(新人教版)【文库精品】高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线的综合问题学案【必做资料】
高考数学二轮专题复习系列(8)圆锥曲线新人教版

解法一:由 e= c a
2
a2 b2
,得 2
a2
1 ,从而 a2=2 b2,c=b. 2
设椭圆方程为 x2+2y2=2b2,A(x1,y1),B(x2,y2) 在椭圆上 .
则 x12+2 y1 2=2b2,x22+2y22=2b2,两式相减得,
(x12- x22)+2( y12- y22)=0, y1 y 2 x1 x2
x1 x2 4, y1 y 2 2.
2
2
2
2
又 x1 2 b2
y1 b2
1,
x2 2b 2
y2 b2
1,
两式相减,得
x12
x
2 2
2
2b
y12
y
2 2
0.
2
b
(x1 x 2 )( x1 x 2 ) 2( y1 y2 )( y1 y2 ) 0,
F2
y A
C1
O
F1
x
B
又 x1 x2
4.y1
y2
2.得 y1 x1
x1 x 2 . 2( y1 y2 )
设 AB 中点为 (x0,y0),则 kAB=- x0 , 2 y0
又 (x0,y0)在直线
1
1
y= x 上, y0=
f
1(x 0,y 0)=0
点 P0(x 0,y 0) 是 C1, C2 的交点
f
2(x 0,y 0) =0
方程组有 n 个不同的实数解,两条曲线就有 n 个不同的交点;方程组没有实数解,曲线
就没有 交点 .
2. 圆
圆的定义
点集:{ M|| OM| =r },其中定点 O为圆心,定长 r 为半径 .
高三数学二轮复习 圆锥曲线方程及几何性质 课件 (全国通用)

3 (ii)当 λ≠ 时,方程变形 4
x2 y2 + =1, 112 112 16λ2-9 16λ2
. - 4 , 4 其中 x∈ 3 当 0<λ< 时,点 M 的轨迹为中心在原点、焦点在 y 4 轴上的双曲线满足-4≤x≤4 的部分. 3 当 <λ<1 时,点 M 的轨迹为中心在原点、焦点在 x 4 轴上的椭圆满足-4≤x≤4 的部分. 当 λ≥1 时,点 M 的轨迹为中心在原点、焦点在 x 轴上的椭圆.
x2 y2 【解析】(Ⅰ)设椭圆的方程为 2+ 2=1a>b>0,半焦 a b a-c=1 距为 c,则由已知得 ,解得 a=4,c=3, a+c=7 则 b2=a2-c2=7, x2 y2 所以椭圆 C 的标准方程为 + =1. 16 7 |OP|2 2 (Ⅱ)设 M(x,y),其中 x∈[-4,4].由已知 2 =λ |OM| 9x2+112 及点 P 在椭圆 C 上可得 =λ2, 2 2 16(x +y ) 整理得(16λ2-9)x2+16λ2y2=112,其中 x∈[-4,4]. 3 (i)当 λ= 时,化简得 9y2=112,所以点 M 的轨迹方 4 4 7 程为 y=± (-4≤x≤4),轨迹是两条平行于 x 轴的线 3 段.
【分析】1.解决本题的关键是利用好点 P,M 坐标之 |OP| 间的关系和几何条件 =λ,在分析这个关系时注意根 |OM| 据|OP|,|OM|是点 P,M 到坐标原点的距离,对几何条件 OP 便于利用点 P 在椭圆上的条件, =λ 的两端进行平方, OM 这样就建立了关于点 M 坐标之间的一个方程,化简整理 就可得出点 M 的轨迹方程.在解答数学试题时,对题目 中的已知条件进行有目的的变换是解决问题的重要技巧 之一.
(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-

第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。
【高考数学二轮学习精品讲义教师版】第三部分_重点板块_专题五解析几何:第3讲圆锥曲线的综合问题

解得 a=2,∵c=1,∴b2=a2-c2=3,∴椭圆 C 的标准方程为x42+y32=1.
