意运用数形结合思想,同时要注意h的符号不要出错.这样不仅符合学生的认知规律,而且还使学生进一步体会了数形结合的思想方法,培养了学生的创造性思维的能力和动手实践能力,突出体现了辩证唯物主义观点。
所以本课的教学起着承上启下的作用。
2.教学目标:①知识与技能:使学生掌握二次函数y=a(x-h) 2的图象的作法及性质,进一步了解二次函数y=a(x-h)2 (h≠0)与二次函数y=ax2(a≠0)图象的位置关系;②过程与方法:通过引导学生作图、观察、分析进一步理解二次函数图象与性质;③情感态度价值观:向学生渗透事物总是不断运动、变化和发展的观点;进一步培养学生数形结合的思想和动手操作能力。
3.重点和难点:教学重点:掌握二次函数y=a(x-h) 2(h≠0)图象的作法和性质;教学难点:二次函数y=ax2的图象向二次函数y=a(x-h) 2(h≠0)的图象的转化过程。
二、教法学法分析根据《新课程标准》,本节课设计时体现“问题情境创设—建立数学模型—解释、应用—回顾、延伸”的教学理念。
特别在探究时通过学生动手操作和教师课件演示,让学生经历了知识的形成、发展与应用的过程,在教学过程中,鼓励学生自主探究与合作交流,引导学生观察、猜想、验证、推理与交流等数学活动。
华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计

华师大版数学九年级下册26.2《二次函数的图象与性质》教学设计一. 教材分析《二次函数的图象与性质》是华师大版数学九年级下册第26章第2节的内容。
本节内容主要介绍二次函数的图象与性质,包括二次函数的顶点、开口、对称轴等概念,以及如何通过图象来判断二次函数的性质。
学生通过本节的学习,应该能够理解二次函数的图象与性质,并能够运用这些知识解决实际问题。
二. 学情分析九年级的学生已经学习了函数的基础知识,对函数的概念、定义、图像等有一定的了解。
但是,对于二次函数的图象与性质,学生可能还比较陌生,需要通过实例来理解和掌握。
此外,学生的空间想象能力和抽象思维能力还有待提高,因此,在教学过程中,需要注重培养学生的这些能力。
三. 教学目标1.知识与技能:使学生理解二次函数的图象与性质,能够通过图象来判断二次函数的性质。
2.过程与方法:通过观察、操作、猜测、验证等活动,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神。
四. 教学重难点1.重点:二次函数的图象与性质。
2.难点:如何通过图象来判断二次函数的性质。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过设置问题,引导学生观察、操作、猜测、验证,从而理解二次函数的图象与性质。
同时,学生进行小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学案例和实例。
2.准备教学PPT,包括二次函数的图象与性质的讲解、实例分析等。
3.准备纸笔,用于学生进行绘图和记录。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数的图象与性质的概念。
例如:某商场进行促销活动,打折后的价格可以表示为一个二次函数,如何根据价格来判断促销活动是否优惠?2.呈现(10分钟)利用PPT,呈现二次函数的图象与性质的定义和概念,包括顶点、开口、对称轴等。
同时,通过实例来展示这些概念的应用。
3.操练(10分钟)让学生分组进行绘图和分析,每组选择一个二次函数,画出它的图象,并判断它的性质。
2.2.2二次函数的性质与图象(2)

预习反馈
小 1组★★ 2组★ 3组★ 4组★★ 5组★ 6组★★ 7组★ 8组★★ 李艳丽 匙永明 刘选和 殷森 组 优 王家明 王彩云 赵晓阳 赵芃 史东岳 闫永洁 秀 个 人 得分 4 4 4 5 1 4 2 2
9组★★
匙红芳 韩静
3
姜珊
杜
彬 朱清华 刘仲轩 朱照纬
