实用运筹学叶向版习题4.1答案
运筹学习题答案(第四章)

满足P、P2 , 不满足P3 1
page 4 28 December 2013
School of Management
运筹学教程
第四章习题解答
4.3 用单纯形法解下列目标规划问题:
min P ( d1 d1 ), P2 d 2 , P3 d 3 , P4 (5d 3 3d 2 ) 1 x1 x2 d1 d1 800 d 2 d 2 2500 (1) 5 x1 st. 3 x2 d 3 d 3 1400 x1 , x2 , d i , d i 0, i 1,2,3 解:x1 500 , x2 300 , d 2 10, d 3 200
page 7 28 December 2013
School of Management
运筹学教程
第四章习题解答
(1) 用单纯形法求问题的满意解;
解:x1 70, x2 20, d 3 25, d1 10
满足P、P2 , 不满足P3 1
(2)若目标函数变为:
min
P d
1 1
运筹学教程(第二版) 习题解答
运筹学教程
第四章习题解答
4.1 若用以下表达式作为目标规划的目标函数, 其逻辑是否正确?为什么?
(1) max 不正确 (3) min 正确 (5) max
d d d
d d d
(2) max 不正确
d d d
d d d
page 16 28 December 2013
School of Management
运筹学教程
第四章习题解答
《运筹学》 第四章习题及 答案

《运筹学》第四章习题及答案一、思考题1.运输问题的数学模型具有什么特征?为什么其约束方程的系数矩阵的秩最多等于m,n,1?2.用左上角法确定运输问题的初始基本可行解的基本步骤是什么? 3.最小元素法的基本思想是什么?为什么在一般情况下不可能用它直接得到运输问题的最优方案?4.沃格尔法(Vogel 法)的基本思想是什么?它和最小元素法相比给出的运输问题的初始基本可行解哪一个更接近于最优解?为什么?5.试述用闭回路法检验给定的调运方案是否最优的原理,其检验数的经济意义是什么?6.用闭回路法检验给定的调运方案时,如何从任意空格出发去寻找一条闭回路?这闭回路是否是唯一的?7.试述用位势法求检验数的原理、步骤和方法。
8.试给出运输问题的对偶问题(对产销平衡问题)。
9.如何把一个产销不平衡的运输问题(产大于销或销大于产)转化为产销平衡的运输问题。
10.一般线性规划问题应具备什么特征才可以转化为运输问题的数学模型?11.试述在表上作业法中出现退化解的涵义及处理退化解的方法。
二、判断下列说法是否正确1.运输问题模型是一种特殊的线性规划模型,所以运输问题也可以用单纯形方法求解。
2.因为运输问题是一种特殊的线性规划模型,因而求其解也可能出现下列四种情况:有唯一最优解;有无穷多个最优解;无界解;无可行解。
3.在运输问题中,只要给出一组(,,xijm,n,1)个非零的,且满足nmx,aijix,b,,ijjj,1 i,1,,就可以作为一个基本可行解。
4.表上作业法实质上就是求解运输问题的单纯形法。
5.按最小元素法或元素差额法给出的初始基本可行解,从每一空格出发都可以找到一闭回路,且此闭回路是唯一的。
6.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案将不会发生变化。
7.如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k ,最优调运方案将不会发生变化。
8.用位势法计算检验数时,先从某一行(或列)开始,给出第一个位势的值,这个先给出的位势值必须是正的。
运筹学部分课后习题解答

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →10 5B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
实用运筹学习题答案

实用运筹学习题答案实用运筹学习题答案运筹学是一门研究如何在有限的资源下做出最佳决策的学科。
它涉及到数学、统计学、经济学等多个领域的知识,对于解决实际问题具有重要的意义。
在学习运筹学的过程中,我们经常会遇到一些实用的练习题,下面我将为大家提供一些常见题目的答案。
1. 线性规划问题线性规划是运筹学中最基础的问题之一,它的目标是在一组线性约束条件下,找到使目标函数达到最大(或最小)值的变量取值。
解决线性规划问题的方法有很多,例如单纯形法、对偶理论等。
这里我们以单纯形法为例,给出一个线性规划问题的答案。
题目:某工厂生产两种产品A和B,每天可用的原材料和加工时间分别为200单位和8小时。
产品A和B的生产时间分别为2小时和1小时,每个单位的产品A和B的利润分别为10元和15元。
问如何安排生产,使得利润最大化?解答:设产品A和B的产量分别为x和y。
根据题目中的约束条件,我们可以列出如下的线性规划模型:目标函数:max Z = 10x + 15y约束条件:2x + y ≤ 8x, y ≥ 0通过单纯形法求解上述线性规划模型,可以得到最优解为x = 2,y = 4,此时最大利润为70元。
2. 项目调度问题项目调度是运筹学中的一个重要问题,它涉及到如何合理地安排项目的开始时间和完成时间,以最大程度地减少项目的总工期。
下面是一个项目调度问题的答案。
题目:某公司有4个项目需要完成,它们的工期和依赖关系如下表所示。
请问如何安排项目的开始时间,以使得总工期最短?项目工期依赖关系A 3 无B 2 无C 4 AD 5 B,C解答:我们可以使用关键路径法来解决这个问题。
首先,根据依赖关系,我们可以得到如下的项目网络图:A(3)/ \/ \B(2) C(4)\ /\ /D(5)然后,我们计算出每个项目的最早开始时间(EST)和最晚开始时间(LST),以及每个项目的最早完成时间(EFT)和最晚完成时间(LFT)。
最后,我们找出关键路径,即最长的路径,其上的项目不能延误。
运筹学第四章