(2)联立方程,得x42+y32=1,消去 y 得(3+4k2)x2+8kmx+4m2-12=0,设 A(x1,y1),B(x2, y=kx+m,
y2),则 x1+x2=3-+84kmk2,x1x2=43m+2-4k122,且 Δ=48(3+4k2-m2)>0,① 设 AB 的中点为 M(x0,y0),连接 QM,则 x0=x1+2 x2=3-+44kmk2,y0=kx0+m=3+3m4k2,
化简得x42+y22=1(|x|≠2),
所以 C 为中心在坐标原点,焦点在 x 轴上的椭圆,不含左右顶点.
(2)①证明:设直线 PQ 的斜率为 k,则其方程为 y=kx(k>0).
y=kx, 由x42+y22=1得 x=±
2 1+2k2.
设 u=
2 ,则 1+2k2
P(u,uk),Q(-u,-uk),E(u,0).
所以 Δ=4p2-8pkb>0,得 kb<p2,
又 y1+y2=2kp,y1y2=2pkb,由 y1+y2=2kp>0,y1y2=2pkb>0,可知 k>0,b>0,因为|CD|= 1+k2
|x1-x2|=a 1+k2,
点 O 到直线 CD 的距离 d=
|b| , 1+k2
所以 S1=12·a 1+k2· 1|b+| k2=12ab.
在解答题中一般会综合考查直线、圆、圆锥曲线等.试题难度较大,多以压轴题出现.
解答题的热点题型有:
(1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定值、最值及范围的求解;(3)圆锥曲 线中的判断与证明.
第 1 课时 圆锥曲线中的最值、范围、证明问题 考点一 圆锥曲线中的最值问题
第3讲 大题专攻——圆锥曲线中的最值、范围、证明问题 2023高考数学二轮复习课件

当t∈(2,3)时,u′>0,u=4t3-t4单调递增,
当t∈(3,4)时,u′<0,u=4t3-t4单调递减,
所以当
t=3
时,u
取得最大值,则
S
也取得最大值,最大值为3 4
3.
目录
圆锥曲线中的范围问题
【例2】 已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P 的横坐标为2,且|PF|=2. (1)求抛物线E的标准方程; 解 法一:依题意得 F0,2p,设 P(2,y0),则 y0=2-p2,因为点 P 是抛 物线 E 上一点,所以 4=2p2-2p,即 p2-4p+4=0,解得 p=2.所以抛物 线 E 的标准方程为 x2=4y. 法二:依题意,设 P(2,y0),代入抛物线 E 的方程 x2=2py 可得 y0=2p,由 抛物线的定义可得|PF|=y0+p2,即 2=2p+p2,解得 p=2.所以抛物线 E 的 标准方程为 x2=4y.
4 1+k2· k2+b.
因为x2=4y,即y=x42,所以y′=x2,则抛物线在点A处的切线斜率为
x1 2
,在
点A处的切线方程为y-x421=x21(x-x1),即y=x21x-x421,
目录
同理得抛物线在点B处的切线方程为y=x22x-x422,
联立得yy= =xx2212xx--xx442212, ,则xy==xx114x+22=x2-=b2,k, 即P(2k,-b).
+ 2, 圆心O(0,0)到MN的距离d= m22+1=1⇒m2=1.
联立xx= 2+m3yy+2=32,⇒(m2+3)y2+2 2my-1=0⇒4y2+2 2my-1=0,
|MN|=
1+m2·
8m2+16= 4
高三数二轮专题复习通用课件圆锥曲线

走向高考 ·二轮专题复习 ·新课标版 ·数学
∵A(x1,y1),B(x2,y2)在轨迹C上, ∴有yy1222= =44xx12, ,① ② 由①-②得,y21-y22=4(x1-x2). 当x1=x2时,弦AB的中点不是N,不合题意, ∴yx11- -yx22=y1+4 y2=1,即直线AB的斜率k=1, 注意到点N在曲线C的张口内(或:经检验,直线m与轨迹 C相交), ∴存在满足题设的直线m,且直线m的方程为:y-2=x -4,即x-y-2=0.
专题五 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
(2013·辽宁文,15)已知F为双曲线C:
x2 9
-
y2 16
=1的左焦
点,P,Q为C上的点,若PQ的长等于虚轴长的2倍,点A(5,0)
在线段PQ上,则△PQF的周长为________.