刘梦佳 田小桐 曹秀敏 赵雪婷 董金明 王 宁 刘柄鑫 张春艳
存在问题
1、不会选择恰当的形式求解二次函数的解析式; 2、二次函数区间最值问题: 分类不明确、步骤不条理、结论不完整;
3、不会利用二次函数的单调性解决含参问题。
合作探究
内容:
1、二次函数的性质。 2、总结:含参二次函数的求值问题。 3、小组内的其他疑问。
6+3分钟
目标要求:
(1)人人参与,热烈讨论,大声发表自己的 见解 (2)手不离笔、随时记录,组长调控好节奏
精彩点评(20分钟)
展示问题 展示位置 小组 点评
目标:
(1)点评对错、规 范(布局、书写)、思 路分析(步骤、易错 点),总结规律方法 (用彩笔) (2)其它同学认真 倾听、积极思考,重 点内容记好笔记。有 不明白或有补充的要 大胆提出。 (3)力争全部达成 目标,A层多拓展、 质疑,B层注重总结, C层多整理,记忆。 科研小组成பைடு நூலகம்首先要 质疑拓展。
例1(1)
后黑板
7组
例1(2)
例1(3) 例1变式 例2 例3
后黑板
后黑板 后黑板 前黑板 前黑板
8组
9组 3组 5组 6组 2组 1组
4组
整理巩固
要求: 整理巩固探究问题
落实基础知识 完成知识结构图
课堂评价
2.2二次函数图象与性质(第2课时)教学设计4

第二章二次函数《二次函数的图象与性质(第2课时)》教学设计说明深圳市桂园中学黎幼彦一、教学任务分析【教学目标】(一)教学知识点1.能够利用描点法作出函数y=ax2,y=ax2+c的图象,能根据图象认识和理解二次函数的性质.(二)能力训练要求1.经历探索二次函数y=ax2,y=ax2+c的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.比较y=ax2和y=ax2+c的图象与y=x2的异同.理解a与c对二次函数图象的影响.(三)情感与价值观要求1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.【重点】1.能做出y=ax2,y=ax2+c的图像2.比较y=ax2和y=ax2+c的图象与y=x2的异同.理解a与c对二次函数图象的影响.【难点】1.能说出y=ax2和y=ax2+c图象的开口方向;对称轴和顶点坐标.2.能作出函数y=ax2和y=ax2+c的图象,并总结其性质,还能和y=x2作比较,二、教学方法探索——总结——运用法.三、教材分析教材对二次函数性质的研究采用的是图象的、直观的、非形式化方法,要求通过学生自己的探索活动(联系、对比、概括和反思等)达到对抛物线自身特点的认识和对二次函数性质的理解。
四、学生状况分析我班学生,基础良好,思维活跃,上进心强,特别愿意接受新鲜事物,有一定的创新精神和创新能力。
但学生的学习发展不太平衡,接受能力参差不齐,给教学带来了一定的困难。
五、教学过程分析1.复习回顾y=x 2与y=-x2的图像和性质2.做二次函数y=2x2的图象(1)完成下表:(2)在下图中作出y=2x2的图象.(3)二次函数y=2x2的图象是什么形状?它与二次函数y=x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?[生](1)略 (2)如图(3)二次函数y=2x2的图象是抛物线.它与二次函数y=x2的图象的相同点:开口方向相同,都向上.对称轴都是y轴.顶点都是原点,坐标为(0,0).在y轴左侧,都是y值随x值的增大而减小;在y轴右侧,都是y值随x 值的增大而增大.都有最低点,即原点.函数都有最小值.不同点:y=2x2的图象在y=x2的图象的内侧.y=2x2中函数值的增长速度较快.x2的图像学生画y=12x2,y=x2,y=2x2的图像的相同点和不同点比较y=12学生总结:a越大,开口反而越小3.议一议(1)在同一直角坐标系内作出函数y=2x2,y=2x2+1和y=2x2-1的图象.并比较它们的性质.(2)学生总结规律:二次函数y=2x2,y=2x2+1和y=2x2-1 的图象都是抛物线,并且形状相同,只是位置不同.