运筹学第四章习题答案4.1若用以下表达式作为目标规划的目标函数,其逻辑是否正确?为什么? (1)max {-d -+d } (2)max {-d ++d } (3)min {-d ++d } (4)min {-d -+d }(1)合理,令f (x )+-d -+d =b,当f (x )取最小值时,-d -+d 取最大值合理。
(2)不合理,+d 取最大值时,f (x )取最大值,-d 取最大值时,f (x )应取最小值 (3)合理,恰好达到目标值时,-d 和+d 都要尽可能的小。
(4)合理,令f (x )+-d -+d =b,当f (x )取最大值时,-d -+d 取最小值合理。
4.2用图解法和单纯形法解下列目标规划问题(1)min {P 13+d ,P 2-2d ,P 3(-1d ++1d )}24261121=-+++-d d x x 52221=-+++-d d x x155331=-++-d d x3,2,1,0,,,21=≥+-i d d x x i i(2)min{P 1(+++43d d ),P 2+1d ,P 3-2d ,P 4(--+435.1d d )} 401121=-+++-d d x x1002221=-++--d d x x30331=-++-d d x 15442=-++-d d x4,3,2,1,0,,,21=≥+-i d d x x i i(1)图解法0 A B C X 1由图可知,满足域为线段EG,这就是目标规划方程的解,可求得:E,G 的坐标分别为(0,12),(3,3) 故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a(2)图解法 21由图可知,满足域为线段AB A(25,15),B(30,10)故该问题的解可表示为)1015,3025()10,30()15,25(212121a a a a a a ++=+ )1,0(212,1=+≥a a a a(1)单纯形法0 0 P1 0 0 P2 P3 P3CB XB x1 x2 bP3 P2 06 2 0 0 0 0 -1 1 245152 1 0 0 -1 1 0 05 0 -1 1 0 0 0 0P1P2P30 0 1 0 0 0 0 0-1 -1 0 0 1 0 0 0-6 -2 0 0 0 0 2 0P3P20 x1 0 2 1.2 -1.2 0 0 -1 1 6230 1 0.2 0.2 -1 1 0 01 0 -0.2 0.2 0 0 0 0P1 P2 P3 0 0 1 0 0 0 0 0 0 -1 -0.2 0.2 1 0 0 0 0 -2 -1.2 1.2 0 0 2 0P30 0x2x10 0 0.8 -0.8 2 -2 -1 1 2230 1 0.2 -0.2 -1 1 0 01 0 -0.2 0.2 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 -0.8 0.8 -2 2 2 00 0x2x10 0 0.4 -0.4 1 -1 -0.5 -0.5 1330 1 0.6 -0.6 0 0 0.5 0.51 0 -0.2 0.2 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 10 0 x22 0 0 0 1 -1 -0.5 -0.5 71253 1 0 0 0 0 0.5 0.55 0 -1 1 0 0 0 0P1P2P30 0 1 0 0 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 1故该问题的解为)312,3()3,3()12,0(21221a a a a a +=+ )1,0,(2121=+≥a a a a(2)P2P3P1P4P11.5P4CB XB x1 x2b 0 1 1 -1 1 00 0 0 0 0 401 1 0 0 -1 1 0 0 0 0 100 1 0 0 0 0 0 -1 1 00 301-1115P1 0 0 0 0 0 0 1 0 1 0P21P3 -1 -11 00 0 P4-11.5 0 0 1 0 -1 1 0 0 0 0 1 -1 251 0 0 0 -1 1 0 0 1 -1 85 1 0 0 0 0 0 -1 1 0 0 30 0x2 0 115P1 0 0 00 0 0 1 0 1 0P20 0-1 0P3 -1 01-1 1 P4 -1 00 51 0 x110 -1 1 0 0 0 0 1 -11-1-110 0 1 -1 0 0 -1 1 -1 1 30 0 x2 0 1 0 0 0 0 0 0 0 0 P1 0 0 0 0 0 0 1 0 1 0 P2 0 0 1 0 0 0 0 0 0 0 P3 0 0 -1 1 1 0 0 0 0 0P4-1111.54.3某商标的酒是用三种等级的酒兑制而成。
运筹学部分习题答案