[答案] 44
专题五 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
[解析] 如图,由椭圆及圆的方程可知两圆圆心分别为椭 圆的两个焦点,由椭圆定义知|PA|+|PB|=2a=6,连接PA, PB,分别与两圆相交于M、N两点,此时|PM|+|PN|最小,最 小值为|PA|+|PB|-2R=4;连接PA,PB并延长,分别与两圆 相交于M′、N′两点,此时|PM′|+|PN′|最大,最大值为 |PA|+|PB|+2R=8,即最小值和最大值分别为4,8.
核心整合
专题五 第二讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
知识方法整合
椭圆、双曲线、抛物线的定义及几何性质
椭圆 双曲线
抛物线
定义
|PF1| + ||PF1| - 定点 F 和定直线 l,
|PF2| = |PF2|| = 点 F 不在直线 l 上,
高考二轮复习圆锥曲线专题(共88张PPT)

xR=m+2
m2+3
3
.
所以||PPQR||=xxQR=22
11++mm3322-+11=1+2
2 1+m32-1.
基础知识
题型分类 第18页,共88页。 思想方法
练出高分
题型分类·深度剖析
此时 1+m32>1,且 1+m32≠2,
所以 1<1+ 2
1+2 m32-1<3,且
1+ 2
1+2 m32-1≠53,
【例 2】 已知椭圆 C 经过点 A1,32, 两个焦点为(-1,0)、(1,0). (1)求椭圆 C 的方程;
思维启迪
解析
探究提高
可设直线 AE 的斜率来计算直线 EF 的斜率,通过推理计算消参.
(2)E、F 是椭圆 C 上的两个动点,
如果直线 AE 的斜率与 AF 的斜率
互为相反数,证明直线 EF 的斜率
圆锥曲线中的探索性问题
难圆点锥正 曲本线P中1的(疑x函点1数清,思源想y1),P2(x2,y2),则所得弦长|P1P2|
圆锥曲线中的探索性问题
1+k |x -x | = 圆数直锥学线曲 和线圆R 中锥A(的曲文探线)索问性题问解题法的2一般1规律
2
圆锥曲线中的范围、最值问题
1 圆锥曲线中的范围、最值问题
p y0.
2.“点差法”的常见题型
求中点弦方程、求(过 定点、平行弦)弦中点 轨迹、垂直平分线问 题.必须提醒的是 “点差法”具有不等 价性,即要考虑判别 式 Δ>0 是否成立.
基础知识
题型分类 第6页,共88页。 思想方法
练出高分
基础知识·自主学习
基础自测
题号
1 2 3 4
答案
高考数学二轮复习 第7单元-圆锥曲线 新人教版

专题二十五 │ 要点热点探究
(1)x2-y42=1 (2)2x52+1y62 =1 【解析】 (1)|PF1|=2 52+22
=6,|PF2|=4,∴a=6-2 4=1,b2=c2-a2=4,所以双曲线的方程 为 x2-y42=1.
(2)设 M 的坐标为(x,y),P 的坐标为(xP,yP),
.
专题二十五 │ 要点热点探究
► 探究点二 离心率的求解 离心率的求解主要涉及两个问题:一是求离心率的值,二是
求离心率的取值范围.离心率的求解有两个方法 e=ac和 e=|PdF| (d 为椭圆上一点 P 到准线的距离,焦点和准线要相对应).
例 2 点 M 是椭圆xa22+by22=1(a>b>0)上的点,以 M 为 圆心的圆与 x 轴相切于椭圆的焦点 F,圆 M 与 y 轴相交于 P,Q 两点,若△PQM 是钝角三角形,则椭圆离心率的取 值范围是________.
xP=x, 由已知得yP=54y,
∵P 在圆上,∴x2+54y2=25,
即 C 的方程为2x52+1y62 =1.
.
专题二十五 │ 要点热点探究
【点评】 (1)本题已知曲线类型为双曲线,故只需要明确焦点 所在轴,并求出 a,b,c 即可.题干中所给信息与到焦点的距离 有关系,故可以用定义 2a=||PF1|-|PF2||求解.
.
第七单元 │ 近年高考纵览
.
专题二十五 │ 圆锥曲线的几何性质
专题二十五 圆锥曲线的几何
.
专题二十五 │ 主干知识整合
主干知Байду номын сангаас整合
.
专题二十五 │ 主干知识整合
.