将二次函数y=2x2的图象向上平移 1 个单位,就得到y=2x2+1函数的图象;将二次函数y=2x2的图象向下平移 1 个单位,就得到函数y=2x2-1 的图象.学生总结:二次函数y= ax2+c的图象可以由 y=ax2的图象当c > 0 时,向上平移c个单位得到. 当c < 0 时,向下平移c个单位得到.4.练习1)有研究发现,汽车在某段公路上行驶时,速度为v(km/h)汽车的刹车距离s(m)可以由公式:a)说明这两个函数图象的相同点和不同点;b)如果行车速度是 60 km/ h,那么在平滑路段和在粗糙路段相比,刹车距离相差多少米?解:a)两个函数相同点:图象都是抛物线它的开口方向向上,对称轴是y轴,顶点坐标是(0,0).不同点:只是开口大小不同.b)当x=60时, y=1/60x2=60,y=1/150x2 =24,所以60-24=36米2)随堂练习1,2,5.课时小结本节课巩固了画函数图象的步骤:列表、描点、连线;并比较了函数y=x2,y=2x2+1, y=2x2,y=2x2-1的图象的性质.2x2,y=x2,y=126.课后作业习题2.3六、教学反思学生的总结经验做得很好,就是画图动作稍慢,以后要加强锻炼。
北师大版数学九年级下册2.2.2《二次函数的图象与性质》说课稿

北师大版数学九年级下册2.2.2《二次函数的图象与性质》说课稿一. 教材分析北师大版数学九年级下册2.2.2《二次函数的图象与性质》这一节的内容,是在学生已经掌握了二次函数的一般形式和自变量与函数值的关系的基础上进行讲解的。
二次函数的图象与性质是二次函数的重要内容,对于学生来说,理解二次函数的图象与性质有助于更好地理解和应用二次函数。
本节课的主要内容包括二次函数的图象、顶点的性质、开口方向的性质、对称轴的性质和增减性。
这些内容是理解二次函数图象的关键,也是学生学习本节课的重点。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式和自变量与函数值的关系已经有了一定的了解。
但是,对于二次函数的图象与性质的理解还需要进一步的引导和讲解。
此外,学生的空间想象能力和逻辑思维能力还需要进一步的培养。
三. 说教学目标1.知识与技能:使学生掌握二次函数的图象与性质,能够通过图象理解和应用二次函数。
2.过程与方法:通过观察、分析和推理,培养学生空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的探究精神和合作精神。
四. 说教学重难点1.教学重点:二次函数的图象与性质。
2.教学难点:二次函数的图象与性质的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件和数学软件进行教学。
六. 说教学过程1.导入:通过复习二次函数的一般形式和自变量与函数值的关系,引导学生进入本节课的学习。
2.讲解:讲解二次函数的图象与性质,通过多媒体课件和数学软件进行演示,让学生直观地理解二次函数的图象与性质。
3.练习:让学生通过练习题目的方式,巩固对二次函数图象与性质的理解。
4.总结:对本节课的内容进行总结,强调二次函数的图象与性质的重要性。
5.作业:布置相关的作业,让学生进一步巩固对二次函数图象与性质的理解。
七. 说板书设计板书设计要清晰、简洁,能够突出二次函数的图象与性质的重点内容。
2.2.2 二次函数的图象与性质(课件)九年级数学下册课件(北师大版)

解: 依题意有: m2+m=2 ②
解②得:m1=-2, m2=1
由①得:m>-1
∴ m=1 此时,二次函数为: y=2x2.
随堂练习
1.若二次函数y=axa2-2 的图象开口向下,则a 的值为( )
A.2
B. -2
C.4
D. -4
2.已知二次函数y=(2-a)xa2-14,在其图象对称轴的左侧,y
问题1. 抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么
?