-7
7
6 -6
C
1
-5
-3
C
2
0
C
0
第三十页,编辑于星期六:二十二点 三十六分。
习题6.11解答
13.在最小费用链上调整流量,调整量等于8,由于流量已有19,取调整 量为3,得到流量v=22的最小费用流,最小费用等于271。
A (4) 1 (4,0)
A (15,0)(15) A
2
(8,0) (3)
v4 3 v5
2
1
v7
5
(a) 图6-41
v8 4
v10
第三页,编辑于星期六:二十二点 三十六分。
习题6.4
习题6.4解答
v1
2 v3 3
4
v2
3
v4
7 v5
56
41
2
7
5 1
3
v6 2 v7 3
v8
3
v9 4 v10
(b)
图6-41
第四页,编辑于星期六:二十二点 三十六分。
习题6.4解答
v1
2
1
4
B
2
6
T6.11-2
C
1
5
3
C
2
0
C
0
第二十页,编辑于星期六:二十二点 三十六分。
习题6.11解答
3.在最小费用链上调整流量,调整量等于3,红色的为弧的流量
A
1
(4,0)
A (15,0)(3) A
2
(8,0)
A
3
(4,6)
(8,5) (3) B 1
(7,7) (5,4)
B
(8,10)
2
运筹学1至6章习题参考答案

运筹学1至6章习题参考答案(总80页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--运筹学1至6章习题参考答案第1章 线性规划工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.是250、310和130.试建立该问题的数学模型,使每月利润最大. 【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:【解设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩某企业需要制定1~6月份产品A 的生产与销售计划。
已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。
运筹学课后习题答案

6
5
6
3
σ34=15+50=1;至此;六个闭回路全部计算完 ;σ11=4;σ14=2;σ22=0;σ31=2;σ32=2;σ34=1;即全部检验数σ均 大于或等于0 即用上述三种方法计算中;用沃格尔法计算所
得结果z*=35为最优解
2024/1/10
16
表329
销地 B1
B2
B3
B4
产量
产地
A1
3
7
22
4
A3 销量
4
33
3
3
B3
6 3 28 2
B4 B5 产量
1 4 30
5
⑤
2
0
2②
15 0
6⑧
2
3
③
④
⑦
⑥
①
x11=1;x14=1;x15=3;x21=2;x32=3;x33=2;x34=1;总费用=1×3 +1×4+3×0+2×2+3×3+2×8+1×5=41
2024/1/10
18
②西北角法求解:
3 2 运输问题的基可行解应满足什么条件 试判断形表 326和表327中给出的调运方案是否作为表上作业法迭 代时的基可行解 为什么
2024/1/10
1
表326
销地 B1
B2
B3
B4
产量
产地
A1
0
A2
A3
5
销量
5
15
15
15
10
25
5
15
15
10
解:表326产地个数m=3;销地个数n=4;m+n1=3+41=6个;而 表326中非零个数的分量为5个≠6个;所以表326不可作为表上 作业法时的基可行解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.某农民承包了五块土地共206亩,打算种小麦、玉米和蔬菜三种农作物,各种农作物的计划播种面积(亩)以及每块土地种植各种不同农作物的亩产数量(公斤)见表。
问如何安排种植计划,可使总产量达到最高?
每块土地种植各种不同农作物的亩产数量
(1)决策变量
设ij x 作物种类i 为小麦、玉米、蔬菜种在土地块别j 为1、2、3、4、5上的播种面积
(2)目标函数
本问题的目标函数是使得总产量达到最高,即:
Min z=500+600+650+1050+800+850+800+700+900+950+1000+950+850+550+700 (3)约束条件 ①满足土地亩数
土地块别1:36312111=++x x x 土地块别2:48322212=++x x x 土地块别3:44332313=++x x x 土地块别4:32342414=++x x x 土地块别5:46352515=++x x x ②满足计划播种面积
小麦:861514131211=++++x x x x x
玉米:702524232221=++++x x x x x 蔬菜:503534333231=++++x x x x x ③非负:)5,4,3,2,1;3,2,1(0==≥j i x ij 所以该问题的线性规划模型如下:
s.t. ⎪⎪⎪⎪⎪⎪⎩⎪
⎪⎪
⎪⎪⎪⎨⎧==≥=++++=++++=++++=++=++=++=++=++)
5,4,3,2,1;3,2,1(050
7086
46324448
363534333231
252423222115
14131211
352515342414332313322212
312111j i x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ij
电子表格模型如下。
Excel的求解结果为:由土地3、土地4、土地5种小麦各44、32、10亩,由土地1、土地5种玉米各34、36亩,由土地1、土地2种蔬菜各2、48亩,此时总产量达到最高180900公斤。