专题二十五 │ 主干知识整合
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 圆锥曲线的综合问题[考情考向分析] 1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1 (2018·浙江省稽阳联谊学校联考)已知离心率为32的椭圆C :x 2a 2+y2b2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫1,32,与坐标轴不平行的直线l 与椭圆C 交于A ,B 两点,其中M 为A 关于y 轴的对称点,N (0,2),O 为坐标原点.(1)求椭圆C 的方程;(2)分别记△PAO ,△PBO 的面积为S 1,S 2,当M ,N ,B 三点共线时,求S 1·S 2的最大值. 解 (1)∵c a =32,a 2=b 2+c 2,∴a =2b . 把点P ⎝ ⎛⎭⎪⎫1,32代入椭圆方程可得1a 2+34b 2=1, 解得a =2,b =1,∴椭圆方程为x 24+y 2=1.(2)设点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2), 则M 为(-x 1,y 1),设直线l 的方程为y =kx +b ,联立椭圆方程可得(4k 2+1)x 2+8kbx +4b 2-4=0, ∴x 1+x 2=-8kb 4k 2+1,x 1x 2=4b 2-44k 2+1,Δ>0,∵M ,N ,B 三点共线,∴k MN =k BN , 即y 1-2x 1+y 2-2x 2=0, 化简得8k (1-2b )=0, 解得b =22或k =0(舍去). 设A ,B 两点到直线OP 的距离分别为d 1,d 2. 直线OP 的方程为3x -2y =0,|OP |=72, ∴S 1·S 2=116|(3x 1-2y 1)(3x 2-2y 2)|,化简可得S 1·S 2=116|(2k -3)2x 1x 2+2(2k -3)(x 1+x 2)+2|=⎪⎪⎪⎪⎪⎪-14+3k 4k 2+1. 又3k 4k 2+1∈⎣⎢⎡⎭⎪⎫-34,0∪⎝⎛⎦⎥⎤0,34, ∴当k =-12时,S 1·S 2的最大值为3+14.思维升华 解决范围问题的常用方法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,利用数形结合法求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 (2018·绍兴市柯桥区模拟)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 相交于点P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y ,得k 2x 2-(8k +4)x +16=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k 2=2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6. (2)由于S 1S 2=|PA ||PB |=x 1x 2.由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2 =⎝⎛⎭⎪⎫1k +22-2∈⎝⎛⎭⎪⎫174,7. 由S 1S 2+S 2S 1>174,得4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0,解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14,由S 1S 2+S 2S 1<7,得⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0,解得7-352<S 1S 2<7+352,因此7-352<S 1S 2<14.即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 (2018·北京)已知抛物线C :y 2=2px 经过点P (1,2),过点Q (0,1)的直线l 与抛物线C有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.(1)解 因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1,得k 2x 2+(2k -4)x +1=0.依题意知Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 的斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)证明 设A (x 1,y 1),B (x 2,y 2), 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1), 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2.由QM →=λQO →,QN →=μQO →,得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N =x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k =2.