二次函数 开口 方向
顶点 坐标
对称轴
10 8
y =2x2 向上 (0,0) y轴
6
y =2x2+ 1
向上 (0,1)
y轴
4 2
y=2x2-1 向上 (0,-1) y轴 -4 -2 -2
y = 2x2+1 y = 2x2-1
开口方向 对称轴 顶点
a>0,开口向上, a<0,开口向下
y轴
原点(0,0)
(0,c)
增减性
a>0时,在对称轴左侧递 a>0时,在对称轴左侧递减, 减,在对称轴右侧递增; 在对称轴右侧递增;a<0时, a<0时,在对称轴左侧递 在对称轴左侧递增,在对 增,在对称轴右侧递减 称轴右侧递减
最值 最大(小)值是0 最大(小)值是c
(1)比较a,b,c,d 的大小; (2)说明a与c,b与d的数量关系.
解:(1)由抛物线的开口方向, 知a > 0,b > 0,c < 0,d < 0. 由抛物线的开口大小,知|a| > |b|,|c| > |d|, 因此a > b,c < d.∴ a > b > d > c. (2)∵①与③,②与④分别关于x 轴对称, ∴①与③,②与④的开口大小相同,方向相反. ∴ a+c=0,b+d=0.
数学北师大版九年级下册第二章二次函数图像和性质教案

2.2二次函数的图像和性质(第二课时)教学目标知识与技能1、能作出2ax y =和c ax y +=2的图像||,并研究它们的性质.2、比较2ax y =和c ax y +=2的图像与2x y =的异同.理解a 与c 对二次函数图像的影响. 过程与方法1、经历探索二次函数2ax y =和c ax y +=2的图像的作法和性质的过程||,进一步获得将表格、表达式、图像三者联系起来的经验.2、通过比较2ax y =||, c ax y +=2与2x y =的图像和性质的比较||,培养学生的比较、鉴别能力.情感、态度与价值观让学生积极投身于数学学习活动中||,有助于培养他们的好奇心与求知欲.经过自己的努力得出的结论||,不仅使他们记忆犹新||,还能建立自信心.由学生自己思考在经过合作交流完成的数学活动||,不仅能使学生学到知识||,还能使他们互相增进友谊.教学重点、难点教学重点:描点法画出二次函数c ax y +=2的图象||,理解二次函数c ax y +=2的性质||,理解函数c ax y +=2与函数2ax y =的相互关系是教学重点会用描||。
教学难点:正确理解二次函数c ax y +=2的性质||,理解抛物线c ax y +=2与抛物线2ax y =的关系是教学的难点||。
关键:掌握2ax y =和c ax y +=2的图像与2x y =的异同.理解a 与c 对二次函数图像的影响. 突破方法: 根据设问层层深入逐个破解||,然后进行类比、归纳、总结的探索模式学习||,最后得出2ax y =和c ax y +=2的图像与2x y =的异同及a 与c 对二次函数图像的影响教学准备:教师准备:多媒体课件(用于展示操作过程||,引导讨论||,出示答案).学生准备:课前预习||,两张坐标纸画图工具.教学过程(一)创设问题情景||,引入新课知识回顾:1.二次函数2x y =的图象是____||,它的开口向_____||,顶点坐标是_____;对称轴是______||,在对称轴的左侧||,y 随x 的增大而______||,在对称轴的右侧||,y 随x 的增大而______||,函数2ax y =与x =______时||,取最______值||,其最______值是______||。
九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。
2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。
3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。
二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。
2. 教学难点:通过图像理解和应用二次函数的性质。
三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。
四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。
2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。
3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。
4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。
五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。
六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章二次函数
《二次函数的图象与性质(第2课时)》
教学设计说明
深圳市桂园中学黎幼彦
一、教学任务分析
【教学目标】
(一)教学知识点
1.能够利用描点法作出函数y=ax2,y=ax2+c的图象,能根据图象认识和理解二次函数的性质.