所以1λ+1μ为定值.思维升华 (1)动直线过定点问题的两大类型及解法①动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).②动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. (2)求解定值问题的两大途径①由特例得出一个值(此值一般就是定值)→②先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值. 跟踪演练2 已知倾斜角为π4的直线经过抛物线Γ:y 2=2px (p >0)的焦点F ,与抛物线Γ相交于A ,B 两点,且|AB |=8. (1)求抛物线Γ的方程;(2)过点P (12,8)的两条直线l 1,l 2分别交抛物线Γ于点C ,D 和E ,F ,线段CD 和EF 的中点分别为M ,N .如果直线l 1与l 2的倾斜角互余,求证:直线MN 经过一定点. (1)解 由题意可设直线AB 的方程为y =x -p2,由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,消去y 整理得x 2-3px +p 24=0,Δ=9p 2-4×p 24=8p 2>0,令A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=3p ,由抛物线的定义得|AB |=x 1+x 2+p =4p =8, ∴p =2.∴抛物线的方程为y 2=4x .(2)证明 设直线l 1,l 2的倾斜角分别为α,β, 由题意知,α,β≠π2.直线l 1的斜率为k ,则k =tan α. ∵直线l 1与l 2的倾斜角互余,∴tan β=tan ⎝ ⎛⎭⎪⎫π2-α=sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α=cos αsin α=1sin αcos α=1tan α, ∴直线l 2的斜率为1k.∴直线CD 的方程为y -8=k (x -12), 即y =k (x -12)+8.由⎩⎪⎨⎪⎧y =k (x -12)+8,y 2=4x ,消去x 整理得ky 2-4y +32-48k =0, 设C (x C ,y C ),D (x D ,y D ), ∴y C +y D =4k,∴x C +x D =24+4k 2-16k,∴点M 的坐标为⎝⎛⎭⎪⎫12+2k2-8k ,2k .以1k代替点M 坐标中的k ,可得点N 的坐标为(12+2k 2-8k,2k ), ∴k MN =2⎝ ⎛⎭⎪⎫1k -k 2⎝ ⎛⎭⎪⎫1k -k 2-8⎝ ⎛⎭⎪⎫1k -k =11k+k -4.∴直线MN 的方程为y -2k =11k+k -4[x -(12+2k 2-8k )], 即⎝ ⎛⎭⎪⎫1k+k -4y =x -10, 显然当x =10时,y =0, 故直线MN 经过定点()10,0. 热点三 探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题常用的方法.例3 已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的上、下焦点分别为F 1,F 2,上焦点F 1到直线4x +3y +12=0的距离为3,椭圆C 的离心率e =12.(1)求椭圆C 的方程;(2)椭圆E :y 2a 2+3x 216b 2=1,设过点M (0,1),斜率存在且不为0的直线交椭圆E 于A ,B 两点,试问y 轴上是否存在点P ,使得PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|?若存在,求出点P 的坐标;若不存在,说明理由.解 (1)由已知椭圆C 的方程为y 2a 2+x 2b2=1(a >b >0),设椭圆的焦点F 1(0,c ),由F 1到直线4x +3y +12=0的距离为3, 得|3c +12|5=3, 又椭圆C 的离心率e =12,所以c a =12,又a 2=b 2+c 2,求得a 2=4,b 2=3. 椭圆C 的方程为y 24+x 23=1. (2)存在.理由如下:由(1)得椭圆E :x 216+y 24=1,设直线AB 的方程为y =kx +1(k ≠0),联立⎩⎪⎨⎪⎧y =kx +1,x 216+y24=1,消去y 并整理得(4k 2+1)x 2+8kx -12=0, Δ=(8k )2+4(4k 2+1)×12=256k 2+48>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 4k 2+1,x 1x 2=-124k 2+1.假设存在点P (0,t )满足条件, 由于PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|, 所以PM 平分∠APB .所以直线PA 与直线PB 的倾斜角互补, 所以k PA +k PB =0. 即y 1-t x 1+y 2-tx 2=0, 即x 2(y 1-t )+x 1(y 2-t )=0.(*) 将y 1=kx 1+1,y 2=kx 2+1代入(*)式, 整理得2kx 1x 2+(1-t )(x 1+x 2)=0, 所以-2k ·124k 2+1+(1-t )×(-8k )4k 2+1=0, 整理得3k +k (1-t )=0,即k (4-t )=0, 因为k ≠0,所以t =4.所以存在点P (0,4),使得PM →=λ⎝ ⎛⎭⎪⎪⎫PA →|PA →|+PB →|PB →|. 思维升华 解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (2,2),且离心率为22.(1)求a ,b 的值,并写出椭圆C 的方程;(2)设A ,B 分别为椭圆C 的左、右顶点,在椭圆C 上有异于A ,B 的动点P ,若直线PA ,PB 与直线l :x =m (m 为常数)分别交于不同的两点M ,N ,则当点P 运动时,以MN 为直径的圆是否经过定点?解 (1)由题知,4a 2+2b 2=1,c a =22,a 2=b 2+c 2,解得a =22,b =2, ∴椭圆C 的方程为x 28+y 24=1. (2)由(1)知,A (-22,0),B (22,0), 设直线PA ,PB 的斜率分别为k 1,k 2,则直线PA ,PB 的方程分别为y =k 1(x +22),y =k 2(x -22),∴M (m ,k 1(m +22)),N (m ,k 2(m -22)),∴根据射影定理知,以MN 为直径的圆的方程为(x -m )2+[y -k 1(m +22)][y -k 2(m -22)]=0,即(x -m )2+y 2-[k 1(m +22)+k 2(m -22)]y +k 1k 2·(m 2-8)=0,设点P (x 0,y 0),则x 208+y 204=1,y 2=4⎝ ⎛⎭⎪⎫1-x 208,∴k 1k 2=y 0x 0+22·y 0x 0-22=y 20x 20-8=-12, ∴(x -m )2+y 2-[k 1(m +22)+k 2(m -22)]y -12(m 2-8)=0,由y =0,得(x -m )2-12(m 2-8)=0,∴(x -m )2=12(m 2-8).当m 2-8<0,即-22<m <22时,方程无实数解,该圆不经过定点.当m 2-8≥0,即m ≥22或m ≤-22时, 解得x =m ±22m 2-8, 即定点为⎝⎛⎭⎪⎫m ±22m 2-8,0.真题体验1.(2017·全国Ⅰ改编)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.答案 16解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意知,直线l 1,l 2的斜率均存在且不为0,设l 1的斜率为k ,则l 2的斜率为-1k,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫2k 2+4k 22-4 =4(1+k 2)k2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k2+4(1+k 2) =4⎝ ⎛⎭⎪⎫1k 2+1+1+k 2=8+4⎝⎛⎭⎪⎫k 2+1k2≥8+4×2=16,当且仅当k 2=1k2,即k =±1时,取得等号.2.(2018·浙江)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.(1)证明 设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝ ⎛⎭⎪⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 所以PM 垂直于y 轴.(2)解 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0,|y 1-y 2|=22(y 20-4x 0).所以△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 2+y 204=1(-1≤x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5], 所以△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104.押题预测已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.押题依据 本题将椭圆和抛物线联合起来设置命题,体现了对直线和圆锥曲线位置关系的综合考查.关注知识交汇,突出综合应用是高考的特色. 解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a2,所以a 2=4. 又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN ||MQ |=2,当l ⊥x 轴时,|MQ |=3,|PN |=4,不符合题意,∴直线l 的斜率存在,∴可设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 4=2k 2+4k2,x 1x 4=1,且Δ=16k 2+16>0,所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4 =4(1+k 2)k2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,且Δ=144k 2+144>0,所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k2.若|PN ||MQ |=2,则4(1+k 2)k 2=2×12(1+k 2)3+4k 2, 解得k =±62. 