(二)能力训练要求
1.经历探索二次函数y=ax2,y=ax2+c的图象的作法和性质的过程,获得利用图象研究函数性质的经验.
2.比较y=ax2和y=ax2+c的图象与y=x2的异同.理解a与c对二次函数图象的影响.
(三)情感与价值观要求
1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.【重点】
1.能做出y=ax2,y=ax2+c的图像
2.比较y=ax2和y=ax2+c的图象与y=x2的异同.理解a与c对二次函数图象的影响.
【难点】
1.能说出y=ax2和y=ax2+c图象的开口方向;对称轴和顶点坐标.
2.能作出函数y=ax2和y=ax2+c的图象,并总结其性质,还能和y=x2作比较,
二、教学方法
探索——总结——运用法.
三、教材分析
教材对二次函数性质的研究采用的是图象的、直观的、非形式化方法,要
求通过学生自己的探索活动(联系、对比、概括和反思等)达到对抛物线自身特点的认识和对二次函数性质的理解。
四、学生状况分析
我班学生,基础良好,思维活跃,上进心强,特别愿意接受新鲜事物,有
一定的创新精神和创新能力。
但学生的学习发展不太平衡,接受能力参差不齐,给教学带来了一定的困难。
五、教学过程分析
1.复习回顾y=x 2与y=-x2的图像和性质
2.做二次函数y=2x2的图象
(1)完成下表:
(2)在下图中作出y=2x2的图象.
(3)二次函数y=2x2的图象是什么形状?它与二次函数y=x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?
[生](1)略 (2)如图
(3)二次函数y=2x2的图象是抛物线.
它与二次函数y=x2的图象的相同点:
开口方向相同,都向上.
对称轴都是y轴.
顶点都是原点,坐标为(0,0).
在y轴左侧,都是y值随x值的增大而减小;在y轴右侧,都是y值随x 值的增大而增大.
都有最低点,即原点.
函数都有最小值.
不同点:y=2x2的图象在y=x2的图象的内侧.
y=2x2中函数值的增长速度较快.
x2的图像
学生画y=1
2
x2,y=x2,y=2x2的图像的相同点和不同点
比较y=1
2
学生总结:a越大,开口反而越小
3.议一议
(1)在同一直角坐标系内作出函数y=2x2,y=2x2+1和y=2x2-1的图象.并比较它们的性质.
(2)学生总结规律:二次函数y=2x2,y=2x2+1和y=2x2-1 的图象都是抛物线,并且形状相同,只是位置不同.将二次函数y=2x2的图象向上平移 1 个单位,就得到y=2x2+1函数的图象;将二次函数y=2x2的图象向下平移 1 个单位,就得到函数y=2x2-1 的图象.
学生总结:二次函数y= ax2+c的图象可以由 y=ax2的图象
当c > 0 时,向上平移c个单位得到. 当c < 0 时,向下平移c个单位得到.
4.练习
1)有研究发现,汽车在某段公路上行驶时,速度为v(km/h)汽车的刹车距离s(m)可以由公式:
a)说明这两个函数图象的相同点和不同点;
b)如果行车速度是 60 km/ h,那么在平滑路段和在粗糙路段相比,刹车距离相差多少米?
解:a)两个函数相同点:图象都是抛物线它的开口方向向上,对称轴是y轴,顶点坐标是(0,0).不同点:只是开口大小不同.
b)当x=60时, y=1/60x2=60,y=1/150x2 =24,所以60-24=36米
2)随堂练习1,2,
5.课时小结
本节课巩固了画函数图象的步骤:列表、描点、连线;并比较了函数y=x2,y=2x2+1, y=2x2,y=2x2-1的图象的性质.
2x2,y=x2,y=1
2
6.课后作业
习题2.3
六、教学反思
学生的总结经验做得很好,就是画图动作稍慢,以后要加强锻炼。