故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.A 组 专题通关1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =33,左、右焦点分别为F 1,F 2,且F 2与抛物线y2=4x 的焦点重合. (1)求椭圆的标准方程;(2)若过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,求|AC |+|BD |的最小值.解 (1)抛物线y 2=4x 的焦点坐标为(1,0),所以c =1,又因为e =c a =1a =33,所以a =3,所以b 2=2,所以椭圆的标准方程为x 23+y 22=1.(2)①当直线BD 的斜率k 存在且k ≠0时, 直线BD 的方程为y =k (x +1), 代入椭圆方程x 23+y 22=1,并化简得()3k 2+2x 2+6k 2x +3k 2-6=0.Δ=36k 4-4(3k 2+2)(3k 2-6)=48(k 2+1)>0恒成立. 设B (x 1,y 1),D (x 2,y 2),则x 1+x 2=-6k 23k 2+2,x 1x 2=3k 2-63k 2+2,|BD |=1+k 2·|x 1-x 2|=()1+k 2·[](x 1+x 2)2-4x 1x 2=43()k 2+13k 2+2. 由题意知AC 的斜率为-1k,所以|AC |=43⎝ ⎛⎭⎪⎫1k 2+13×1k2+2=43()k 2+12k 2+3. |AC |+|BD |=43()k 2+1⎝⎛⎭⎪⎫13k 2+2+12k 2+3=203()k 2+12()3k 2+2()2k 2+3≥203()k 2+12⎣⎢⎡⎦⎥⎤()3k 2+2+()2k 2+322=203()k 2+1225(k 2+1)24=1635. 当且仅当3k 2+2=2k 2+3,即k =±1时,上式取等号, 故|AC |+|BD |的最小值为1635.②当直线BD 的斜率不存在或等于零时, 可得|AC |+|BD |=1033>1635.综上,|AC |+|BD |的最小值为1635.2.(2018·诸暨市适应性考试)已知F 是抛物线C :x 2=2py (p >0)的焦点,过F 的直线交抛物线C 于不同的两点A (x 1,y 1),B (x 2,y 2),且x 1x 2=-1.(1)求抛物线C 的方程;(2)过点B 作x 轴的垂线交直线AO (O 为坐标原点)于点D ,过点A 作直线DF 的垂线与抛物线C 的另一交点为E ,AE 的中点为G . ①求点D 的纵坐标; ②求|GB ||DG |的取值范围.解 (1)设AB :y =kx +p2,联立⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py ,得x 2=2p ⎝⎛⎭⎪⎫kx +p 2,即x 2-2pkx -p 2=0, ∴x 1x 2=-p 2=-1,∴p =1, ∴抛物线C 的方程为x 2=2y . (2)①直线OA 的方程为y =y 1x 1x =x 12x ,∴D ⎝⎛⎭⎪⎫x 2,x 1x 22,即D ⎝⎛⎭⎪⎫x 2,-12, ∴点D 的纵坐标为-12.②∵k DF =-1x 2,∴k AE =x 2,即直线AE 的方程为y -y 1=x 2(x -x 1),联立⎩⎪⎨⎪⎧y -y 1=x 2(x -x 1),y =x 22,得x 22-x 2x -y 1-1=0,∴x E =2x 2-x 1,∴G (x 2,2y 2+y 1+1). ∴G ,B ,D 三点共线,∴|GB ||DG |=y 2+y 1+12y 2+y 1+32,∵y 1·y 2=14,∴|DG ||GB |=2-y 1+1214y 1+y 1+1=2-y 1y 1+12=2-11+12y 1∈(1,2),∴|GB ||DG |∈⎝ ⎛⎭⎪⎫12,1. 3.(2018·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.(1)证明 设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k ,得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得0<m <32,故k <-12.(2)解 由题意得F (1,0).设P (x 3,y 3),则 (x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32, 于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.4.(2018·嘉兴市、丽水市教学测试)点P (1,1)为抛物线y 2=x 上一定点,斜率为-12的直线与抛物线交于A ,B 两点.(1)求弦AB 中点M 的纵坐标;(2)点Q 是线段PB 上任意一点(异于端点),过Q 作PA 的平行线交抛物线于E ,F 两点,求证:|QE |·|QF |-|QP |·|QB |为定值. (1)解 k AB =y A -y B x A -x B =1y A +y B =-12,(*) 所以y A +y B =-2,y M =y A +y B2=-1.(2)证明 设Q (x 0,y 0),直线EF :x -x 0=t 1(y -y 0), 直线PB :x -x 0=t 2(y -y 0), 联立方程组⎩⎪⎨⎪⎧x -x 0=t 1(y -y 0),y 2=x ,得y 2-t 1y +t 1y 0-x 0=0,所以y E +y F =t 1,y E ·y F =t 1y 0-x 0,|QE |·|QF |=1+t 21|y E -y 0|·1+t 21|y F -y 0| =(1+t 21)|y 20-x 0|.同理|QP |·|QB |=()1+t 22|y 20-x 0|.由(*)可知,t 1=1k EF =1k PA=y A +y P ,t 2=1k PB=y B +y P ,所以t 1+t 2=(y A +y B )+2y P =-2+2=0,即t 1=-t 2⇒t 21=t 22,所以|QE |·|QF |=|QP |·|QB |, 即|QE |·|QF |-|QP |·|QB |=0为定值.B 组 能力提高5.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为点D ,右焦点为F 2(1,0),延长DF 2交椭圆C 于点E ,且满足|DF 2|=3|F 2E |. (1)求椭圆C 的标准方程;(2)过点F 2作与x 轴不重合的直线l 和椭圆C 交于A ,B 两点,设椭圆C 的左顶点为点H ,且直线HA ,HB 分别与直线x =3交于M ,N 两点,记直线F 2M ,F 2N 的斜率分别为k 1,k 2,则k 1与k 2之积是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)椭圆C 的上顶点为D ()0,b ,右焦点F 2(1,0),点E 的坐标为(x ,y ). ∵|DF 2|=3|F 2E |,可得DF 2→=3F 2E →, 又DF 2→=()1,-b ,F 2E →=()x -1,y ,∴⎩⎪⎨⎪⎧x =43,y =-b3,代入x 2a 2+y 2b2=1,可得⎝ ⎛⎭⎪⎫432a 2+⎝ ⎛⎭⎪⎫-b 32b 2=1,又a 2-b 2=1,解得a 2=2,b 2=1, 即椭圆C 的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),H ()-2,0,M ()3,y M ,N ()3,y N .由题意可设直线AB 的方程为x =my +1,联立⎩⎪⎨⎪⎧x =my +1,x 22+y 2=1,消去x ,得()m 2+2y 2+2my -1=0, Δ=4m 2+4(m 2+2)>0恒成立.∴⎩⎪⎨⎪⎧y 1+y 2=-2mm 2+2,y 1y 2=-1m 2+2.根据H ,A ,M 三点共线,可得y M 3+2=y 1x 1+2,∴y M =y 1()3+2x 1+2.同理可得y N =y 2()3+2x 2+2,∴M ,N 的坐标分别为⎝⎛⎭⎪⎫3,y 1()3+2x 1+2,⎝ ⎛⎭⎪⎫3,y 2()3+2x 2+2,∴k 1k 2=y M -03-1·y N -03-1=14y M y N =14·y 1()3+2x 1+2·y 2()3+2x 2+2 =y 1y 2(3+2)24()my 1+1+2()my 2+1+2=y 1y 2(3+2)24[]m 2y 1y 2+()1+2m ()y 1+y 2+()1+22=-11-62m 2+24⎣⎢⎡⎦⎥⎤-m 2m 2+2+-2()1+2m 2m 2+2+3+22=-11-62m 2+24×6+42m 2+2=42-98.∴k 1与k 2之积为定值,且该定值是42-98.6.已知平面上动点P 到点F ()3,0的距离与到直线x =433的距离之比为32,记动点P的轨迹为曲线E . (1)求曲线E 的方程;(2)设M ()m ,n 是曲线E 上的动点,直线l 的方程为mx +ny =1. ①设直线l 与圆x 2+y 2=1交于不同两点C ,D ,求|CD |的取值范围;②求与动直线l 恒相切的定椭圆E ′的方程,并探究:若M ()m ,n 是曲线Γ:Ax 2+By 2=1()A ·B ≠0上的动点,是否存在与直线l :mx +ny =1恒相切的定曲线Γ′?若存在,直接写出曲线Γ′的方程;若不存在,说明理由. 解 (1)设P (x ,y ),由题意,得()x -32+y2⎪⎪⎪⎪⎪⎪x -433=32. 整理,得x 24+y 2=1,∴曲线E 的方程为x 24+y 2=1.(2)①圆心到直线l 的距离d =1m 2+n2,∵直线与圆有两个不同交点C ,D , ∴|CD |2=4⎝⎛⎭⎪⎫1-1m 2+n 2. 又∵m 24+n 2=1(m ≠0),∴|CD |2=4⎝ ⎛⎭⎪⎫1-43m 2+4.∵|m |≤2,∴0<m 2≤4, ∴0<1-43m 2+4≤34.∴|CD |2∈(]0,3,|CD |∈(]0,3,即|CD |的取值范围为(]0,3.②当m =0,n =1时,直线l 的方程为y =1; 当m =2,n =0时,直线l 的方程为x =12.根据椭圆对称性,猜想E ′的方程为4x 2+y 2=1. 下面证明:直线mx +ny =1()n ≠0与4x 2+y 2=1相切,其中m 24+n 2=1,即m 2+4n 2=4.由⎩⎪⎨⎪⎧4x 2+y 2=1,y =1-mx n ,消去y 得()m 2+4n 2x 2-2mx +1-n 2=0,即4x 2-2mx +1-n 2=0,∴Δ=4m 2-16()1-n 2=4()m 2+4n 2-4=0恒成立,从而直线mx +ny =1与椭圆E ′:4x 2+y 2=1恒相切.若点M ()m ,n 是曲线Γ:Ax 2+By 2=1()A ·B ≠0上的动点,则直线l :mx +ny =1与定曲线Γ′:x 2A +y 2B =1()A ·B ≠0恒相切.。